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Stability and the transition to turbulence in the
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The mechanisms of destabilisation of the flow through soft-walled channels/tubes are
qualitatively different from those in rigid-walled conduits. The stability depends on
two dimensionless parameters, the Reynolds number (ρf Vf hf /μf ) and Σ = (ρf Gh2

f /μ
2
f ),

where ρf and μf are the fluid density and viscosity, hf and Vf are the fluid length and
velocity scale and G is the wall elasticity modulus. There is an instability at zero Reynolds
number when the dimensionless parameter Γ = (μf Vf /hf G) exceeds a critical value. The
low-Reynolds-number instability of the Couette flow past a compliant surface is well
understood, and has been confirmed in experiments, but that in a pressure-driven flow
is not completely understood. Two modes of instability at high Reynolds number have
been predicted: the inviscid mode with an internal viscous layer, for which the transition
Reynolds number scales as Ret ∝ Σ1/2; and the wall mode instability with a viscous
layer at the wall, for which Ret ∝ Σ3/4. The wall mode instability has been observed in
experiments at Reynolds number as low as 300 in a soft-walled tube and as low as 100 in
a channel with one compliant wall, though the scaling of the transition Reynolds number
differs from the theoretical prediction due to substantial wall deformation. Though the
flow after transition shares many of the characteristics of hard-wall turbulence, it differs
in significant ways, suggesting that soft-wall turbulence is a separate class distinct from
hard-wall turbulence.

Key words: flow–vessel interactions, transition to turbulence

1. Introduction

Studies of the stability and transition in the flow past compliant surfaces have two distinct
motivations. The first is drag reduction in marine and aerospace applications, which
typically involve the external flow past large immersed bodies that are propelled through
a fluid. In this case, the Reynolds numbers are very large, and the flow is turbulent over
most of an object. The objective here is to either laminarise the flow or attenuate the
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turbulence by covering the object with a compliant ‘skin’, for efficient propulsion. The
second motivation is transition in physiological flows in compliant conduits of dimension
about 1 mm, where the Reynolds number is sufficiently low that the flow could be laminar.
The central issue here is the effect of the wall compliance on the stability of the laminar
flow, and on the nature of the flow after transition. In comparison to a laminar flow, the
transition to turbulence could significantly enhance mixing in conduits of small dimension,
where transport processes are often limited by slow molecular diffusion.

The present perspective considers the instability and the transition to turbulence in the
flow through compliant tubes and channels. This field has benefited from an exchange of
ideas with two adjacent areas of research: the external flows past objects with compliant
surfaces and the flow in collapsible tubes and channels. Due to the difference in the
length scales and the Reynolds numbers for external and internal flows, the methods of
analysis have been different. Studies of external flows past compliant surfaces usually
consider spatially developing boundary layer flows, and a spatial stability analysis is
used to examine the growth of perturbations with downstream distance. In contrast, a
fully developed unidirectional flow is usually considered in the flow through compliant
conduits, and a temporal stability analysis is used to determine the transition Reynolds
number. In the case of collapsible tubes, the focus has been on the shape oscillation of a
compliant tube due to a difference between the internal and external pressures, and not on
the laminar–turbulent transition itself. A brief summary of the stability and transition in
external flows and collapsible tubes is first provided in this introduction, before proceeding
to consider the stability of internal flows.

In marine and aerospace applications, the flow over large immersed objects is usually
turbulent. Even when the flow is laminar at the upstream side, there is boundary layer
separation, transition and turbulence downstream. It is desirable to reduce the drag force
for more efficient propulsion, and there have been many studies carried out to examine
whether it is possible to reduce drag by covering an object with a compliant coating.
Experiments were conducted by Kramer (1960a,b, 1962) on dolphin-shaped objects,
covered with viscoelastic materials with varying compliance, in tanks of water. These
were based on the hypothesis that there could be additional dissipation of energy in the
compliant material, resulting in the laminarisation of the flow around the object. The
studies did find significant drag reduction of up to 40 % when a compliant surface was
employed. The drag was found to first decrease and then increase as the dissipation
in the wall material increased, suggesting that the properties of the surface could be
tuned to attain maximum drag reduction. Later studies of other types of compliant
surfaces (discussed in Carpenter & Garrad 1985) did not find a significant drag reduction,
suggesting that this phenomenon is sensitive to the properties of the compliant surface.
The promise of the use of compliant surfaces for drag reduction has not yet been realised
in commercial applications. However, the initial observations led to a large number of
theoretical studies in two distinct areas, the transition delay and turbulence attenuation
due to compliant surfaces.

The linear stability of the flow past a compliant surface was first examined by Benjamin
(1960, 1963) and Landahl (1962), who considered the flow past the ‘spring-backed wall’
model discussed in § 3.1. Here, the no-penetration condition applicable for a rigid surface
is replaced by a relation between the pressure and the normal displacement of the wall. The
no-slip condition is usually used for the tangential velocity at the wall, though there have
been studies where the tangential displacement is related to the shear stress as well. Those
authors identified three different modes of destabilisation in the flow past a compliant
surface. The first is the class A mode which is a modification of the Tollmien–Schlichting
mode for the flow past a rigid surface, modified due to wall compliance. These modes
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Stability and the transition to turbulence

were found to be stabilised by wall compliance, but could be destabilised due to internal
dissipation in the wall material. The class B modes are waves travelling at velocities
close to those of free surface waves, and are considered a resonance effect. These are
destabilised by an increase in wall compliance. The class C modes are analogous to the
Kelvin–Helmholtz instability due to transfer of fluctuating energy from fluid to solid.

A subsequent study by Carpenter & Garrad (1985, 1986) classified these instabilities
into two categories: the Tollmien–Schlichting mode which is present in the flow past a
rigid surface and a class of instabilities collectively called flow-induced surface instability
(FISI). The former is a modification of the instability in the flow past a rigid surface, and
fluid viscosity is necessary for destabilising the flow. In contrast, the latter is a continuation
of the inviscid modes at high Reynolds number, and fluid viscosity is not necessary for
destabilising the flow. Carpenter & Garrad (1985, 1986) found that dissipation in the wall
had a mild destabilising effect on the Tollmien–Schlichting mode, but stabilised the FISI.
An important result was that a coalescence of the Tollmien–Schlichting mode and one
of the FISIs could lead to a powerful new instability called the static divergence. Thus,
these linear stability studies showed that although wall compliance could stabilise the
Tollmien–Schlichting modes, it creates other instabilities that are not present in the flow
past rigid surfaces.

A hydroelastic instability in the form of static divergence waves was observed in the
experiments of Gad-el Hak, Blackwelder & Riley (1985), where a plate covered with a
compliant surface was towed in a tank of water. Experiments were carried out for laminar,
transitional and turbulent boundary layers. Static divergence waves were observed only
for turbulent boundary layers when the velocity exceeded a transition value, and these
were not observed for laminar boundary layers. This is in contrast to the experiments
of Hansen & Hunston (1974, 1983) for a disk coated with a compliant material rotating
in a tank of fluid, where static divergence waves were observed for both laminar and
turbulent boundary layers. The static divergence waves on the compliant material caused
flow modification similar to roughness elements on a rigid surface. The difference in the
results of Gad-el Hak et al. (1985) and Hansen & Hunston (1974, 1983) has not been
resolved so far, and more experimental work is required to make a connection between
theoretical and experimental studies.

Studies of the flow through compliant tubes and channels can be broadly classified
in two categories: the structural instability of a collapsible tube/channel and the flow
instability in a conduit with compliant walls due to fluid–wall interaction. The present
perspective is restricted to the latter. The structural instability in collapsible tubes is used
to model phenomena such as venous collapse in the cardiovascular system and wheezing
in the respiratory system. A typical configuration is the Starling resistor (Knowlton &
Starling 1912), which is an elastic tube fixed between two rigid pipes with a constant
pressure on the outside. The two-dimensional analogue of this was first studied by
Pedley (1992). In its simplest manifestation, as the flow rate is increased for an inviscid
flow, the pressure within the tube decreases and this could result in the collapse of the
tube. However, a more detailed study reveals additional effects such as flow separation
due to the downstream divergence in a collapsed tube (Cancelli & Pedley 1985). One-
and two-dimensional models for the flow of varying complexity have been formulated
(Grotberg & Jensen 2004), and these exhibit bifurcations between normal, buckled (Heil &
Pedley 1996), distended or collapsed as well as self-excited oscillations (Jensen 1990) and
high-frequency flutter (Gavriely et al. 1989). These collapsed states and oscillations have
been carefully mapped out in experiments (Bertram, Raymond & Butcher 1989; Bertram,
Raymond & Pedley 1990). The high-frequency flutter has been related to wheezing
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(Gavriely et al. 1989) and to the Korotkoff sounds that are used to make clinical diagnoses
(Ur & Gordon 1970; Bertram, Raymond & Butcher 1989). The reader is referred to a
review article (Grotberg & Jensen 2004) for further details on this subject.

