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Boolean-valued equivalence relations and
complete extensions of complete

boolean algebras

Denis Higgs

It is remarked that, if A is a complete boolean algebra and 6

is an /-valued equivalence relation on a non-empty set J ,

then the set of 6-extensional functions from J to A can be

regarded as a complete boolean algebra extension of A and a

characterization is given of the complete extensions which arise

in this way.

Let A be a boolean algebra, I any non-empty set. An A-valued

equivalence relation on I is a function 6 : I x I •*• A such that

6(i, i) = 1 , 6(i, j) = 6(j, i) , and 6(i, j) A 6(J, k) 2 6(i, fc) for

all i, j, k in J . Boolean-valued equivalence relations occur of

course in boolean-valued model theory and in this context they were first

introduced, so far as I know, by -Los [5], p. 103. (As it happens, it is

the complement d{i, j) = 6(i, j)' of a boolean-valued equivalence

relation which tos describes and he requires in addition that d{i, j) = 0

only if i = j ; such a function d(i, j) may be regarded as an

/-valued metric on I . Boolean-valued metrics have been considered by a

number of authors - see, for example, Ellis and Sprinkle [7], p. 25^•)

Given an /J-valued equivalence relation 6 on the non-empty set I ,

where from now on we suppose that the boolean algebra A is complete, we
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66 Denis Higgs

can consider the 6-extensional functions from I to A , that is, the

functions x in A such that x{i) A 6(£, j) £ x{j) for all i, j in

J . It is easily seen that these functions form a complete subalgebra,

which we denote by B& , of the complete boolean algebra A ;

furthermore B& contains the subalgebra A\ of A consisting of the

constant functions from J to A . Since A\ is isomorphic to A , we

can regard 5 as a complete extension of A and we wish to characterize

the complete extensions which arise in this way.

The motivation for this is as follows. Even in the classical

two-valued case we frequently find it convenient to present a set as the

set /,. of equivalence classes corresponding to an equivalence relation

6 on some other set I - in this case the algebra B, is seen to be

isomorphic to the power set of /- . In the general /1-valued case we

can still regard B,. as giving the power set of the 4-valued set /,. ,

where we now have to specify B, , not just as a complete boolean algebra,

but rather as a complete extension of the truth-value algebra A . The

complete extensions thereby obtained provide an intrinsic, presentation-

free description of such 4-valued sets and it seems desirable to give an

internal characterization of them.

We first introduce some notations and definitions. A , B , and C

will always denote complete boolean algebras. A 5 B means that A is a

complete subalgebra of B . In the rest of this paragraph we shall

suppose that A and B are given and satisfy A 5 B . Then S{A, B)

denotes the set of C such that A £ C < B and W(A, B) denotes the set

of complete retractions from B to A (the 'W here stands for

'witness1 after Halmos [3], p. 2kh). We write A « B and say that A is

an analytic subalgebra of B , or that B is an analytic extension of

A , iff W(A, B) distinguishes the elements of B , equivalently, iff the

W(A B)
evaluation mapping e : B -*• A , which in any case is a complete

morphism, is one-to-one (cf. Gratzer [2], p. 155, Exercise 20). (We are

going to show that the complete extensions of A which arise as
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described above from 4-valued equivalence relations are the same, to

within isomorphism, as the analytic extensions of A .) Since A 5 B , we

can define a quantifier f = f g on B with fiB) = A by putting

fix) = f\{a f A; a - x) . (A quantifier on a boolean algebra B is a

closure operator f on B such that fio) = 0 and

fifix) A y) = fix) A fiy) for a n x, y in B - see Halmos [3]; in the

case, as here, that B is complete, specifying a quantifier / on B is

the same as specifying an A5 B , the connection being the equation

fiB) = A .) An element s of B is then said to be discrete if

fix A s) A s 2 x (equivalently, /(a; A s ) A s = a; A s) for all a; in

B , and s is said to be a base of an element y of B if s is

discrete and s 5 t/ 5 /(s) . P(A, B) denotes the set of discrete

elements and BiA, B) denotes the set of bases of 1 . It is convenient

to note here the following two simple facts. On account of fiB) = A

being a join-closed subset of B , f is a join-preserving operator, that

is, f(\J,x.) = \J.f(xj) for any set {x; X € A} of elements of B

(Rubin [6], Theorem 1.3). Also if w is in W(4, B) then u(x) 2 fix)

for all x in B , as follows by applying w to the inequality

x < fix) .

