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COMPLETELY REDUCIBLE NEAR-RINGS

by A. OSWALD

(Received 11th March 1975)

To establish our notation N will always denote a (left) near-ring without
any type of multiplicative identity (unless the contrary is stated) satisfying
On =0 for each n £ N where 0 is the additive identity of N. A group M,
written additively, which admits N as a set of right multipliers is a (right)
N-module if aG.M, n,, n 2 E N implies a{ri\ + n2) = anx + an2 and
a(nln2) = (anl)n2. When N has a two-sided identity, 1, we suppose that
a 1 = a for each a E M. A subgroup X of M is an N-subgroup of M if it is
an N-module; X is a submodule of M if it is a normal subgroup of M and
fl£M,j;£X, n G N implies (a + x)n - an E X. We denote by SL(M) the set
of N-subgroups and by L(M) the set of submodules of M. Since N may be
regarded as an N-module we can talk about N-subgroups and submodules of
N although we usually call the submodules of N right ideals of N. Other
definitions can be found in (6).

An N-subgroup A of M is semicomplemented if there exists B G L(M)
with A ("1 B = (0), A + B = M; B is called a semicomplement of A. If each
A G SL(M) is semicomplemented then SL(M) is said to be semicom-
plemented. An N-subgroup A of M is module-essential if whenever B is a
non-zero submodule of M then A n B ^ ( O ) .

A submodule A of M is minimal if it contains no N-subgroups other
than (0) and A. If M is a direct sum of minimal submodules then M is
completely reducible. The near-ring N is completely reducible if it is
completely reducible as an N-module.

In (7; Theorem 3) we proved

Theorem 1. For an N-module M the following are equivalent :-
(i) M is completely reducible;

(ii) M has no proper module-essential N-subgroups;
(iii) SL(M) is semicomplemented.

Proposition 1. If N has a left identity the following are equivalent :-
(i) N is completely reducible;

(ii) each maximal N-subgroup of N is semicomplemented;
(iii) each proper N-subgroup of N is contained in a semicomplemented

proper N-subgroup of N.

Proof. Clearly (i)=>(ii)^(iii). Suppose (iii) and let A be a proper
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188 A. OSWALD

module-essential N-subgroup of N. Then A is contained in a proper
N-subgroup of 2V which is semicomplemented. This contradiction and
Theorem 1 establishes that (iii)=>(i).

Completely reducible near-rings with left identity clearly have the
minimum condition on N-subgroups. Retaining the chain condition but not
the left identity we can prove

Proposition 2 . If N has the minimum condition on N-subgroups the
following are equivalent:-

(i) N is completely reducible;
(ii) each non-zero N-subgroup of N contains a non-zero semicomple-

mented N-subgroup of N.

Proof. That (i)^(ii) is trivial. Suppose (ii) and let X be an N-subgroup of
N which is not semicomplemented. Let T C X be a non-zero N-subgroup of
N semicomplemented by A £ L(N). Then X = T + X, where X, = A n X
and T D X, = (0). If X, is semicomplemented by Y G L(N) and if
u e. x n (A n Y) then H e (T + x,) n A n Y SO that

u = t + x, = a (fE T, x, GX,, a £ AD Y).

Thus t = a-x,G T n A = (0) and u = x, E X, D A n Y = (0). Then
X n(A(lY) = (O). Now let z G N = T + A so that 2 = ( + d ( ( 6 7 , a e A ) .
Since N = X,+ Y, a = x, + y (x, G X,, y G Y) and

2 = t + x, + y E ( r + X,) + (A n Y) = X + A D Y.

It follows that X is semicomplemented if Xi is semicomplemented. If Xi is not
semicomplemented we can apply the same construction to X, to obtain X2 and
then X3 etc with . . . C Xn C . . . C X, contrary to the minimum condition for
N-subgroups. It follows that (ii)=>(i).

In (7; Theorem 4) we gave a proof of

Proposition 3 . If N is a near-ring with left identity the following are
equivalent :-

(i) N is completely reducible;
(ii) N has no nilpotent N-subgroups and has the minimum condition on

N-subgroups.