In the case of collapsible tubes and channels, models are used to relate the internal
pressure and the cross-sectionally averaged velocity, the latter being only a function of
the streamwise coordinate. The mass conservation equation relates the time evolution
of the area of cross-section to the cross-sectionally averaged velocity. The momentum
conservation equation relates the substantial derivative of the cross-sectionally averaged
velocity to the local pressure gradient, the viscous friction and other effects. The model
relating the pressure difference across the wall of the tube and cross-sectional area includes
the effect of tube elasticity and bending stiffness. Transitions, oscillations and bifurcations
in the tube shape and flow velocity are then predicted using evolution equations for the
cross-sectional area and the average velocity. The studies of collapsible tubes focus on the
steady and periodic oscillations in the shape of the tube due to flows that may already be
turbulent, and not on the transition from a laminar to a turbulent flow. In contrast to the
study of stability in conduits with compliant walls, cross-sectionally averaged velocity and
pressure fields are used in the flow through collapsible tubes, and the focus is on structural
transitions and not on the laminar–turbulent transition.

It is instructive to discuss the instability in parallel flows through rigid channels
and tubes to provide a basis for understanding the flow through compliant conduits. In
experiments, the Reynolds number for the transition to turbulence is about 1200 (Patel &
Head 1969) for a parabolic flow in a two-dimensional channel, and about 2100 (Reynolds
1883) for a cylindrical pipe. Since the transition takes place at high Reynolds number,
it might naively be assumed that viscous effects can be neglected, and it is sufficient to
consider the inviscid equations in order to predict transition. However, there are theorems
such as the Rayleigh inflection point theorem which state that an inviscid flow can be
unstable only if there is an inflection point somewhere in the flow. Since the parabolic
laminar profile in a channel does not have an inflection point, an inviscid analysis predicts
that the flow is always stable.

It turns out that the Tollmien–Schlichting instability for channel flow is due to the
presence of an internal critical layer within the flow where viscous effects are important.
This internal critical layer is of thickness Re−1/3 smaller than the channel width at
the location where the flow velocity is equal to the velocity of the waves. Here, Re is
the Reynolds number. The Tollmien–Schlichting mode becomes linearly unstable at a
Reynolds number of about 5772 in a two-dimensional channel (Orszag 1971; Drazin &
Reid 1981). In experiments, the transition to turbulence is observed at a Reynolds number
of about 1200. This discrepancy is considered to be due to the highly subcritical nature of
the instability – even though flow is unstable to infinitesimal perturbations at a Reynolds
number of 5772, small but finite-amplitude perturbations become unstable at a much lower
Reynolds number.

Stability analyses predict that the laminar flow in a cylindrical pipe is always stable.
In experiments, the transition is observed at a Reynolds number of about 2100. This
discrepancy is attributed to the highly subcritical nature of the bifurcation – even
though the flow is stable to infinitesimal disturbances, it is unstable to finite-amplitude
perturbations when the Reynolds number exceeds 2100 (Darbyshire & Mullin 1995; Draad,
Kuiken & Nieuwstadt 1998; Hof, Juel & Mullin 2003; Mullin 2011). This hypothesis is
supported by experiments which show that the flow could be maintained in the laminar
state at Reynolds numbers up to 105 if care is taken to avoid disturbances (Pfenniger 1961).

The nature of transition in channel and pipe flows is still poorly understood, over a
hundred years after it was discovered. In experiments, the onset of transition at Reynolds
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number of about 2100 occurs due to localised disturbances, turbulent puffs and slugs,
which originate at the wall of the channel of the pipe (Wygnanski & Champagne 1973).
Transition due to disturbances imposed by injection and suction at the wall occurs at a
higher Reynolds number in ‘clean flows’ without disturbances (Draad et al. 1998). Two
broad theoretical explanations have been explored in the recent past. The first is the rapid
algebraic growth of perturbations which are linearly stable due to the non-normal nature
of the differential operator in the linear stability problem (Gustavsson 1991; Henningson,
Lundbladh & Johansson 1993; Grossmann 2000). Although the algebraic growth of an
isolated perturbation is followed by exponential decay much later on, it is assumed that
there is onset of nonlinear interactions prior to decay, thereby sustaining turbulence.

Ideas from dynamical systems theory have been used to describe turbulence since
the early attempts of Landau (1944) and Hopf (1948), who proposed that the flow
undergoes a series of bifurcations after transition leading to a turbulent flow. This
view has not been validated by later studies, and it is now accepted that the
transition is discontinuous. Methods have been developed to identify low-dimensional
models for turbulent flow (Berkooz, Holmes & Lumley 1993) using proper orthogonal
decomposition of experimental/computed turbulent flows. For wall-bounded turbulent
flows, the mechanism of turbulence generation is the roll-up of spanwise vortices into
hairpin eddies and subsequent bursting of these eddies. Nonlinear and non-turbulent
time-periodic travelling wave solutions of the Navier–Stokes equations have been
identified in simulations (Nagata 1990; Waleffe 2001; Kerswell 2005; Kawahara, Uhlmann
& van Veen 2012). Attempts have been made to relate the transitions among these states
to the turbulence generation mechanism (Eckhardt et al. 2007). These solutions, labelled
‘exact coherent states’ (Graham & Floryan 2021), are not attractors, but are saddle points
in a high-dimensional state space. The proposal is that the system travels close to these
saddle nodes for relatively long periods of time, and therefore accurate identification of
these solutions could capture the essential features of turbulent flows. However, a large
number of these states have been identified for turbulent flows (Graham & Floryan 2021),
and the total number of such states is not known. Moreover, the relation between these
states and the transition to turbulence is not clear, since no state has yet been uniquely
identified as the pathway to turbulence.

Linear stability analyses do predict instabilities in channels and tubes with compliant
walls. Some of these are not just continuations of the instability in a rigid channel/tube,
but are qualitatively different. They involve a dynamical interaction between the flow
and the wall dynamics. In these cases, the transport of energy from the mean flow to
the fluctuations takes place due to the shear work done at the interface, and not due
to the Reynolds stresses within the fluid. In contrast to the situation for the flow in
rigid conduits, experimental results for the critical Reynolds number for transition to a
non-laminar state are consistent with the predictions of linear stability analysis. Thus,
available evidence suggests that the transition observed in compliant channels/tubes is due
to a linear instability to infinitesimal perturbations. In this sense, the transition in compliant
conduits seems to be better understood in comparison with that in rigid conduits.

There have been very few experiments on transition and turbulence in internal flows
preceding the theoretical studies that showed the existence of a linear instability. The
reason could be that transition/turbulence was not considered important in biological
flows at small dimensions and low velocities. The pioneering experiments in this area
were carried out by Lahav, Eliezer & Silberberg (1973) and Krindel & Silberberg (1979)
who first raised the possibility that, in comparison with rigid conduits, the transition could
occur at a lower Reynolds number in conduits with compliant walls. It was only in the
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1990s that linear stability studies identified a mechanism of destabilisation, the transport
of energy from the mean flow to the fluctuations due to the shear work done at the interface,
which is qualitatively different from that in rigid conduits. This led to further experiments
with different geometries that are described in § 8.

The linear stability equations for a Newtonian fluid are briefly introduced in § 2 in
order to clarify the notation and the scalings used. Along with a discussion of different
wall models, a reasonably detailed description of the equations for a viscoelastic solid is
provided in § 3. This is because the stability characteristics are known to be very sensitive
to the solid equations at low Reynolds number, and erroneous stability results are obtained
if care is not taken with regard to the many intricacies in the solid equations and boundary
conditions. The Lagrangian and Eulerian formulations for a solid continuum are presented,
and then the constitutive relations for a neo-Hookean solid are derived for the Lagrangian
formulation. The stability analysis in the viscous limit at low Reynolds number is the
subject of § 5. The different destabilisation mechanisms at high Reynolds number are
discussed in § 6. Here, the asymptotic results for the inviscid and wall modes are first
explained, and then the numerical results are discussed. Many weakly nonlinear stability
analyses have been undertaken to understand the nature of the bifurcation after transition.
The weakly nonlinear analysis is algebraically complicated, and so it is not discussed here,
but the reader is referred to Drazin & Reid (1981) for an explanation of this procedure. The
results of the weakly nonlinear analyses are discussed along with those of linear stability
studies where appropriate. The experimental results are reviewed, and compared with the
theoretical results, in § 8. A brief summary of the relatively small number of studies of
simulations of turbulent flows is provided in § 9.

2. Fluid equations

Most studies are carried out with Newtonian fluids, where the governing equations are the
incompressible Navier–Stokes mass and momentum equations:

∇·v = 0, (2.1)

ρf

(
∂v

∂t
+ v·∇v

)
= −∇pf + μf ∇2v, (2.2)

where v is the velocity, pf is the pressure, ρ is the density and μf is the fluid viscosity. The
stress tensor in the fluid is

σ f = μf (∇v + (∇v)T). (2.3)

The base state is usually a unidirectional flow, where the streamwise velocity vx is only
a function of the cross-stream ( y) direction. Without loss of generality, the compliant wall
is placed at the location y = 0, and the other wall at the location y = h could be a moving
wall (for a Couette flow) or a stationary wall (for a Poiseuille flow). The mean velocity
profile v̄x for a fully developed unidirectional flow in a channel is

v̄x = − h2

4μf

dp̄f

dx

(
y
h

− y2

h2

)
+ Vwy

h
, (2.4)

where (dp̄f /dx) is the mean pressure gradient and Vw is the velocity of the wall at y = h.
The strain rate at the wall is

γ̇w = − h
4μf

dp̄f

dx
+ Vw

h
. (2.5)
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Though (2.4) is the exact solution for the steady and fully developed velocity profile,
other approximate solutions of the mean velocity profile have also been used, along with
the parallel flow approximation for flows that are slowly developing in the streamwise
direction. This approximation has been used in Shankar & Kumaran (1999) for the stability
of the developing flow in a cylindrical tube surrounded by a compliant wall and the stability
of a converging flow in a tube with small angle of inclination. In the case of a developing
flow, it is assumed that the wavelength of the perturbations is smaller than the length
for flow development, so that the flow can be considered to be locally invariant in the
flow direction. The ratio of the flow development length and the channel height or tube
diameter is ∼0.03Re, where Re is the Reynolds number. Therefore, the steady parallel flow
approximation is valid only for high Reynolds number, in the limit where the wavelength
of perturbations is much smaller than the development length.