LEMMA 1. Let A 5 B arzd let {s,; X € A} £e a chain of elements
A

of ViA, B) . Then s = \J.s. is in ViA, B) .
A A

Proof. Let a; be any element of B . Then

fix A s) A s = VXjU[.f(* A sx) A s j = Vv[/(« A sj A si since we have

a chain, and this in turn is £ x since each s is in ViA, B) . Thus

s is in ViA, B) .

LEMMA 2. Let A < B and for each s in BiA, B) let w : B •* A

s
be defined by w (x) = f{x A S ) . Then the mappings s *+• w and

s s

A u " ({l}) set up a bijeotian between B(<4, B) and W U , B)

B) . Then u (l) = fis) =
s

K A s) = VX«8K) , and

Proof. Let s be in BiA, B) . Then u (l) = fis) = 1 ,
s
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Wg(x) A ws(x') = fix A s) A /(a;' A s) = /(/(a: A s) A x' A s) £ /(x A x')

= 0 .

It follows that W is a complete morphism from B to A . Also
o

w
s (/(*)} = / ( / U ) A s) = /(a;) A f(s) = f{x) so that ug leaves 4

elementwise fixed. Thus w is in itliA, 5) . Furthermore i t is easy to
s

see that Aw'1^!}) = A{x € B; f(x A s) = l} = s .

Now take any W in W(4, 5) and put A u " 1 ^ ! } ) = s . Then

= 1 and therefore fis) = 1 . Let a; be an arbi trary element of

B . Then w(u(x) «=» x) = u(a;) *=»u(x) = 1 and hence u(a;) <=> x > s ,

t ha t i s , u(a;) A s = x A s . (W.B. For any elements a, b of a boolean

algebra B , a •»• fc denotes the element

(a ' v £) A (a v &') = (a A i ) v (a' A b') of 5 .) Therefore

fix A s) = /(u(x)- A s) = w(x) A / ( s ) = u(x) (where the second equality

holds because u(x) i s in A) so that fix A s ) A s = w(x) A s = x A s .

Thus s is discrete and, since / ( s ) = 1 , s i s in BiA, B) . Moreover

from the equality fix A s) = w(x) we have w = w .
G

THEOREM 1. Let A 5 B . Then the following conditions are

equivalent:

(i) A <* B ;

Hi) \JViA, B) = 1 ;

(Hi) every discrete subelement of an element x of B is

contained in a base of x ;

(iv) for each x in B there exists w in WiA, B) such that

w(x) = fix) [where f = fA>B) .

REMARKS. (ii) is equivalent to the assertion that PU, B) is a

join-dense subset of B , ViA, B) being a lower section of B (that i s ,

s S t and t € ViA, B) implies s € ViA, B)) .

(Hi) i s the condition used to define S-matroids in [4 ] .

(iv) i s the analogue for the complete monadic algebra (S, f) of

Halmos's notion of richness for monadic algebras in general ( [ 3 ] , p . 2l+*+).
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Proof, (i) implies (ii). If (i) holds then for each non-zero

element x of B there exists, by Lemma 2, an s in B(A, B) such that

f(x A s ) * 0 . But then a: A s is a non-zero element of V(A, B)

contained in x . Hence V(A, B) is join-dense in B .

(ii) implies (Hi). Let r be a discrete subelement of x . By

Lemma 1 and Zorn's Lemma, r is contained in some maximal discrete

subelement s of x . Given that (ii) holds, s must be a base of x .

For suppose x ^ f(s) : then by (ii) there exists a non-zero discrete

element t 5 x A f(s)' ; f(s) A t = 0 gives f{s) A f(t) = 0 from which

it is not difficult to verify that s V t is discrete, contrary to the

maximality of s .

(iii) implies (iv). For s in B(A, B) , the equation W (x) = f{x)

s

is equivalent to the assertion that x A s is a base of x or, what is

the same thing, that s is an extension of a base of x to a base of

1 . The existence of such an s for each x in B is an immediate

consequence of (ii): extend 0 , which is certainly discrete, to a base

of x and then extend again to obtain a base of 1 .

It is trivial that (iv) implies (i).

COROLLARY. Let A £ B 5 C . Then A « C iff A « B and B <* C .