Later we will give an alternative proof of this result. A near-ring N is
regular if for each r G N there exists s E.N with r = rsr. It is easy to see

Lemma 1. If N is a near-ring with identity the following are equivalent : -
(i) N is regular;

(ii) for each « G N there is a non-zero idempotent e G N with aN = eN;
(iii) for each a G N there is a right ideal B of N with aN D B = (0) and

aN + B =N.
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COMPLETELY REDUCIBLE NEAR-RINGS 189

We observe that (i)=^(ii)^>(iii) irrespective of whether N has an iden-
tity. Furthermore if we assume that N has minimum condition on N-
subgroups we can use Proposition 2 to prove

Corollary 1. / / N has minimum condition on N-subgroups and if N is
regular then N is completely reducible.

Later we will consider the converse of this. For the present we observe

Proposition 4. / / N is a near-ring with identity the following are
equivalent:-

(i) N is completely reducible;
(ii) N has the minimum condition on N-subgroups and is regular.

If I? is a ring then R is completely reducible if and only if every J?-module
is completely reducible. We are unable to prove this for near-rings. However,
calling an N-module M monogenic if M = mN for some m E M we have

Proposition 5. / / N is a near-ring with left identity then N is completely
reducible if and only if every monogenic N-module is completely reducible.

Proof. Clearly if every monogenic N-module is completely reducible so
is N. For the converse let M = mN with mBM. For I E SL(M), T =
{nGN:mnGJ}GSL(N) and I = mT. Let P E L ( N ) with T D P = ( 0 ) ,
T + P =N. Then M = mT + mP = I + mP, I D mP = (0), mP G L(M).

An N-subgroup A of a module M is essential if A D B # (0) whenever
B is a non-zero N-subgroup of M. Then

Corollary 2. If N has an identity and is completely reducible and if M
is an N-module then M has no essential N-subgroups.

Proof. Let A G SL(M) be essential and i £ M with *?* 0. From Pro-
position 5, xN is completely reducible. Let K G L(xN) with xN D A 0 K =
(0), xN D A + K = xN. But xN n K = K so A n K = (0) and K G 5L(M) so
K = (0). Thus xJV n A = xN and x G A. But then M C A .

Let M be a completely reducible N-module with M = ®KMX where MA

is a minimal submodule of M and P be any minimal N-subgroup of M.
Denote by {IIa: M-*Ma} the family of natural projections and by 0a the
restriction of IIa to P. Clearly 6a = 0 or 6a is an N-isomorphism. For each
minimal N-subgroup P of M let H(P) denote the sum of all those
submodules of M which are isomorphic as N-modules to P. H(P) is the
homogeneous component of P and clearly

Proposition 6. / / M is completely reducible then M = ©H(P) where P
ranges over all the minimal N-subgroups of M.

We notice that we can define homogeneous components for general
modules in just the same way. If P is a minimal N-subgroup of M then
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190 A. OSWALD

P C H(P) if M is completely reducible. However this need not be so if M
is not completely reducible; for example the symmetric group S3 on 3
elements is a (Z, l)-module (notation in Frohlich (5)), where Z is the set of
integers, in which the subset P ={e, a} with a2=e is a minimal (Z, 1)-
subgroup for which H(P) = (0).

Lemma 2. / / F is a homogeneous component in a completely reducible
near-ring N then F is an ideal.

Proof. Clearly a £ H o m N ( N , N) implies aFCF in a completely
reducible near-ring. For x E N define ax £HomN(N,N) by ax(n) = xn.

For an N-module M we denote by Soc (M) the sum of all the minimal
submodules of M. As before it is not necessary for Soc (M) to contain all
the minimal JV-subgroups of M. Trivially Soc (M) = M if and only if M is
completely reducible. If Af is not completely reducible denote by T the
intersection of all the module essential N-subgroups of M.

We shall, on several occasions, use

Lemma 3. If M is an N-module and A E SL(M) there exists B E L(M)
with A D B = (0) and A + B module-essential in M.

Proof. The family of submodules of M having trivial intersection with
A is non-empty since it contains (0). For any chain B, C B2 C • • • of
submodules of M with A n Bt = (O) for each i we see that A n (U Bt) = (0).
Hence by Zorn's Lemma there is a maximal submodule B of M with
A D B = (0). Clearly if X E L(M) with (A + B)flX = (0) then

A D (B 4- X) = (0)

and since B + X e L(M) this contradicts the maximality of B.

Proposition 7. T is completely reducible as an N-module.

Proof. If XG.SL(T) then XE.SL(M) and by Lemma 3 we can
choose Q G L(M) maximal subject to X n Q = (0). Then X + Q is module
essential so TQX + Q and T = X+TC\Q where T D Q G L(T).

