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SPECTRAL SUBSPACES OF
OPERATOR-VALUED FUNCTIONS

MATJAZ OMLADIC

We give a generalization of the notion of spectral maximal sub-

spaces, for which some of the main results are still valid. We

give an application of this theory on a class of operators,

defined on some reflexive Banach space.

1. Introduction

Let X be a non-trivial complex Banach space and B(X) the algebra

of a l l bounded operators on X . For any T € B(X) the operator-valued

function

k=0

defined at least for A € CA ,„, , where we have denoted by r(T) the

spectral radius of T and by A the closed disc of radius a > 0 with

centre at the origin of the complex plane. I t is clear that R{\) is

analytic for A € CA ,_> and that i t commutes with every A € B(X) which

commutes with T . I t is well-known that the maximal domain of analyticity

of this function is unique and equal to the complement of the union of the

spectrum of T and the bounded components of the resolvent set . The
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62 M a t j a z O m l a d i c

function R(X) is the key to the definitions of spectra, local spectra,

spectral subspaces, and so on. Our aim is to give generalizations of some

of these notions, when the function R(X) is replaced with some other

analytic operator-valued function. Note that with this change we lose a

lot of the fertile theory of spectralness. One of the main losses lies in

the following fact. We were in a position to "recognize" the resolvent

function R{X) by the condition {X-T)R(X) = R(X){X-T) = I on the subsets

of the plane, disconnected with the maximal analytic domain containing

Ch /„, . Taking arbitrary operator-valued functions, no such recognition

is possible any more, and we must confine ourselves to the case the domain

of the function is connected. Furthermore, the maximal domain of

analyticity of such a function need not be unique any more.

I t is somewhat surprising that in spite of these losses, some of the

most important results s t i l l hold. Although (the analogues to) the

spectrum(or, the local spectrum) need not be uniquely defined, the set of

al l x € X which have at least one of i ts (analogues of) local spectra

contained in a fixed, closed subset (with connected complement) of the

complex plane, is a (not necessarily closed) linear subspace of X ,

invariant under every operator, commuting with the function (Proposition

2.1+). If this subspace is closed, it has a property, similar to spectral

maximality (Theorem 3-2). On the other hand, every subspace with this

property is invariant under every operator, commuting with the function

(Proposition 3.1).

I t is maybe even more surprising that we are in a position to give

non-trivial examples of analytic operator-valued functions which have a lot

of subspaces with the above mentioned property, similar to spectral

maximality. These examples are obtained, when studying a class of

operators on some reflexive (abstract) Banach space, which are in a sense

close to the Volterra operator.

2. The spectrum of operator-valued function

Let D^ be some connected open subset of the complex plane and le t

A : D. -*• B(X) be a non-trivial analytic function. I t could happen that

D. is a maximal domain of this function. That means: if for some
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connected Dn 3 D. and analyt ic B : £> -* B{X) we have A{X) = B(X) for
D A D

X € fl< ; then £L = 0 . If D i t se l f is not maximal, there always

exists a connected D. 3 £» and a function A on D with A(X) = 4(X)

for X € £>. such that £>. is a maximal domain of the function A . The

complement of some maximal domain D. will "be called (a possible) spectrum

of the analytic function A .

PROPOSITION 2.1. For any operator T € B(X) the following
conditions are equivalent:

(a) T commutes with A{X) for every X (. D. j

(b) T commutes with A(X) for every X in some open set,

contained in D. ;

(a) T commutes with every operator A, , k = 0, 1, ... , where

A, are the coefficients of the Taylor expansion

A(X) = I A [X-X ) k

k=0 K °

of the function A at some point XQ € D. .

Proof. (a) =» (b) . Clear.

(b) =» (a). Let G be such that T commutes with A(X) for every

X € G . Then T commutes with [A{X)-4(U))/(X-U) for any X, u € G ,

X / \i . Hence, T commutes with every <4'(X) , X € G , and by induction

(k)
T commutes with A (A) for any X € G .