The flow in a converging/diverging channel is approximated as a parallel flow when
the angle of inclination of the wall is small. For a rectangular channel or a cylindrical
tube, the mean velocity profile (2.4) is determined by balancing the pressure gradient and
the divergence of the viscous stress in the steamwise momentum equation, because the
inertial term is identically zero for a steady fully developed unidirectional flow. For a
slowly converging or diverging channel/tube with angle of wall inclination α � 1, the
correction to the viscous term is O(α), whereas the correction to the inertial terms is
O(Reα). Therefore, there could be a substantial modification of the mean velocity profile
even when the angle of inclination is small, provided Reα ∼ 1.

In the linear stability analysis, perturbations are imposed on the base state in the form
of plane waves in the streamwise (x) and spanwise (z) directions for the flow in a channel:

vi = v̄i( y)+ ṽi( y) exp (ıkxx + ıkzz + st) = v̄i( y)+ ṽi exp (ıkx(x − ct)+ kzz),
pf = p̄f + p̃( y) exp (ıkxx + ıkzz + st) = p̄f ( y)+ p̃f exp (ıkx(x − ct)+ kzz),

}
(2.6)

where ı = √−1, kx and kz are the wavenumbers in the streamwise and spanwise directions
and s is the growth rate of the perturbations. The flow is stable if the real part of s is
negative, indicating that perturbations decay exponentially, and unstable if the real part of
s is positive, indicating that perturbations grow exponentially. The growth rate s is also
written as s = −ıkxc, where c is the wave speed. In this case, perturbations are stable if
the imaginary part of c is negative and unstable if the imaginary part of c is positive.

These perturbations are substituted into the mass and momentum equations, which are
then linearised in the perturbation amplitudes to obtain the linear stability equations:

ıkxṽx + ∂ṽy

∂y
+ ıkzṽz = 0, (2.7)

ρf (s + ıkxv̄( y))ṽx + ṽy
dv̄
dy

= −ıkxp̃f + μf

(
d2

dy2 − k2
x − k2

z

)
ṽx, (2.8)

ρf (s + ıkxv̄( y))ṽy = −dp̃f

dy
+ μf

(
d2

dy2 − k2
x − k2

z

)
ṽy, (2.9)

ρf (s + ıkxv̄( y))ṽz = −ıkzp̃ + μf

(
d2

dy2 − k2
x − k2

z

)
ṽz. (2.10)

There have been relatively fewer studies of the stability of non-Newtonian fluids in
conduits with compliant walls (Shankar & Kumar 2004; Chokshi & Kumaran 2007;
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Chokshi, Bhade & Kumaran 2015; Giribabu & Shankar 2017; Patne & Shankar 2019b).
The models used and the salient results are described in § 7.

3. Wall models

The conduits are considered to have uniform cross-section in the base state, where the solid
displacement field is considered to be unidirectional, steady and fully developed in most
cases. It is shown in § 3.3.3 that for a steady fully developed flow, the displacement field in
a viscoelastic solid wall is also fully developed and invariant in the streamwise direction
(Gaurav & Shankar 2010). A similar result can be obtained for the flow in a tube (Gaurav &
Shankar 2009). Therefore, it is valid to assume a base state with properties invariant in the
flow direction. However, for other types of walls such as the spring-backed wall discussed
in § 3.1, the wall displacement in the base state is not invariant in the flow direction.
A stability analysis that assumes a channel/tube of infinite extent is an approximation that
can be used only at high Reynolds number, where the inertial contributions to the stress
perturbations are dominant.

3.1. Spring-backed plate
The spring-backed plate is a model that has been used extensively in the study of external
flows past compliant surfaces (Benjamin 1960, 1963; Landahl 1962; Carpenter & Garrad
1985, 1986; Yeo & Dowling 1987), and less often for internal flows (Gajjar & Sibanda
1996; Kumaran 1996; Davies & Carpenter 1997a; Larose & Grotberg 1997; Shankar &
Kumaran 2000; Thaokar, Shankar & Kumaran 2001). As the name suggests, the model
consists of a deformable plate in contact with a fluid above, which is supported below by
an array of springs and a fluid which acts as a damping element, as shown in figure 1(a).
The surface is flat in the base state, and the deformation of the surface due to pressure
fluctuations is described by the displacement field u which is a function of the position
along the surface. The equation for the displacement field is of the form

I
d2u
dt2

= −Eu − D
∂u
∂t

+ T∇2
s u ± pf , (3.1)

where pf is the difference in the fluid pressure on the surface and the pressure in the
fluid supporting the surface from below; the positive sign on the right-hand side of (3.1)
is applicable at the upper surface y = yu and the negative sign is applicable at the lower
surface at y = yl in figure 1(b). Equation (3.1) is Newton’s second law applied to a unit
area of the surface, where E is the spring constant, I and D are the effective inertia and
damping coefficient per unit area, T is the surface tension and ∇s is the gradient operator
along the undeformed surface. The no-slip boundary condition is used for the tangential
velocity at the surface in the study of external flows past compliant surfaces.

The spring-backed plate model provides a simple relationship between the fluid pressure
and the displacement of the surface. It can only be applied to high-Reynolds-number flows
modelled using the inviscid approximation, since there is no tangential stress balance
condition along the surface. For pressure-driven flows, there is a variation in the fluid
pressure along the streamwise direction, which results in a variation in the displacement at
steady state. Since this variation is neglected when the configuration is approximated as a
plane channel or a cylindrical pipe, the spring-backed plate model can be used only when
the surface displacement is much smaller than the cross-stream distance. The tangential
stress at the surface also results in a tension in the interface along the tangential direction,
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u

Fluid
Deformable plate

Base plate

y = yu

y = yl

hf

hs

u

u

Fluid

Deformable plate

Base plate

y = yu

y = yl

hf

hs

(b)

(a)

Figure 1. (a) Schematic of a Couette flow between a rigid surface and a spring-backed wall and
(b) pressure-driven flow between two spring-backed walls showing the deformable plate, base plate, spring
and damping elements, the coordinate system and the displacement u.

which has to be balanced by a tangential spring force. Instead of a zero tangential velocity
condition, some studies have used a wall model with a tangential displacement field, uT ,
which is described by an equation of the form

IT
∂2uT

∂t2
= −ETuT − DT

∂uT

∂t
+ σT , (3.2)

where σT is the shear stress, the subscript T refers to the tangential direction and ET , DT
and IT are the spring, damping and inertia coefficients in the tangential direction. This
type of interface condition was postulated in Thaokar et al. (2001) for a viscous flow and
in Larose & Grotberg (1997) for the high-Reynolds-number flow in a compliant channel.
Thaokar et al. (2001) found that inclusion of the tangential displacement in the model
qualitatively alters the nature of the instability at zero Reynolds number.

The spring-backed plate model is useful because general requirements for the presence
of unstable modes can be derived, such as the equivalents of Squire, Rayleigh and Fjørtoft
theorems (Drazin & Reid 1981). An example of the derivation for a plane channel, along
the lines of Yeo & Dowling (1987), is given in § 6.1. The equivalents for a pipe flow have
been derived in Kumaran (1996) and Shankar & Kumaran (2000).

One important disadvantage of the spring-backed plate model with normal
displacement, (3.1), is that the mean pressure gradient results in wall displacement
that varies along the streamwise direction. The channel width or pipe diameter
varies in the streamwise direction. This is typically not incorporated in the study of
high-Reynolds-number flows, where it is assumed that the slope of the wall is small and
the parallel flow assumption is valid. The advantage of using a model with a tangential
displacement field, (3.2), is that the tangential spring force balances the wall shear stress
locally, and the base state is a fully developed flow with a constant tangential displacement
and zero normal displacement in the solid.
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Fluid A

Fluid B
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y

z x

z

(x0, z0)

(x, z)

u

VA
∗

VB
∗

(b)(a)

Figure 2. The configuration and coordinate system for analysing the flow past a membrane (a) and the
in-plane displacement field due to stress perturbations at the membrane surface (b).

3.2. Membrane
Another model that has been used is the membrane model, where a tensioned membrane
of infinitesimal thickness forms the wall of the channel, as shown in figure 2(a). A typical
configuration considered in Kumaran & Srivatsan (1998) and Thaokar & Kumaran (2002)
consists of a tensioned membrane stretched between two fluids, one or both of which are
subject to a linear shear flow. In Stewart, Waters & Jensen (2009, 2010), there is only
one fluid layer, and the pressure outside of the membrane is considered a constant. In this
case, due to the shear stress exerted by the fluid on the surface, there is a variation in
the membrane tension along the surface. In order to assume that the membrane properties
are invariant along the streamwise direction in a normal mode analysis, it is necessary
to consider a strongly pretensioned membrane in which the variation in the tension over
a distance comparable to one wavelength is much smaller than the absolute tension.
Kumaran & Srivatsan (1998) and Stewart et al. (2009, 2010) considered a relation similar
to (3.1) for the membrane, without the inertia and spring forces, as the model for the
membrane. The tangential velocity was set equal to zero at the membrane surface in this
simple model.