For P a minimal submodule of M we have P = T n P so Soc(M)C T.

Proposition 8. If T is a submodule of M then Soc (M) = T.

Proof. Let p G T\Soc (M) and Q G L(M) be maximal subject to the
two conditions Soc (M) C Q and p(EQ.Ql = QnTG L(M). Using Lemma
3 let A G L(M) with Q, n A = (0), Q, + A module essential in M. Then
T = Q, + A , where A! = A n T. If ^ ^ (0) and X G SL(A,) then X G SL(M)
so there exists B^L(M) with X n B = (0), X + B(lAi = Ai. A,,
BGL(M) so B n A , = B , £ L ( M ) . If X*At then B,#(0) so for some
C, G L(M), BinCt = (0), B, + C, = A,. Now X # (0) implies B, ^ (0) # C,.
Clearly B , n Q = C, n Q = (0) and p G(Q + B,)n(Q +C,). Writing p =

=q2 + c then - q 2 + q, G ( B , + C,)n Q = A, n Q = (0) and b = c = 0
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contrary to pf£Q- Hence X = A, and A, is a minimal submodule of M
from which A, C Soc (M)C Q and A, = (0) since Q n A, = (0). Then T =
Q,= r n Q so TcQ contrary to p € Q. It follows that T = Soc (M).

Whether T is always a submodule of M is unknown.

Proposition 9. / / T is not a submodule of M then Soc (M) is the largest
submodule of M contained in T.

Proof. Let QGL(M) with Soc ( M ) C Q C T and qGQ\Soc(M). If
A G L(M) is maximal subject to the two conditions <j£ A and Soc (M) C A
then A, = A n Q G L(M). Let £ G L(M) with A, n £ = (0), A, + B module
essential in M. Then B, = B n Q G L(M). As in the proof of Proposition 8
we can show that B, is minimal leading to B, = (0) and Q = Soc (M).

In Proposition 3 we have seen that if TV has a left identity then the
property of being completely reducible is equivalent to having minimum
condition on TV-subgroups and no nilpotent TV-subgroups. To drop the
requirements of a left identity and minimum condition we recall some
results on radicals for near-rings.

If F is a near-ring module then F is

type 2: if F has no proper N-subgroups and FJW (0);
type 7: if T has no proper submodules, FJV# (0) and y E.T implies yN =

(0) or yN = T.
type 0: if F has no proper submodules and yN = F for some y GF.

We define
J,(N) = D {rN(F): F is a type i TV-module}

where rN(T) = {n G N: Fn = (0)}. If F has no type i N-modules we put
Ji(N) = N. A right ideal / of N is modular if there exists a G N with
x - ax G / whenever x G TV. D(7V) is the intersection of all the modular
maximal right ideals of N with D(N) = N if N has no modular maximal right
ideals. It is known that JO(N)CD(N)CJI(N)QJ2(N). Furthermore J0(N)
contains all the nilpotent ideals of N, J2(N) all the nilpotent TV-subgroups.

If A is a minimal non-nilpotent TV-subgroup of TV then A = eN for
some idempotent e G A. Let A G SL(N) be non-nilpotent and A C /2(^)-
N = eN + r(e) and « - « n £ r(e) for each n G TV. Thus r(e) is modular and
Nlr(e) = eN. Since eTV is type 2 we say that r(e) is 2-primitive. Betsch (1;
Satz 3.2) proved that J2(N) is the intersection of the 2-primitive right ideals
of TV so J2(N)Cr(e) contrary to e2N* (0).

Theorem 2. If N is completely reducible then J2(N) is the sum of all the
nilpotent right ideals of N and /2(TV)2 = (0).

Proof. J2(N) is the sum of all the minimal right ideals of TV which it
contains and we have seen that each of these is nilpotent. Clearly if A is a
nilpotent minimal right ideal then A2 = (0). Let A,, A2 be nilpotent minimal
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192 A. OSWALD

right ideals of N. If A,&A2 then H(A,)D H(A2) = (0) and so
HiA^HiA^ = (0) and AXA2 = (0). If A, s A2 let <£ be the isomorphism and
ax £ Ai, a2 £ A2, a f E ^ with </>(a%) = a,. Then aia2 = <f>(a%)a2 = <£(af a2) =

= 0. It follows that AXA2 = (0) and J2(N)2 = (0).