(c) =» (a) . Let G be the set of points X € D for which (c)

holds. Since (c) is valid, G is non-void. It is clear that G is open.

Take now some X € D. such that there exists a sequence X, € G with

A, •* X . As -4(X) is analytic, A (X.) •+A^'!'(X) and consequently

X € G . The proof now follows by connectedness of D. .

If an operator T € B(X) satisfies any one of the three equivalent

conditions of Proposition 2.1 we shall say that T commutes with A . The
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set of a l l T € B(X) , commuting with A , will be denoted by C(A) . Note

that C(A) is a closed subalgebra of B(X) .

EXAMPLE 2.2 (a t r iv i a l one). Let T 6 B(X) be arbitrary and denote

by A the restriction of the resolvent (X-T) on some of the components

of the resolvent set p(T) . Then A has the desired properties. More-

over, an operator commutes with T i f and only if i t is in C(A) .

EXAMPLE 2.3. Let T be a bounded, linear operator on B(X) and

denote by J the identity operator on B(X) . Then R(X) = (XJ-T)~ is

an analytic function with values in B[B(X)) . Choose T € B{X) and

denote A{\) = R(X)T for X from the unbounded component of p(T) . Note

that S € C{A) i f and only if S commutes with a l l f'T , for

n = 0, 1, . . . . To see i t , apply Proposition 2.1 to Laurent's expansion

A(X) = (XJ -T) - 1 ^ I X-(n+l)7*T ,
n=0

valid for a l l X € C with |X| large enough.

For any x € X we can extend the vector-valued analytic function

A(X)x to some function x{\) , analytic on a maximal connected domain.

The complement of this domain will be denoted by a (x) and called (a

possible) local spectrum of x € X under A .

For any F c C denote by X.(F) the set of a l l x € X for which

there is some aAx) c ? •

PROPOSITION 2.4. If F is closed and has connected complement, then

X.(F) is a linear (not necessarily closed) subspace of X , invariant

under every T € C(A) .

Proof. Choose x, y € X.(F) and a, 6 € C . By the definition we

can find possible local spectra O.{x) c F and a Ay) c F . Hence there

are functions x and y , defined and analytic at least on CF such that

x(X) = A(\)x and j/(X) = A(\)y for every X € D. . Since CF is

connected, the function dx(X) + &y(X) , X 6 CF , is an analytic

continuation of A(, X) (ax+$y) , X € D' . Thus there is a possible spectrum
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O.(ax+&y) c F and ax + By € X.(F) . To prove the second assertion,

choose T d C{A) , x (. X.{F) and x , analytic on CF , with

x(A) = 4(X)x for X € DA . The function Tx is then analytic on CF ,

with Tx{\) = A(X)Tx for A € Z^ , so Kc € ̂ (F) .

3. Spectral maximal subspaces

Let Y be some closed subspace of X . For any operator T € B{X) ,

the restriction T/Y is a bounded operator from the Banach space Y to

X . The space of all such operators will be denoted by B(Y, X) . Take

now any operator-valued analytic function A with domain D. . The

restriction A/Y of A to Y will be defined by U/Y)(A) =A{X)/Y , for

H i ) , Note that A/Y maps Z^ analytically into S(Y, AT) . The

complement of any maximal domain of analyticity of A/Y will be denoted by

a(A/Y) and called (a possible) spectrum of the restriction A/Y . Note

that every spectrum of the restriction is always contained in some spectrum

of the function and that to every spectrum of the function there is a

spectrum of the restriction, contained in it.

A closed subspace Y of X is a spectral maximal subspace under the

function A , if there is some fixed spectrum a(A/Y) of the restriction

A/Y such that for every closed subspace Z of X , the validity of

inclusion a(A/Z) c o{A/Y) at least for one spectrum o(A/Z) of the

restriction A/Z , implies Z c y .

Note that Y is spectral maximal with respect to some fixed spectrum

of the restriction A/Y and this condition need not be satisfied any

more, when this particular spectrum is replaced by some other.

PROPOSITION 3.1. Every spectral maximal subspace is invariant under

every T € C(A) .