A more sophisticated model was considered in Thaokar & Kumaran (2002), where
the two-dimensional surface displacement field was defined along the surface of the
membrane, as shown in figure 2(b). The base state is the tensioned state of the membrane
with steady fluid flow. A material point at the location (x0, z0) in the base state moves to
a new location (x, z) due to applied perturbations, and the two-dimensional displacement
vector on the surface from the initial to the final location is designated us. The stress along
the surface is related to the surface displacement field by the constitutive relation from
Harden & Pleiner (1994), which contains an elastic part proportional to the strain and a
viscous part proportional to the strain rate. The surface stress (force per unit length on a
differential line element on the surface) σ s is written in terms of the strain and the strain
rate fields:

σ s =
(

Gs + ηs
∂

∂t

)
(∇sus + (∇sus)

T − 1
2

I(∇s · us))+
(

Bs + ηbs
∂

∂t

)
I(∇s · us). (3.3)

Here, ∇s is the gradient operator along the surface of the membrane, Gs and Bs are the
surface shear and bulk moduli, which have dimensions of force per unit length, and ηs and
ηb are surface shear and bulk viscosities. At the interface, the normal stress condition is

n · (σA − σB) · n = T∇s · n, (3.4)
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Stability and the transition to turbulence

where σA and σB are the stresses in fluids A and B, T is the surface tension, n is the unit
normal to the interface and the term on the right-hand side is due to the surface tension of
the membrane. The tangential stress balance condition is

(I − nn) · (σA − σB) · n = ∇s · σ s. (3.5)

Here, (I − nn) is the transverse projection operator which projects the stress onto the
surface of the membrane. The two stress balance conditions (3.4) and (3.5) are augmented
by the continuity of velocity conditions, that is, the velocities of the membrane (partial
derivative of displacement with respect to time in the linear approximation) are equal to
the fluid velocities. In the viscous limit, the surface displacement model of Thaokar &
Kumaran (2002) predicts an instability that is not accessible by the simple membrane
model without surface displacement.

3.3. Viscoelastic solid continuum
The standard configurations and coordinate systems used for the flow past viscoelastic
continuum surfaces are shown in figure 3. The Couette flow in a channel with one soft
wall that is infinite in the direction perpendicular to the plane of the flow (Kumaran,
Fredrickson & Pincus 1994; Shankar & Kumaran 2001b; Chokshi & Kumaran 2007,
2008a, 2009) is shown in figure 3(a). Here, the fluid layer of thickness hf is bounded
by a compliant wall of thickness hs on one side and a rigid wall on the other side, and
the rigid wall is moved with a constant velocity to generate flow. A linear velocity profile
is generated for a steady fully developed flow. Perturbations are imposed on the interface
between the fluid and compliant wall, and the stability of these perturbations is studied.
The experimental equivalent of this flow is carried out in a commercial rheometer, as
shown in figure 9 and discussed in § 8. A Cartesian coordinate system is used, where x
is the flow direction, y is the gradient direction and z is perpendicular to the plane of the
flow.

The second configuration is channel flow, where both walls are made of compliant
material each of thickness hs, and the fluid has thickness 2hf , as shown in figure 3(b).
The flow is driven by a pressure gradient in the streamwise direction. This has been used in
Gaurav & Shankar (2010) and Patne & Shankar (2019a,b) for the flow between viscoelastic
walls. There are two types of perturbations in this case, the ‘sinuous’ mode where the wall
displacement is symmetric about the centreline, and the ‘varicose’ mode where the wall
displacement is antisymmetric about the centreline, since an arbitrary perturbation can be
expressed as the superposition of the sinuous and varicose modes. The third configuration
is the flow in a tube with an annular soft solid forming the wall of the tube shown in
figure 3(c) (Kumaran 1995, 1996, 1998; Shankar & Kumar 2004; Shankar & Kumaran
1999, 2000, 2001a, 2002).

In the viscoelastic continuum model, the solid dynamics is characterised by the
displacement field, which is the displacement of material points from their reference state
due to the stresses exerted on the solid. The reference state has to be selected carefully for
the problem under consideration. Consider the steady flow of a fluid past a viscoelastic
wall, as shown in figure 4(b). Due to the shear stress exerted by the fluid at the wall,
there is elastic deformation of the wall from the equilibrium state with no flow, shown in
figure 4(a). Therefore, for the steady deformed state of the solid, the reference state is the
equilibrium state with no flow. It is shown in § 3.3.3 that this displacement is unidirectional
– the displacement in the streamwise (x) direction is only a function of the cross-stream (y)
direction. The linear stability analysis is carried out for the steady flow and the deformed
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θ

Figure 3. The configurations and representative coordinate systems used for studying the stability of internal
flows past soft surfaces. (a) The Couette flow in a channel with one compliant wall, (b) the pressure-driven
flow in a channel with two compliant walls and (c) the flow in a compliant tube.

steady state of the solid, where a perturbation is imposed on the steady state as shown in
figure 4(c), and the growth/decay of perturbation is analysed. In this case, it is natural to
consider the reference state as the deformed steady state of the solid shown in figure 4(b).
In addition to internal displacement of material points within the solid, there could also be
a change in the shape of the interface due to the perturbations. The boundary conditions,
continuity of velocity and stress, are to be applied at the perturbed interface.

There are two kinds of descriptions for the solid deformation, the Lagrangian and
Eulerian descriptions. Consider a material point at the location X in the reference state
which moves to the location x due to deformation of the solid, as shown in figure 5. In the
Lagrangian description, the independent coordinate is the location of the material point in
the reference state X , and the location in the current state is expressed as x(X , t). In the
Eulerian description, the independent coordinate is the location in the current state, and the
location in the reference state prior to application of additional stress is written as X (x, t).
The additional elastic stress depends on the additional deformation of a material element
ΔX in the reference state which becomes Δx in the current state, as shown in figure 5. The
Lagrangian and Eulerian descriptions are described in §§ 3.3.1 and 3.3.2, and the balance
laws and constitutive relations are derived. Details of the formulation can be found in the
classic texts of Malvern (1969) and Holzapfel (2000). This is followed by the calculation
of the deformation at steady state and the linear stability equations using the Lagrangian
formulation in §§ 3.3.3 and 3.3.4, respectively, for the flow in a channel. The Lagrangian
description is selected because it is easier to implement for reasons discussed at the end of
§ 3.3.2. The boundary conditions for the continuity of velocity and stress at the interface
between the solid and the fluid are derived in § 3.3.5.

3.3.1. Lagrangian description
In the Lagrangian description, the coordinate X in the reference configuration is
used as the independent coordinate. The material point at the reference location
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Stationary fluid

Solid

Steady flow

Stressed solid

Perturbed flow

Perturbed
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Perturbed
interface
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Perturbed
state

(X, Y, Z)

(x, y, z)

Base state

n
t

(b)(a)

(c) (d )

Figure 4. The solid and fluid configurations for (a) the equilibrium state in the absence of flow, (b) steady
unidirectional displacement profile (red) in the solid due to a steady flow (blue) in the fluid, (c) perturbed
interface in the linear stability analysis and (d) the displacement of material points from the base steady state
(X,Y,Z) to the perturbed state (x, y, z) and the unit normal and tangent at the perturbed interface. The red
lines in (b) are the steady displacements ūx and the red line in (d) is the displacement due to the perturbation
(ux, uy, uz).

X

X + �X

�X

x + �x

x

�x

Figure 5. The location of material points in the reference state X and X + ΔX , in the current state x and
x + Δx, and the deformation of a material element ΔX in the reference state to Δx in the current state.

X = Xex + Yey + Zez moves to the new location x = xex + yey + zez in the deformed
state at the time t. Here, we follow the common practice of using the same basis vectors for
the reference state and the current state. The displacement vector is defined as u = x − X :

ui(X , t) = xi(X , t)− Xi. (3.6)

924 P1-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.602


V. Kumaran

Here, indicial notation is used to represent vectors, and a repeated index is a dot product.
The velocity in the Lagrangian coordinate system is

vi = ∂xi(X , t)
∂t

= ∂ui(X , t)
∂t

. (3.7)

The deformation gradient tensor relates the vector distance between two adjacent points in
the current state to that in the reference state shown in figure 5, Δx = F · ΔX :

Δxi = FijΔXj, (3.8)

where the deformation gradient tensor is (∂x(X , t)/∂X ):

Fij = ∂xi

∂Xj
= δij + ∂ui

∂Xj
. (3.9)

The solid is incompressible if the volume measure of a differential volume element is
preserved as the material deforms, or if the Jacobian determinant for the transformation
from the reference location X to the deformed location x is 1. Since the Jacobian matrix
is just F (equation (3.8)), the solid is incompressible if

Det(F ) = 1. (3.10)

The deformation gradient tensor is not invariant under rotation of the form x′ = R · x.
Here, R is the rotation tensor which maps the position x onto a new position x′ rotated
with respect to x; the rotation tensor satisfies the relation RT = R−1. A fundamental
requirement of any strain measure that is used in the constitutive relation for the stress
is that it should be invariant under solid body rotation. This is because solid body rotation
does not stretch or compress material line elements, and therefore should not generate a
stress. The deformation gradient tensor cannot be used as a strain measure, because it is
not invariant under solid body rotation, F = R. The left and right Cauchy–Green tensors,
F · F T and F T · F , respectively, are the simplest strain measures which are invariant
under rotation. The left Cauchy–Green tensor is used in the Cauchy and Mooney–Rivlin
constitutive relations for the stress defined later in (3.16) and (3.17). In indicial notation,
the left Cauchy–Green or finger strain tensor b = F · F T is

bij = FikFjk = δij + ∂ui

∂Xj
+ ∂uj

∂Xi
+ ∂ui

∂Xk

∂uj

∂Xk
. (3.11)