Proof. Since uv is in W{A, C) for u in W(A, B) and v in

W{B, C) , it is clear that A « B and B <= C implies A <* C ; and X « C

implies 4 <* 5 since if W is in W(A, C) then u|5 is in 1)1 (A, B) .

The remaining implication, from A <* C to S a C , is not so universal

but follows from the equivalence of conditions (i) and (ii) in Theorem 1,

in view of the obvious inclusion V{A, C) £ P(S, C) .

THEOREM 2. Let /I be a complete boolean algebra, I any non-empty

set, and let A\ be the set of constant functions in A .

(i) Ai = B for each B in S{Al, A
1) .

(ii) For each B in S[Ai, A } , define 6 : I x j -»- A by

<$SU> 3) ~ A x{i) «=» x(j) . Then the mappings 8 » B { and B n- 6g set

wp a bisection between the set of all A-valued equivalence relations 6
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on I and S[AX, A1) .

Proof. In order to-prove (i) it is sufficient, by the above

corollary, to show that A\ <*• A . This latter statement follows from the

fact that for each i in J the mapping A —* A = A\ , where IT. is

the i-th projection and A = Ai is the obvious isomorphism, is in

W{Alt A
1) .

To obtain (ii) , first take any ,4-valued equivalence relation 6 on

I and put B. = B . Then, as remarked earlier, B is in S(Ai, A ) .

Furthermore &„ — & since in the expression / \ x(i) <=> x{j) for
xeB

<5D(i> j)
 w e have x(i) <=* x{j) > 6(i, j) for all x in B , with

equality in the case x(k) = 6(i, k) .

Conversely, take any B in 5(i4j, A ) and put 6- = 8 . It is easy

to see that 6 is an 4-valued equivalence relation on I and that

B ĉ  S, . To obtain the reverse inclusion we prove

(A) If an element s of B. satisfies s(i-) A s(j) S 6(i, j) for

all i, o in I then s is in V[Ai, B..) .

To see this, let x be an arbitrary element of B, . We require

f(x A s ) A s £ x and this is the case since for all i in I we have

(fix A s) A s)(i) = V-^Cj) A s(</) A s ^ ) - V •*(<?) A 6 ^ > 3) ± x{i) .
0 3

(N.B. For any C in S(i4ls /5 ) , it is clear that the associated

/ = fAifC is given by (f(x))(i) = \/jxU) •)

REMARK. It is not difficult to verify that the condition given in

(A) is necessary, as well as sufficient, for s to be in V(Ai, B^j .

(B) DUi, B) £ V(Ai, B&) .

Let s be in V{.A\, B) . Then, since B £ B, , s is certainly in

B? . To show that s(i) A s(j) 5 6(i, j) for all i, j in I it is
o
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sufficient, in view of the way 6{i, j) was defined, to show that

s(i) A s(j) A x(i) 5 x(j) for all x in B and all i, j in I and

this latter inequality follows easily from the fact that, since s is in

V(Ai, B) , f(x A s) A s 2 x for all x in B .

We can now prove that B c B . Since 4i " B by part (i) of the
o ~~

present result, we can write 1 = \AS\ where the s. 's are in
A A A

P U i , B) . Then i f x i s i n B we have x = V x (
x A s i ) • B v (B)>

each s. i s i n Q{AI, B,) and the re fo re f[x A s . ) A s. = x A s. . I t
A o A A A

follows that each x A s, is in B and hence so is x = \7, (x A s.) .
A A A

This completes the proof of Theorem 2.

THEOREM 3. Let A be a complete boolean algebra. Consider the

complete extensions of A obtained by taking an A-valued equivalence

relation 6 on a non-empty set I and forming the algebra B, of

6-extensional functions from I to A (by the identification of A with

the algebra A\ of constant functions from I to A 3 B& may be

regarded as an extension of A) . Then to within isomorphisms leaving A

elementwise fixed, these complete extensions of A are precisely the

analytic extensions of A .

Proof. By Theorem 2, part (i), B is an analytic extension of

Ai . On the other hand, if B is any analytic extension of A then the

evaluation mapping e : B •*• A , where I = W(A, B) , carries A to

e U ) = Ax and B to e(fl) in S(/Jls A ) . By Theorem 2, part (ii) ,

there is an .4-valued equivalence relation 6 on J such that B& = e{B)

and this gives the result.
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