Proof. Fix a spectral maximal subspace Y of A , whose spectral

maximality is recognized by a fixed spectrum o{A/Y) of the restriction,

and choose some T € C(A) . With no loss of generality we may and will

assume that T has bounded, everywhere defined inverse. The space Z = TY

is then closed by the closed mapping theorem. Let B be the function,

analytic on the complement of some fixed spectrum o{A/Y) of the
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r e s t r i c t i o n , with values in B{Y, X) and such that B{\) = U/y)(A) for

A € D. . Then C(A) = TB{X)(r~1/z) i s analyt ic for A £ D^ , with

values in B(Z, X) . But for A € D. and 3 € Z we have

C(A)3 = TB(X)T~1z = 2Vl(A)2rl3 = A(X)z ,

since T z € Y and /1(A) commutes with T . Hence C(A) is a

continuation of A/Z and there must be a spectrum o(A/Z) which is

contained in the given spectrum a(A/Y) of the restriction. Consequently,

Z c Y and Y is invariant under T .

THEOREM 3.2. Let Fat be a closed set with connected complement.

If Y = XAF) is closed, then there is some spectrum of the restriction

A/Y such that a(A/Y) is contained in F , and Y is spectral maximal

with respect to every spectrum with this property.

Proof. Suppose for the moment tha t we have already found a spectrum

a(A/Y) c F and take any closed subspace Z of X for which we can find a

spectrum o(A/Z) c a(A/Y) . Let C(A) be the continuation of A/Z ,

a n a l y t i c on the complement of a(A/Z) . Then for every z € Z , the

function ^(A) = C{X)z i s vector-valued analyt ic on Co(A/Z) 3 CF , with

z{\) = A(\)z , for A € D. . Hence there i s some 0.(2) c. F and z € Y .
/i. n.

It remains to show that there really exists a spectrum of the

restriction A/Y , contained in F . For every y € Y , there is by

definition a continuation y(X) , A € CF , of the function A(X)y ,

X € D. . As CF is connected, this function is unique on CF . For every

(k)
A € CF and k = 0, 1, ... , define a mapping S '(A) from Y into X

by 5^^(A)y = y^khx) , y € Y , where we have denoted by y^ ' the feth

derivative of the function y . It is a simple consequence of connected-

(k)ness that the mappings B (A) are linear.

(k)
Now le t G be the set of those A € CF for which B '(.X) are

bounded for every k = 0, 1, . . . . Note that G contains D. and is

necessarily non-void. Taking account of the connectedness of CF i t

suffices to show that G is open and closed in the relative topology of
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CF , to get G = CF . It will then follows that B"°\\) is a

continuation of A/Y , analytic on CF and finally, we shall get the

existence of some o(A/Y) c F .

To show that G is closed relatively in CF , let X € G converges

to some X € CF and fix some k = 0, 1, ... . For every y € Y the

sequence B (X )y converges by the analyticity of y to

y l\J = ° (\>)l/ • B Y t h e principle of uniform boundedness, the

operators B [\ ) are bounded and X € G .

To see that G is open, take any X € G and choose r > 0 such

that the closed disc of radius r with centre at A lies in CF . The

>-lsequence of bounded operators (k\) v B (X ) then converges strongly

zero. Applying again the pr inciple of uniform boundedness, we see tha t

th i s sequence of operators has uniformly bounded norms. Hence the se r i e s

to

converges at least for X € A (X ) , the open disc of radius r with

centre at X . Since evidently C(X) = B(X) for X € A (X ) , we have

A^(X ) c G and the theorem holds.

In the next example we shall use the following notation and results.

For T € B{X) denote by VT € B[B(X)) the inner derivative

= TS - ST , S € B{X) . An operator V € B{X) is called T-Volterra

element of B{X) (see [ J ] ) , i f VfV = V2 . For any T-Volterra V , i t is

t rue tha t if^,V = n!v" + 1 . I t i s also well-known tha t a(Py) = o(T) - a(T)

(see [ 2 ] ) .