It should be noted that the left Cauchy–Green tensor, (3.11), is a nonlinear function of
the gradient of the displacement field, (∂ui/∂Xj). In the ‘linear’ approximation of the
deformation gradient tensor, the last term on the right-hand side is neglected in (3.11).
When this approximation is made, the strain tensor is not material frame invariant. This
approximation can be used only when the measure of the strain is small, |∂ui/∂Xj| � 1.
The linear approximation is valid for the progression from the steady state (figure 4b) to the
perturbed state (figure 4c), since the perturbation amplitudes are considered infinitesimal.
This approximation is not valid, in general, for the progression from the equilibrium
state (figure 4a) to the steady state (figure 4b). It is argued at the end of § 3.3.5 that the
linearisation approximation is not valid for pressure-driven flow at low Reynolds number,
and the neglect of the nonlinear term in (3.11) can qualitatively change the result of the
stability analysis. The linearisation approximation is valid at high Reynolds number, where
the strain in the base state is small.
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The time derivative Ḟ of F is

Ḟij = ∂

∂t

(
∂xi

∂Xj

)
= ∂vi

∂Xj
. (3.12)

Note that the gradient here is with respect to the reference coordinates and so it is not the
spatial velocity gradient. To express this in terms of the spatial velocity gradient, the time
derivative Ḟ can be written as

Ḟij = ∂xk

∂Xj

∂vi

∂xk
= ∂vi

∂xk
Fkj = likFkj, (3.13)

where v = (∂x(X , t)/∂t) is the local velocity. The spatial velocity gradient is defined
as lij = (∂vi/∂xj); this is the rate of deformation tensor in fluid mechanics. The rate
of deformation tensor can be written in terms of the deformation gradient tensor as
l = Ḟ · F−1:

lij = ḞikF−1
kj . (3.14)

The constitutive relation for the Cauchy stress tensor typically contains the pressure to
satisfy incompressibility, the elastic stress due to the deformation gradient and the viscous
stress due to the strain rate. In its most general form, the elastic stress is a function of the
left Cauchy–Green tensor b (equation (3.11)), which is a symmetric tensor. In the theory
of hyperelastic materials, the stress is written as the functional derivative of a free energy
ψ(I1, I2, I3), where I1 = Trb, I2 = Trb−1Detb and I3 = Detb are the three principal scalar
invariants of b. Since Detb = 1 is a constant for an incompressible elastic material (see
(3.10)), the relevant invariants are I1 and I2. The elastic stress is the derivative of the free
energy with respect to the right Cauchy–Green tensor c = F T · F , σ = (∂ψ/∂c), which is
written in indicial notation as

σ e
ij = 2

(
∂ψ

∂I1
bij − ∂ψ

∂I2
b−1

ij

)
, (3.15)

where b−1
ij = (b−1)ij is the i, j element of the inverse of matrix b. The details of this

derivation are provided in Malvern (1969) and Holzapfel (2000). The neo-Hookean model
for the elastic stress is obtained by substituting ψ = GI1 in (3.15):

σ e
ij = Gbij, (3.16)

where G is the elasticity modulus. The more general Mooney–Rivlin model is obtained by
substituting ψ = 1

2 (G1I1 − G2I2) in (3.15):

σ e
ij = G1bij + G2b−1

ij . (3.17)

More complicated forms of the free energy can be used to derive equations for the stress
that are functions of b and b−1, and the two invariants of b. However, (3.17) is the simplest
relationship in which the stress tensor is a linear function of the strain tensor b or its
inverse.

The constitutive relation for the stress tensor also contains an isotropic pressure required
to satisfy incompressibility, and a viscous part due to the velocity gradient, (3.14). The
latter is considered proportional to the symmetric part of the velocity gradient, analogous
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to Newton’s law of viscosity for Newtonian fluids. The constitutive relation for the stress
tensor is

σ s
ij = −psδij + Gbij + μs(lij + lji), (3.18)

where ps is the dynamical pressure in the solid and μs is the solid viscosity. The
first term on the right-hand side in (3.18) is the isotropic pressure required to satisfy
incompressibility, the second term is the elastic stress due to the deformation gradient
and the third term is the viscous stress proportional to the symmetric part of the velocity
gradient tensor.

The momentum conservation equation in the Lagrangian reference frame is

ρs
Dvi

Dt
= ∂Pij

∂Xj
, (3.19)

where (D/Dt) is the substantial derivative (∂/∂t + v·∇). The Piola–Kirchoff stress tensor
is P = (F−1 · σ s)

T ,

Pij = F−1
jk σ

s
ki, (3.20)

which is the stress tensor when expressed in terms of the area element and unit normal in
the reference coordinate system. It is necessary to pre-multiply the stress tensor σ s by F−1

in the Lagrangian description, because all the derivatives are with respect to the reference
coordinates. The Piola–Kirchoff stress tensor is obtained by projecting the local surface
force (stress dotted with unit normal) at the deformed location onto the original location.
It should be noted that the stress tensor σ s in the spatial coordinates is symmetric, and it
is identical to the stress tensor used in fluid dynamics. The Piola–Kirchoff stress tensor in
the reference coordinates is not symmetric in general. For the neo-Hookean constitutive
relation (3.18), the momentum conservation equation for the Lagrangian formulation is

ρf
Dvi

Dt
= −

∂F−1
ji ps

∂Xj
+ G

∂Fij

∂Xj
+ μs

(
∂(F−1

jk (lik + lki))

∂Xj

)
. (3.21)

The reference state has to be carefully defined in the Lagrangian description. The
definition of the reference state is not important when the linear model is used for the
relationship between the stress and displacement gradient, but it is of critical importance
when b (equation (3.11)) is a nonlinear function of the gradients in the displacement field.
In a channel/tube flow with compliant walls, there is a fluid stress exerted at the interface
between the fluid and the wall, which deforms the solid. For the base state in which there
is a steady flow (figure 4b), the reference state is the equilibrium (zero-stress) state in
the absence of flow (figure 4a). The solid stress in the base state is calculated using a
Lagrangian description in which the position coordinates are those in the reference state.
This is illustrated in § 3.3.3. For the linear stability calculations in the perturbed state
(figure 4c), the state of the solid deformed due to the steady flow (figure 4b) is chosen as
the reference state, as shown in § 3.3.4.

The above formulation has been used in Chokshi & Kumaran (2007, 2008a,b), and is
referred to as the L3 formulation in Patne, Giribabu & Shankar (2017) and Patne & Shankar
(2019a). This is because three states, the equilibrium (no-flow) state, the stressed steady
state and the perturbed state, are considered in the analysis. An alternative formulation has
been used by Gkanis & Kumar (2005), Gaurav (2009) and Gaurav & Shankar (2010) where
there are only two states; the reference state for the linear stability analysis is considered
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as the unstressed equilibrium state for the solid. This is referred to as the L2 model in
Patne et al. (2017) and Patne & Shankar (2019a), where it is shown that the errors in the
Taylor series expansion could be significant. This is because the solid displacement from
the reference equilibrium state to the stressed base state may not be small. Thus, it is best
to use the formulation in §§ 3.3.3 and 3.3.4, denoted the L3 formulation in Patne et al.
(2017) and Patne & Shankar (2019a).

The interfacial boundary conditions for the velocity and stress in the Lagrangian
description are applied as follows. On the solid side, the values of the velocity and stress
at the reference location are used in the analysis. This is because the position label for
the particle velocity and stress in the Lagrangian description is still the reference location,
and not the current location. Thus, there is no necessity to use a Taylor expansion of
the quantities at the perturbed location about their values at the unperturbed location. In
contrast, the fluid is described in an Eulerian reference frame. In this case, it is necessary
to use a Taylor expansion of the quantities at the perturbed interface location about those
in the base state.

3.3.2. Eulerian description
In the Eulerian description, the displacement field is expressed in terms of the current
coordinate, x. If we consider a material point with unstressed coordinate X which moves
to the location x upon application of a stress, the new location is expressed as

Xi(x, t) = xi − ui(x, t). (3.22)

where u, the displacement field, is a function of the current position x. In this case, the
relation between a differential displacement in the deformed and reference coordinates is

fij = ∂Xi

∂xj
= δij − ∂ui

∂xj
, (3.23)

where δij is the identity tensor. Comparing (3.9) and (3.23), it is evident that f = F−1.
Therefore, mass conservation equation is

Det(f ) = 1 (3.24)

or
∂vi

∂xi
= 0, (3.25)

where the velocity field v is given by

vi =
(
∂xi

∂t

)
X

= ∂ui

∂t
+ vj

∂ui

∂xj
. (3.26)

Thus, the velocity field in the Eulerian description has to be obtained from an implicit
relation between the time derivative of the displacement field and its spatial gradients.