Corollary 3. / / N is completely reducible then J0(N) = D(N) = Jt(N) =

Proof. J2(i\T) is a nilpotent ideal so J2(N) C J0(N).
As a second corollary to this we will obtain a proof of Proposition 3

different from that in (7). An element x £ N is right quasi-regular (rqr) if
and only if the minimal right ideal of N containing all elements of the form
n - xn for each n £ N also contains x. If we denote by Lx the right ideal of N
generated by {n — xn: n £ N} then x is rqr if and only if x £ Lx.

Lemma 4. x is rqr if and only if Lx = N.

Proof. If Lx = N then x £ Lx. Conversely if x is rqr then x £ Lx so for
s G.N, s = (s — xs) + xs £ LJJ and N = Lx.

A right ideal of N is quasi-regular in case each of its elements is rqr. By
Ramakotoiah (8; 2.2) D(N) is quasi-regular and contains all the quasi-regular
right ideals of N. A right ideal, A, of N is small if and only if whenever
B £ L(N) with A + B=N then B = N.

Lemma 5. / / / is a right ideal of N and N has a left identity e then I is
small if and only if I Q D(N).

Proof. Let I C D(N) and B £ L(N) with B +1 = N. Then e = b + i.
Now D(N) is quasi-regular, so i is rqr; so by Lemma 4, L, = N. But r £ N
implies r - ir = (fc + i)r - ir £ B. Thus L, C B and B = N as required. Con-
versely, if / is a small right ideal let x £ /. Then e — xe GLX so
e = (e - xe) + xe £ Lx +1. Hence L, = JV and / C D(N).

This gives an alternative characterisation of D(N).

Corollary 4. If N has a left identity then D(N) is a small right ideal of
N and is the sum of all the small right ideals of N.

Corollary 5. For a near-ring N with left identity the following are
equivalent

(i) N is completely reducible;
(ii) N has no nilpotent N-subgroups and satisfies the minimum con-

on N-subgroups.

Proof, (ii) implies (i) is due to Blackett (3). Suppose (i). Then D(N) =
(0) so that J2(N) = (0) and N has no nilpotent N-subgroups. The minimum
condition follows immediately from JV having a left identity.

Let us now turn to the case where J2(N) = (0).
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Theorem 3. / / N is completely reducible and J2(N) = (0) then each
homogeneous component is a simple near-ring.

Proof. Let N = ©FA where each FA is a homogeneous component. For
distinct F,, F2 we have FXF2 = (0) so if X is an ideal of F, then X is a right
ideal (in fact an ideal) of N.UXi* F, let A be a minimal right ideal of N in
F, with X D A = (0). Since J2(N) = (0), A = eN for some non-zero idem-
potent e £ A . If X^(0) let fN be a minimal right ideal of N in X with
/ = f *• 0. Then AX C A n X = (0) so X C r(A). The minimal right ideals of
N in F, are isomorphic and thus fN = eN. If $ is the isomorphism let
<£(/) = en. Then 0 = enf'= <f>(f)f'= <f>(f) which is not true. Thus X = F, or
X = (0) and F, is a simple near-ring.

Corollary 6. / / N is completely reducible with J2(N) = (0) and if A is a
two-sided N-subgroup of N there is a two-sided ideal Xof N with A D X = (0)
and A + X = N.

Proof. Let X be an ideal of N maximal subject to A n X = (0). Write
N = ©FA where each FA is a homogeneous component and thus an ideal of
N and simple as a near-ring. Clearly (A + X) n FA?* (0) for each A. If B is a
minimal JV-subgroup of N contained in FA and B(A + X) = (0) then (A +
X) D FA C r(B) fl FA. Now FA is simple and thus has no proper two-sided
ideals so r(B)nFA = (0) or FA. Since (A + X)DFA#(0) we must have
r(B) n FA = FA and so B C r(B) n FA. But then B2 = (0) contrary to J2(N) =
(0). Since (A + X)HB = (0) implies B(A + X) = (0) it follows that BCA +
X for each minimal right ideal of N and thus A + X = N as required.

Theorem 4. / / J2(N) = (0) and N = ©NA, wlicre each NA is an idea/ of
N, is simple as a near-ring and contains a minimal right ideal then N is
completely reducible.

Proof. If A is the minimal right ideal of NA and B is isomorphic to A as an
N-module then B C NA since J2(N) = (0). Apply Zorn's Lemma to the family
of all sums of right ideals of NA which are isomorphic to A to obtain a maximal
such sum T. Then T is an ideal of NA so T = NA and N is completely
reducible.