EXAMPLE 3.3 . Let V be some T-Volterra element of B{X) , and

A(\) = (\J-V-)~ V , for X € p(PT) • Then
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(a) for X , such that |X| > r{V^ ,

A' k=0

(b) S i C(A) i f and only i f 5 commutes with V ,

(c) i f Y i s invariant under both T and V , then there

exists some a(A/Y) c &diama{T/Y) •

Proof, (a) i s clear and (b) is clear by (a) .

(c) There exists some o(A/Y) contained in the union of o(t> , )

and the bounded components of i t . Since o(V-,y) = a{T/Y) - a(T/Y) , we

thus have

sup{|X|; X € a{A/Y)} < diam o(T/Y) .

4. On a class of operators

In this section, l e t X be some reflexive Banach space, B some

a-algebra of subsets of some set G , and E : 8 -»• B{X) a countably

additive spectral measure. Furthermore, choose e € X , e* € X* , the

dual space of X , with e*e = 1 . Then W = ee* is a bounded projection

of rank one on X .

LEMMA 4.1. There exists a unique operator-valued, bounded, countably

additive (at least in the weak operator topology) measure ? : 8 K 8 + B(X)

with F(B x A) = E(A)WE(B) , for any A, B € 8 .

Proof. For any x € X , x* € X* , define a scalar measure

u *(B) = x*E(B)x , B € B . I t is well-known that in this situation the
x,x

total variation satisfies

I V *l (G) - ^11^1111^*11 J

where K = sup||£(B)|| . For A, B € B define

(1) v^ xA{B x A) = a:*F(B * A)x = x*E{A)ee*E(B)x

= (y „ x p J U * B) .

Hence, the product measure p ^ x y is the unique scalar measure on
e ,x x,s
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8 * 8 for which (l) holds on rectangles. As a simple consequence of

uniqueness we get that v *(£) is linear in x and in x* for every

D € B x B . Beside th i s , the total variation of the product measure is

equal to the product of total variations. Hence

|v (ZJ)| 5

and for every D € 8 x 8 , there is a unique, bounded, linear operator,

which we denote by F(D) , such that x*F{D)x = v ,,(£>) . Note that F(D)

must be uniformly bounded and countably additive at least in the weak

operator topology.

Note that we could formally write F(D) as a double integral

F(D) = dE(t)WdE(s) , which exists in a "weak" sense, precisely
JJ(s,t)€O

described above.

From now on let V be a countable chain of measurable sets in G

such that G = UV . For any s, t € G define s 5 t if and only if for

every A € V from t S. A follows s € A . For any t € G denote

+ V; t € 4} , G~ = U{4 € l/; t \ A) .

Note that G, c G, are necessarily measurable. We will suppose that

(2) |u *!(GT-G~) = 0 .

For any t (. G define now cp(t) = e*E[G.)e = e*E[G~)e .

Note that condition (2), together with e*e = 1 and £(G) = I ,

automatically excludes the t r iv ia l possibility V = {G} .

LEMMA 4 .2 . TaJ 2%e function cp : G ->• C i s measurable and bounded.

(b) The set D= {(t, s) € G x G; s < t} i s B x 8 measurable.

(c) G. = {s € G; s 5 t] , G - G~ = {s € G; t < s} .

Proof. Ca>) Denote V = {/4 , 4 , . . . } . For any posi t ive in teger

n , reorder A , A , . . . , 4 in to Bi c B
2
 C " '" C S a n d s e t Sn = ^ '

B n + 1 = G . For t € Sfe+1 - 5fe define «p ( t ) = ye_eJ t(B,) , for
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fe=O,l, ..., n . Let A be some decreasing and A some increasing
nk mk

subsequence of 4, with

G*G*. = 04 , G~ = UA
t nk t mk

Then for every n > max(n, , m,) ,
k

e ,e m^ e ,e n^ m^

By (2) the right-hand side of t h i s inequal i ty converges to zero; hence

<p ( t ) converges to y ^ [GA = cp(t) .

ri>>> For every n se t BQ c B c . . . c B c B as above and define

w+1
0 = U (B.-B. ) x B . .