The elastic stresses for the neo-Hookean and Mooney–Rivlin models are given by
(3.16) and (3.17), with F = f −1. Here, the constitutive relations are equivalent only if
we make the substitution F · F T → (f T · f )−1 and (F · F T)−1 → f T · f . Similarly, the
rate of deformation tensor in the Eulerian framework is lij = (∂vi/∂xj), where the velocity
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v is determined from (3.26). The stress tensor for the neo-Hookean model in the Eulerian
formulation is

σ s
ij = −psδij + G(f T · f )−1 + μs(lij + lji). (3.27)

The mass conservation equation is given by (3.24) and the momentum conservation
equation is

ρ
Dvi

Dt
=
∂σ s

ij

∂xj
. (3.28)

In the Eulerian description, the interface conditions are enforced at the perturbed surface
on the fluid and solid side. This is accomplished using a Taylor expansion of the quantities
at the perturbed surface about their values at the unperturbed surface, in a manner similar
to that for the fluid. For a linear stability analysis, only the terms linear in the perturbation
quantities are retained, but higher-order terms are also included in weakly nonlinear
studies.

There are advantages and disadvantages to both descriptions of solid deformation. The
Eulerian description is similar to the flow equations, and might be considered the preferred
candidate for the fluid–solid interaction. The disadvantages are that the velocity field
(and therefore the rate of deformation tensor) in the Eulerian description is determined
from an implicit relation, (3.26), and that the boundary conditions are imposed at the
perturbed location of the interface. Another advantage of the Eulerian formulation is that
the linearisation of the continuity conditions at the interface is unambiguous, and this
can be used to check the consistency of the Taylor expansion of the interface conditions
in the Lagrangian formulation. In contrast, the velocity and rate of deformation tensor
for the Lagrangian description are determined from explicit relations, (3.7) and (3.14). In
addition, the boundary conditions are imposed at the locations in the reference state, and
not the current state, since the positions in the Lagrangian description are labelled by their
coordinates in the reference state. For these reasons, the linear stability analysis is easier
to implement in the Lagrangian formulation compared with the Eulerian formulation. The
steady deformation for the flow in a channel is calculated in § 3.3.3 and the equations for
the linear stability analysis are derived in § 3.3.4.

3.3.3. Solid deformation at steady state
The configuration, shown in figure 3(b), consists of a layer of fluid of thickness hf in the
region 0 < y < hf adjacent to a viscoelastic solid of thickness hs in the region −hs < y <
0. In the base state, the fluid flow is a unidirectional flow in the x direction. A general
velocity profile with pressure gradient (dpf /dx), zero velocity and strain rate γ̇w at the
wall is considered. It should be noted that the solid is stressed but stationary in the base
state. The deformation gradient tensor F and its inverse are

F =

⎛
⎜⎝1 + ∂ux

∂X
∂ux

∂Y
∂uy

∂X
1 + ∂uy

∂Y

⎞
⎟⎠ , F−1 =

⎛
⎜⎝1 + ∂uy

∂Y
−∂ux

∂Y

−∂uy

∂X
1 + ∂ux

∂X

⎞
⎟⎠ . (3.29a,b)
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In the Lagrangian description, the components of the momentum conservation equation
for the steady displacement field (ūx, ūy) (equation (3.21)), are

−∂(p̄sF̄−1
xx )

∂X
− ∂(p̄sF̄−1

yx )

∂Y
+ G

(
∂F̄xx

∂X
+ ∂F̄xy

∂Y

)
= 0, (3.30)

−∂(p̄sF̄−1
xy )

∂X
− ∂(p̄sF̄−1

yy )

∂Y
+ G

(
∂F̄yx

∂X
+ ∂F̄yy

∂Y

)
= 0. (3.31)

Here, the overbars denote quantities in stressed base state. The above equations are satisfied
when the displacement field is unidirectional along the flow direction, that is, ūx = ūx(Y)
is independent of X and ūy = 0. In this case, the stress tensor is

σ̄ s =

⎛
⎜⎜⎜⎝

−p̄s + G

(
1 +

(
dūx

dY

)2
)

G
dūx

dY

G
dūx

dY
−p̄s + G

⎞
⎟⎟⎟⎠ . (3.32)

The components of the simplified momentum equation, (3.30) and (3.31), are

−∂ p̄s

∂X
+ G

d2ūx

dY2 = 0, (3.33)

−∂ p̄s

∂Y
+ ∂ p̄s

∂X
dūx

dY
= 0. (3.34)

The above equations are solved subject to the zero-displacement boundary conditions
ūX = 0 at Y = −hs, and the stress balance conditions tangential and normal to the surface
at the interface Y = 0:

G
dūx

dY
= μf γ̇w and p̄s + G = p̄f , (3.35a,b)

respectively. Here, γ̇w is the fluid strain rate at the wall and p̄f is the mean pressure in the
fluid, which is a linear function of X. The mean displacement and pressure fields in the
solid are

ūx = − h2
s

2G
dp̄
dx

(
1 − Y2

h2
s

)
+ μf γ̇w(Y + hs)

G
, (3.36)

p̄s = p̄ +
(

dp̄
dx

)2 Y2

2G
+ dp̄

dx
μf γ̇wY

G
− G. (3.37)

The steady displacement field in a tube can be derived in cylindrical coordinates by
a procedure similar to that used here (Gaurav 2009) for the neo-Hookean wall model.
Here, the displacement field in the solid is unidirectional along the axis, and the axial
displacement field is only a function of the radial coordinate.
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3.3.4. Linear stability equations
The displacement and pressure fields in the solid are expressed in a manner similar to the
velocity field in (2.6):

ui = ūi + ũi exp (ıkxX + ıkzZ + st), ps = p̄s + p̃s exp (ıkxX + ıkzZ + st), (3.38a,b)

where s is the growth rate and kx, kz are the wavenumbers in the x and z directions.
When these are substituted into the mass and momentum equations, (3.10) and (3.21),
and linearised in the perturbations ũi and p̃s, we obtain

∂ ũy

∂Y
+ ıkxũx + ıkzũz − ıkxũy

dūx

dY
= 0, (3.39)

ρss2ũx = −ıkxp̃s − ∂ p̄s

∂X

(
dũy

dY
+ ıkzũz

)
+ ∂ p̄s

∂Y
ıkxũy + (G + μss)

(
d2

dY2 − k2
x − k2

z

)
ũx

− μss

(
ũx

(
ıkx

d2ūx

dY2 + k2
x

(
dūx

dY

)2
)

+ 2ıkx
dūx

dY
dũx

dY

)
, (3.40)

ρss2ũy = −dp̃s

dY
+ ıkxp̃s

dūx

dY
− ı(kxũx + kzũz)

∂ p̄s

∂Y
+ ∂ p̄s

∂X

(
dũx

dY
+ dūx

dY
ıkzũz

)

+ (G + μss)

(
d2

dY2 − k2
x − k2

z

)
ũy

− μss

(
ũy

(
ıkx

d2ūx

dY2 + k2
x

(
dūx

dY

)2
)

+ 2ıkx
dūx

dY
dũy

dY

)
, (3.41)

ρss2ũz = −ıkzp̃s + ∂ p̄s

∂X
ıkz

(
ũx − dūx

dY
ũy

)
+ ∂ p̄s

∂Y
ıkzũy + (G + μss)

(
d2

dY2 − k2
x − k2

z

)
ũz

− μss

(
ũz

(
ıkx

d2ūx

dY2 + k2
x

(
dūX

dY

)2
)

+ 2ıkx
dūx

dY
dũz

dY

)
. (3.42)

It is evident that though (3.39)–(3.42) for the solid displacement field have a structure
similar to (2.7)–(2.10) for the fluid velocity field, the former are more complex. This is due
to the nonlinear dependence of the strain tensor on the displacement field in a rotational
frame invariant formulation.

3.3.5. Interface conditions
The boundary conditions at the interface between the fluid and the solid are the continuity
of velocity and the continuity of tangential and normal stress. The fluid velocity and stress
are calculated at the perturbed interface location. On the solid side, the procedure for
applying the boundary conditions depends on the formulation. As stated above, for the
Lagrangian formulation, the boundary condition is applied at the location (X, Y = 0, Z)
in the base state.

In the linear approximation, the velocity and the stress in the fluid at the deformed
interface location can be separated into two parts, the first due to the perturbations and
the second due to the difference in the mean quantities between the perturbed and base
interface location. After carrying out a Taylor expansion for the fluid velocity about the
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Stability and the transition to turbulence

base state, the following velocity boundary conditions are applicable at the location y =
Y = 0 of the interface in the base state:

sũx = ṽx + ũyγ̇w and sũy = ṽy. (3.43a,b)

In the tangential velocity balance condition, the fluid velocity is the sum of the velocity
perturbation ṽx and the mean fluid velocity at the deformed interface which is proportional
to the perturbation ũy times the fluid strain rate γ̇w at the undisturbed surface. There is no
contribution analogous to the latter on the solid side, because the solid strain rate is zero in
the base state. The perturbations to the fluid velocity and solid displacement in (3.43a,b)
are calculated at the undeformed interface in the linear approximation, since the correction
due to deformation is quadratic in the perturbation amplitudes.

The normal stress balance condition at the location y = Y = 0 is

− p̃s + 2 (G + μss)
dũy

dY
− 2μssıkxũy

dūx

dY
= −p̃f + 2μf

dṽy

dy
+ ũx

dp̄
dx
. (3.44)

In the above equation, there is no variation in the normal stress in the fluid in the base state,
and so there is no equivalent of the second term on the right-hand side in the tangential
velocity balance condition in (3.43a,b). However, there is a variation in the normal stress
in the fluid in the streamwise direction due to the mean pressure gradient, resulting in the
last term on the right-hand side in the normal stress equation. Though there is a variation
in the normal stress in the solid, there is no contribution in (3.44) due to this variation,
because the normal stress boundary condition is applied at the base state location in the
Lagrangian formulation.