We now obtain the structure of two-sided JV-subgroups of a completely
reducible near-ring with identity.

Lemma 6. If N has no nilpotent N-subgroups and A is an N-subgroup
of N, B a two-sided N-subgroup of N, then AB = (0) // and only if
AHB = (0).

Proposition 10. / / N is completely reducible with identity 1 and A is a
two-sided N-subgroup of N then A — eN where e is a central idempotent.

Proof. From Theorem 2 and Corollary 5 we get J2(N) = (0). From
20/3—B
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194 A. OSWALD

Corollary 6 there is an ideal X of N with A (1X = (0), A + X = N. Write
l = e + x («GA, xE.X). Then « - c ! = (c + i ) c - c ! £ A n X = (0). Clearly
A = eN and e is central.

So far we have not distinguished between rings and near-rings. We now
wish to investigate near-rings which are not rings. These we call nonrings.
An extremely important result (due to Wielandt and reported by Betsch (2;
2.12)) is

Lemma 7. Let N be a near-ring and T a faithful N-module with
T = yN for some y G T. If B, C G L{N) satisfy

B + rN(y) = N = C + rN(y); BHCC rN(y).

then N is a ring.

Lemma 8. Let F be a type 2 N-module and y £ T with yN ^ (0). If
I G SL(N) with rN(y) C I then I = N.

Proof. Since rN(-y) C / we have yl = T. If n G N, then for some ( G /,

yn = yt so n — t G rN(y) C I and thus n GI and N = /.
By a standard argument one can show that if A is a non-nilpotent

minimal N-subgroup of a near-ring M then A = e/V for some idempotent
e € A

Lemma 9. If N is a completely reducible nonring, without proper
2-sided ideals, with J2(N) = (0) and if eN is a minimal right ideal of N and X
a right ideal of N with eN (1 X = (0) then X C r(e).

Proof. If x £ X with ex¥^0 then r(e) + X = N = r(e) + eN, and
eN n X = (0)C r(e) contrary to N being a nonring.

Theorem 5. If N is a completely reducible nonring, without proper
2-sided ideals, with J2(N) = (0) then the lattice of right ideals of N has
unique complements.

Proof. Let X G L ( N ) with A, B 6 L ( N ) such that X(lA = (0) =
X H B , X + A = N = X + B. If eN is a minimal right ideal of N with
eN n A = (0) then A C r(e). Since r(e) ?* N we cannot have X C r(e) and
so X f l c N / ( 0 ) and eN QX. It follows that A is the sum of all those
minimal right ideals of N not in X. Similarly B is also their sum and A = B.

Corollary 7. If N is a completely reducible nonring, without proper
2-sided ideals, with J2(N) = (0) then the lattice L(N) is distributive.

The proof of Theorem 5 contains the proofs of the following

Lemma 10. If N is a completely reducible nonring, without proper
2-sided ideals, with J2(N) = (0) and A G L(N) then A is the sum of the
minimal right ideals of N which are contained in it.
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Lemma 11. If N is a completely reducible nonring without proper
2-sided ideals and N = ®AX where each Ak is a minimal non-nilpotent right
ideal of N then each minimal right ideal of N is one of these Ak.

A near-ring N is u-primitive (v =0,1,2) if it has a faithful type v
N-module. A simple nonring without nilpotent N-subgroups and with a
minimal N-subgroup will be 2-primitive and hence 1-primitive. For 1-
primitive nonrings Ramakotaiah proved a density theorem which we wish
to use.

Let N be a 1-primitive nonring and F be a faithful type 1 N-module. If
x, y £ N we define x ~ y if and only if rN(x) = rN(y). Clearly ~ is an
equivalence relation and Co, the equivalence class containing 0, consists
precisely of those x G F with xN = (0). Ramakotaiah (9; Theorem 4) proved

Lemma 12. Let N be a l-primitive nonring and F be a faithful type 1
N-module. Let «/,, w2, • • •, wn G F\C0 with w^Wj if iVj. For each set
mu m2, . . . , m , 6 F there is an element b E.N with wtb = m, (1 ̂  i «= n).

Lemma 13. Let N be a completely reducible nonring, without proper
two-sided ideals, in which J2(N) = (0). Then N has a system of idempotents
{ex} such that e^e^ = 0 if \J± p.