At f i r s t , assume ( t , s) € Z? , and t € B . - B . . By the def ini t ion of

the r e l a t i o n s £ t we have s € B. , hence (t, s) € D , and

consequently O c HO . Suppose now tha t {t, s) $ D . By the

de f in i t i on there i s some A £ V with t d A and s {• >4 . For n large

enough we can find some B . with t € B. - B . , and s £ B . . Thus

(t, s) \. D and consequently D- = f)D

The proof of (a) i s pure ver i f ica t ion and wi l l be omitted.

Define now

T =

and

LEMMA 4 .3 . Taj 7 i s T-Volterra.

(b) WV =

(c) W{I-T)n = nX
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Proof, (a) Note that

V = [( dE(t)WdE(s) = I dE(t)WE[Gl)

E[G-G~)wdE(s) .s

The first of the two iterated integrals can be understood, when multiplied

by some x* € X* from the left, as an integral of some bounded,

measurable, X*-valued function by the scalar measure y A , while the

e ,x

second one, when multiplied by some a; € X from the right, is an integral

of some .Jf-valued function by the scalar measure u * .
x,e

Hence the following computations are valid, if we interpret the

integrals in the obvious sense:

V2- = f dE(t)WE[G*)E[G-G )wdE{s)

dE(t)ee*E(G.-G~)ee*dE(s)•II
"(I.

S
sSb

[(p(t)-<p(s)]dE(t)WdE(s) = TV - VT .

(b) Since E{G) = I and e*e = 1 , we have

WV = e [ (l-(p(s))e*d£1(s) = W(I-T) .

(c) By the asser t ion (b), (a) i s val id for n = 1 . Suppose i t holds

for some n . Then

From now on assume that the measure y * i s pos i t ive . As in Example

3 .3 , define Py : B(X) -»• B(#) by T>T : S >—>• TS - ST and

THEOREM 4.4. For euery a € [0, l ] ,

where the intersection on the right-hand side is taken over all t € G
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with <p(t) < 1 - a .

Proof. Assume tha t for some y € X we have e*E[GY\y = 0 , for any

t € G with (p(t) < 1 - a , then

= ff (<pU)-<p(s))nX (s)dE(t)WdE(s)y ,

where we have denoted

i , <p(s) > 1 - a ,

Xa(a) = •

0 , <p(s) < 1 - a .

Hence, for some constant K , independent of n and y , we have

||n!V"+1z/|| £ &z"||y|| . I f x € Ker e^fffcpV2 for every t € G with

ep(t) < 1 - a , then z/ = v x s a t i s f i e s the above assumptions, and

||(n+2)!V*+3a;|| £ (n+2) (n+l)X||^||an||ar|| . Note Laurent 's expansion of A(X) ,

as given in Example 3.3 (a) to see that there i s a possible loca l spectrum

of x € X under A , contained in A

On the other hand suppose tha t for some x € X , A{X)x has an

a n a l y t i c continuation to Cb. . Note tha t for X with |X| large enough

(X-T)'1 = - I (1-A) + 1 (J-21) ; hence by Lemma k.3 (a) and Example 3.3
k=0

(a) again

OO

WiX-T^V = - £ {l-X)~{k+1)WU-T)kV

= -WA(l-X) .

Thus, for y = Vx , the vector-valued function

x(X) = -W4(l-X)a; = W(X-T)~Xy

J J
= ee* I (X-(p(t)) dE(t)u = e (A-(p(t)j dy *(*)

y,e"

has an analytic continuation to any A with r < 1 - a .
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Choose t € G such that <p(t) = r < 1 - a and let T be the

circular path of radius r with centre at the origin, surrounding the

origin in the positive direction. By Fubini's theorem and Cauchy's

formula, we have

0 = 2ii j

= e f dv ,(a) - L

= -e f ((p(t)-<p(S)]du

COROLLARY 4 .5 . For euerj/ a € [0, l ] the subspaae XA (AQ) i s

closed and hence it is spectral maximal.
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