The balance equation for the tangential stress in the streamwise direction along the
surface is

(G + μss)
(

dũx

dY
+ ıkxũy

)
+ G

dūx

dY
dũy

dY
− μssıkxũx

dūx

dY
− Gũy

(
dūx

dY

)2

= μf

(
dṽx

dy
+ dṽy

dx

)
+ μf ũy

d2v̄x

dy2 . (3.45)

The first term on the right-hand side in (3.45) is the fluid shear stress due to the velocity
perturbation evaluated at the unperturbed surface. The second term on the right-hand side
is the product of the surface displacement and the gradient in the mean fluid shear stress,
μf (dv̄x/dy), at the surface. The first three terms on the left-hand side are the elastic and
viscous shear stress perturbation at the reference location. The last term on the left-hand
side in (3.45) is due to the variation to the tangent in the surface caused by the surface
displacement. The unit normal n and tangent t in the perturbed state for the channel
geometry (figure 4d) are

n = ey − duy

dx
ex, t = ex + duy

dx
ey, (3.46a,b)

where uy is the normal surface displacement. The expressions in (3.46a,b) have been
linearised in the perturbation amplitude uy. The stress tangential to the surface on the solid
side, t · σ s · n, is σ̃ s

xy + (dũy/dx)(σ̄ s
yy − σ̄ s

xx) in the linear approximation for the surface
displacement. From (3.32), the normal stress difference σ̄xx − σ̄yy = G(dūx/dY)2; this
leads to the last term on the left-hand side in (3.46a,b). Since there is no normal stress
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difference in the base state for a Newtonian fluid, there is no equivalent on the right-hand
side.

Finally, the balance equation for the tangential stress perpendicular to the plane of flow
is

(G + μss)
(

dũz

dY
+ ıkzũy

)
− μssıkxũz

dūx

dY
= μf

(
dṽz

dy
+ ıkzṽy

)
. (3.47)

The magnitude of the solid strain in the base state can be estimated based on the
fluid stress acting at the interface. The fluid stress scales as (μf Vf /hf ), and therefore
the solid strain in the base state is (μf Vf /Ghf ), which is the dimensionless parameter
Γ . For a viscous flow in the limit of low Reynolds number (Re � 1), the analysis of
§ 5 indicates that there is an instability when the parameter Γ exceeds a critical value.
In this case, the solid strain is O(1), and it is necessary to retain the mean strain in the
perturbation (3.39)–(3.42) for the solid displacement field, and the boundary conditions
(3.43a,b)–(3.45).

3.3.6. Incompressibility
The stability studies have all assumed that the solid is incompressible ((3.10) and (3.24))
and the solid displacement field in the base state is unidirectional. This facilitates an
expansion of the velocity field in Fourier modes in the streamwise direction. In real
applications, materials such as polymer gels are compressible, but their compression
modulus is 10–102 times larger than the shear modulus (Verma & Kumaran 2012; Srinivas
& Kumaran 2017b). The incompressibility approximation is a good one for flows driven by
moving boundaries, such as a Couette flow, but may not be valid for pressure-driven flows.
In a pressure-driven flow, the pressure difference across the length of the tube/channel
is larger than the wall shear stress by a factor (L/hf ), where L is the length of the
tube/channel and hf is the characteristic cross-stream dimension. For sufficiently long
conduits, the pressure difference could be significantly larger than the wall shear stress,
and the compression could be comparable to or larger than the shear strain. The effect of
wall deformation has not been considered so far in theoretical studies, though experimental
studies (Verma & Kumaran 2012, 2013; Srinivas & Kumaran 2017b) show that this could
be an important effect. A ‘local’ stability analysis was performed by Verma & Kumaran
(2013), where the local conduit dimension and pressure gradient at different downstream
distances were used in a linear analysis to determine the stability of the system. The
implicit assumption here is that the wavelength of the perturbations is small compared
to the characteristic length for flow evolution. With this assumption, the results of the
linear stability analysis are found to be in reasonable agreement with experimental results.

4. Non-dimensionalisation and numerical methods

The dimensional parameters in the problem are as follows. The length scales are the
thickness of the fluid hf and the solid hs, and the velocity scale is the characteristic
fluid velocity Vf . The fluid properties are the density ρf and viscosity μf , and the solid
properties are the density ρs, the modulus of elasticity G and the viscosity μs. In the linear
stability analysis, the parameters are the wavenumber k and the growth rate s. In addition to
the Reynolds number Re = (ρf Vf hf /μf ), there is one other dimensionless group involving
the solid elasticity modulus. This is usually expressed as the velocity-independent
parameter Σ = (ρf Gh2

f /μ
2
f ), though sometimes the ratio of viscous and elastic stress,

Γ = (Vfμf /Ghf ), is also used. The other dimensionless parameters are the ratio of the

924 P1-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.602


Stability and the transition to turbulence

fluid and solid viscosities μr = μs/μf and the ratio of the characteristic lengths of the
fluid and solid H = (hs/hf ). In § 5, the limit of zero Reynolds number is considered, where
there is a balance between the viscous stress in the fluid and the elastic stress in the solid
for Γ ∼ 1. In this case, the flow stability depends only on the dimensionless parameters
Γ , μr and H. At high Reynolds number, the critical Reynolds number for the onset of
instability scales as a power of the parameter Σ . It is shown in § 6.1 that Rec ∝ Σ1/2 for
the high-Reynolds-number modes that have an internal critical layer within the flow, and
in § 6.3 it is shown that Re ∝ Σ3/4 for the wall modes.

It is possible to adopt a uniform non-dimensionalisation for some parameters.
The spatial coordinates are all non-dimensionalised by the characteristic length hf

and the wavenumber by h−1
f . For the solid dynamics, the pressure and the elastic

stress are non-dimensionalised by the elasticity modulus G. The superscript ∗ is
used for quantities non-dimensionalised in this way. The non-dimensionalisation of
the fluid velocity and pressure, the growth rate and the wave velocity are different
in the low- and high-Reynolds-number regimes. At low Reynolds number, the time
dimension is non-dimensionalised by the characteristic time scale (μf /G); quantities
non-dimensionalised in this manner are denoted by the superscript ∗. At high Reynolds
number, (hf /Vf ) is used to non-dimensionalise the time dimension, and the superscript †

is used for quantities non-dimensionalised in this manner. The scalings for the different
quantities are summarised in table 1.

The linear stability equations reduce to ordinary differential equations in the
cross-stream coordinate, (2.7)–(2.10) for the fluid and (3.39)–(3.42) for the wall made
of a viscoelastic continuum. The solid and fluid equations are solved separately in their
separate domains. The boundary conditions at the perturbed interface are expressed using
a Taylor series expansion about the unperturbed interface in (3.43a,b)–(3.47). These are
solved either using numerical integration in the cross-stream coordinate or using spectral
methods.

In the spatial integration scheme, the equations for the solid and fluid are numerically
integrated in their respective domains. Linearly independent solutions that satisfy the
boundary conditions at the fixed boundaries are determined. The fixed boundaries are,
for example, y = hf for the fluid and Y = −hs for the solid for the Couette flow in
figure 3(a), while symmetry conditions are applied, for example, at the centre of the
tube r = 0 in figure 3(c). At the interface, the boundary conditions are expressed as
the product of a coefficient matrix multiplying the column vector of the coefficients of the
linearly independent solutions. The growth rate is determined from the condition that the
determinant of the coefficient matrix is zero. Note that the elements of the coefficient
matrix are complex in general, so the real and imaginary parts of the growth rate are
determined from the zero determinant condition. Typically, the simulation starts with
an initial guess for the growth rate, and a Newton–Raphson iteration scheme is used to
converge to the solution.

The second method is the spectral method (Orszag 1971; Boyd 2000), where the
displacement and velocity fields are usually expressed as the sum of a finite set of N
Chebyshev polynomials each. These are substituted into the four governing equations, two
each for the solid and fluid, and which are set equal to zero at (4N − 8) Gauss–Labatto
collocation points in the solid and fluid domains. The boundary conditions, two each
at y = hf and Y = −hs, and the four interface conditions provide an additional eight
rows in the pseudospectral matrix. This results in a polynomial eigenvalue problem of
dimension 4N × 4N for the growth rate s, which is solved numerically. The number
of solutions for the growth rate is equal to the dimension of the matrix. The physical
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Parameter Dimensional Scaled by Dimensionless

Coordinates

Position x hf x∗
Wavenumber k h−1

f k∗

Fluid viscous scaling (§ 5)

Characteristic velocity Vf
Ghf
μf

Γ = μf Vf
Ghf

Velocity v (Ghf /μf ) v∗
Wall strain rate γ̇w (G/μf ) γ̇w
Pressure, stress pf , σ f G pf

∗, σ ∗

Wave speed c Ghf
μf

c∗

Fluid inertial scaling (§ 6)

Velocity v Vf v†
Wall strain rate γ̇w (Vf /hf ) γ̇w†
Pressure, stress pf , σ f ρf Vf

2 pf
†, σ †

Wave speed c Vf c†

Viscoelastic wall

Cross-stream distance hs hf (hs/hf ) = H
Displacement u hf u∗
Viscosity μs μf μr
Pressure, stress ps, σ G ps

∗, σ ∗

Spring-backed wall (§ 6.1)

Spring coefficient E (ρf Vf
2/hf ) E∗

Damping coefficient D (ρf Vf ) D∗
Inertia coefficient I (ρf hf ) I∗
Surface tension T (ρf Vf

2hf ) T∗

(a)

Dimensionless groups

Re (ρf Vf hf /μf )

Σ (ρf Ghf
2/μf

2)
Γ (μf Vf /Ghf )

H (hs/hf )

μr (μs/μf )

(b)

Table 1. (a) The non-dimensionalisation used for the low-Reynolds-number analysis in § 5 and
high-Reynolds-number analysis in § 6 for the flow past continuum viscoelastic surfaces and the scalings for
the properties of the spring-backed wall in § 6.1. (b) The dimensionless groups for the continuum viscoelastic
wall model.

solutions are identified as those which converge as the number of basis functions N is
increased.