Proof. Writing N = ®xexN where each ekN is a minimal right ideal of
N and el = ek we know that exN n rN(ek) = (0) and eKN@rN(ek) = N. If
AT'JU. then e( 1Nne,N = (0) and so, from Lemma 9, c^NCrN(gA) and
fx^,i. = 0 as required.

Now suppose that N is a completely reducible nonring with J2(N) = (0)
in which xt = yt for each t E.N implies x = y. Writing N = ©Nk where
each Nk is a homogeneous component of N we see that each Nk has these
properties and in addition has no two-sided proper ideals. Those Nx which
are simple rings are regular by Blair (4). Thus we need only consider those
NA which are completely reducible nonrings with J2(NX) = (0), which have
no two-sided proper ideals and in which x, y G. N with xt = yt for each
t GN implies x = y.

Theorem 6. If N is a completely reducible nonring, without proper
two-sided ideals, such that J2(N) = (0) and whenever x,yE.N with xt = yt
for each t G.N then z = y then N is regular in the sense that to each a £ N
there corresponds fcEN with a = aba.

Proof. Let a E.N. Choose non-nilpotent minimal right ideals
e,N,..., ekN with a G e,N© ... ®ekN, and k minimal, where e] = e, for each
j. Then as N-modules, etN is isomorphic to ejN for 1 *£ i, j*£k. Let <£,•:
ejN-*eiN be an isomorphism and write yj = <\>i{e{). Clearly ?, ~ y, if and
only if i = j . From Lemma 13 we observe that if N = ®ekN where each
ekN is a non-nilpotent minimal right ideal of N then exa = 0 if
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A 7s 1,2,. . . , k and, since k is minimal, e,a ̂  0 for 1 « i =s k. Hence y,a ̂  0 for
1 « i ss k. Let y,a, y2a,..., yqa be those y,a in different equivalence classes
under ~. Clearly e,Nx = 0 implies x = 0 so N is a 2-primitive near-ring and
thus 1-primitive. Appealing to Lemma 12 we can choose b G N with
y,ab = y, for 1 £̂ i s= q. Now consider yp where q <j « k. For some i,
yfa ~ y,a, so r(%a) = r(y,a). Now 7,afca/ = ^af for each t G N; so fcaf - f E
r(-y,a). It follows that bat - t G r(7,a) for each t £ N. Hence l « s « k and
t e N implies y,abat = y,at. By assumption we have 7saba = ysa. Hence
aba — a G r(y,) = r(€5); so

aba - a S e,N©- • -®ekN (1 r(e,) D • • • D r(et) = (0),

or aba = a as required.

Corollary 8. If N is a completely reducible nonring with J2(N) = (0) and
if x, y e N with xt = yt for each te.N implies x = y then N is regular.

Proof. A direct sum of regular near-rings each of which is an ideal in
the sum is regular so we simply apply Blair's result to those direct
summands which are rings and Theorem 6 to the nonrings.

Observe that if R is a ring with J2(R) = (0) then xR = (0) if and only if
x = 0. Whether this is true for a general near-ring is unknown. However,
when N is distributively generated we have

Lemma 14. If N is distributively generated and has no nilpotent N-
subgroups then xNx = (0) implies x = 0.

Proof. Let N be distributively generated by S (i.e. a, b G N, s G S
implies (a + b)s = as + bs and a G N implies a = a-^ + o-2+ • • • + <rn where
for U / « n either <r, G S or -o-; G S). From xNx = (0) we get (xN)2 = (0)
and hence xN = (0). Let B be the N-subgroup of N generated by x. If
b G B then b = n.x, n an integer, in the obvious notation, since xN = 0.
Then (n.x)(m.x) = m.((«.:c).x). Now x = EjOj, where either ov G S or
- a) E S. Then (n.Jc)(E,o-,) = S ±(n(± JCO-,)), taking the positive signs when
Oj G S and the negative signs when -<r, G S, but <r,e S. As x<r, G xN = 0,
so (n.x)x = 0 and («.x)(m.x) = 0. Thus B2 = (0) and so B = (0).

Corollary 9. 1/ N is distributively generated by S and has no nilpotent
N-subgroups then x, y G N with xt = yt for each t E. N implies x = y.

Proof. In particular xs = ys for s G S and so (x — y)s = 0. It follows
that SCr(x- y) and hence N Q r(x - y). Then (x - y)N = (0) so x - y = 0
and x = y.

Combining this with Corollary 8 we obtain

Theorem 7. / / N is a distributively generated, completely reducible
near-ring and J2(N) = (0) then N is regular.
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