The spatial integration method is more accurate, since a Newton–Raphson method is
used to obtain quadratic convergence. However, this method requires an initial guess for
the eigenvalue, and is difficult to use when there are multiple solutions for the eigenvalue.
The spectral method has relatively poorer accuracy, since the solution depends on the
number of basis functions used. It is preferable to use a composite scheme, where the
eigenvalues are first estimated using the spectral scheme, and these are used as the initial
guess in a spatial integration scheme to verify that they are not spurious, and to improve
the accuracy.

5. Viscous flow

The stability analysis is considerably simplified for zero Reynolds number, where the
inertial terms in (2.8)–(2.10) for the fluid and in (3.40)–(3.42) for the solid are neglected.
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Stability and the transition to turbulence

Though the fluid equations are quasi-steady, there is time dependence in the equations for
the solid for μr /= 0, because the velocity field is the time derivative of the displacement
field in the solid equations. When the solid viscosity is zero, the equations for the
solid are also quasi-steady and have no explicit time dependence. However, the time
dependence enters through the interface velocity continuity, where the time derivative of
the displacement in the solid is equal to the velocity in the fluid. This interface coupling
can cause a flow instability even in the absence of inertia for a continuum viscoelastic wall
model. The zero-Reynolds-number analysis for the Couette flow is first discussed, and a
sample calculation is presented to illustrate the simplifications in the viscous limit. The
stability of a pressure-driven flow is then discussed. For a viscous flow, it is appropriate
to scale time by (μf /G) and velocity by (hf G/μf ). The scaled velocity is defined as
ṽ∗

i = (μf ṽi/hf G) and the scaled growth rate is s∗ = (sμf /G). The non-dimensional fluid
pressure is p∗

f = ( pf /G). The other quantities are non-dimensionalised as shown in table 1.

5.1. Couette flow
The analysis here is restricted to two-dimensional perturbations, ṽ∗

z = ũ∗
z = k∗

z = 0, in
order to simplify the calculation procedure. In the base state, the strain rate in the fluid,
scaled by (G/μf ), is Γ = (μf Vf /Ghf ), where Vf is the velocity of the top plate. The strain
rate in the solid in the base state (dū∗

x/dY∗), (3.37), is also Γ . Equations (2.8)–(2.9) can
be reduced to one equation for the fluid velocity by taking (ık∗

x )× (2.8)–(d/dy∗)(2.9), and
using the mass conservation equation (2.7) to express ṽ∗

x in terms of (dṽ∗
y /dy∗):(

d2

dy∗2 − k∗2
x

)2

ṽ∗
y = 0. (5.1)

Equations (3.39)–(3.41) for the solid displacement field can be reduced to one equation
by taking (ıkx)× (3.40)–((d/dy)− ıkΓ ) (3.41), and using the mass conservation equation
(3.39) to express ũ∗

x in terms of ũ∗
y :(

(1 + μrs∗)

(
d2

dY∗2 − k∗2
x

)
− μrs∗

(
Γ 2k∗2

x + 2ık∗
xΓ

d
dY∗

))

×
(

d2

dY∗2 − 2ık∗
x

d
dY∗ − k∗2

x (1 + Γ 2)

)
ũ∗

y = 0. (5.2)

The boundary conditions, (3.43a,b)–(3.45), expressed in terms of scaled variables are

s∗ũ∗
x = ṽ∗

x + Γ ũ∗
y , s∗ũ∗

y = ṽ∗
y , (5.3a,b)

−p̃∗
s + 2(1 + μrs∗)

dũ∗
y

dY∗ − 2μrık∗
x s∗ũ∗

yΓ − Γ 2ũ∗
y = −p̃∗

f + 2
dṽ∗

y

dy∗ , (5.4)

(1 + μrs∗)
(

dũ∗
x

dY∗ + ık∗
x ũ∗

y

)
+ Γ

dũ∗
y

dY∗ − μrs∗ık∗
x ũ∗

xΓ =
(

dṽ∗
x

dy∗ + dṽ∗
y

dx∗

)
. (5.5)

A particularly simple case is μr = 0, where (5.2) is also independent of the growth rate
s. Thus, both the solid and fluid equations are quasi-static, and are independent of time. The
time dependence enters only through the velocity boundary conditions, (5.3a,b). In this
case, the determinant of the linear stability matrix reduces to a quadratic equation for the
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Figure 6. (a) The real part of the growth rate of the most unstable mode as a function of the wavenumber k∗
x

for the viscous instability for H = 1, μr = 0 and Γ = 0 (◦), 0.5 (�), 0.8 (∇), 0.9 (�) and 1.0 (�). (b) Neutral
stability curves plotted in the (μr/H2) versus (ΓcH) parameter space for H = 1 (◦), 10 (�), 50 (∇), 100 (�)
and 500 (�) for the viscous instability in the flow past a neo-Hookean solid. The dashed curve in (b) is the
result for the linear model. Panel (b) is redrawn, with permission, from Chokshi & Kumaran (2008a).

growth rate s, and this can be explicitly solved to determine the growth rate. Kumaran
et al. (1994) first showed that there is an instability when Γ increases beyond a critical
value even when inertia is neglected. The lowest value of Γ for the transition from stable
to unstable modes is at a finite value of the wavenumber k∗

x , as shown in figure 6(a) for the
case where μr = 0, and so this instability is a finite-wavenumber instability.

There is an instability even for μr > 0, and this instability is caused due to the second
term on the right-hand side of (5.3a,b) for the tangential velocity, which is the change in
the mean velocity of the interface due to interface displacement. There is a discontinuity
in the strain rate at the interface, in a manner similar to the discontinuity in the velocity
at the interface which causes the Kelvin–Helmholtz instability. The strain rate in the fluid
is non-zero at the interface, while the strain rate in the solid is zero because the solid
is stationary. When the interface is displaced, the mean velocity on the fluid side at the
interface is non-zero, whereas the mean velocity on the solid side is zero. This results
in the second term on the right-hand side in the tangential velocity boundary condition,
(5.3a,b), which destabilises the flow when the parameter Γ exceeds a critical value. The
instability of mechanism is the transfer of energy from the mean flow to the fluctuations
due to the shear work done at the interface. Figure 6(a) shows the results for the real part
of the scaled growth rate s∗ as a function of the wavenumber k∗

x for different values of
the parameter Γ . The flow is always stable in the long-wave limit, k∗ � 1, but there is an
instability at a finite wavenumber when Γ exceeds a critical value.

The analysis in Kumaran et al. (1994) employed the linear model for the solid
constitutive relation, with the nonlinear term in the definition of the strain tensor (last
term on the right-hand side in (3.11)) neglected. The difficulty with the linear model is
that the constitutive relation is not invariant under rotation. Gkanis & Kumar (2003) first
used the neo-Hookean model, which is rotationally invariant strain ((3.11) including the
nonlinear term), in their stability analysis in the viscous limit, and included the effect
of the normal stress difference in the base state (the difference in the diagonal terms
in (3.32), which results in the fourth term on the left-hand side in the tangential stress
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balance (5.4)). The qualitative nature of the instability due to the shear work at the interface
is the same for the neo-Hookean model, though the critical strain rate for the instability
is lower than that for the linear model. The difference in the results for the linear and
neo-Hookean models decreased to zero in the limit H  1, where the thickness of the wall
is much smaller than the fluid thickness. The normal stress difference caused an additional
short-wave instability in the limit of zero Reynolds number, which is damped by the effect
of surface tension. Chokshi & Kumaran (2008a) also analysed the stability of the flow
of a viscous fluid past a neo-Hookean solid at zero Reynolds number with a rotationally
invariant strain, and found that the critical strain rate for the neo-Hookean model is lower
than that for the linear model. The linear model (Kumaran et al. 1994) predicted that there
is an instability only for H >

√
μr, and the flow is always stable for H <

√
μr. For the

neo-Hookean solid model, Chokshi & Kumaran (2008a) found that there is an instability
for all values of μr, and an increase in the solid viscosity μr does not monotonically
increase the critical value Γc. An example of the result from Chokshi & Kumaran (2008a)
is shown in figure 6(b), where ΓcH is plotted as a function of (μr/H2). Whereas the value
of Γc diverges for the linear model at (μr/H2) = 1, it is always finite for the neo-Hookean
model.

Chokshi & Kumaran (2008a) also carried out a weakly nonlinear analysis to determine
whether the bifurcation is supercritical or subcritical, using the neo-Hookean model for the
solid. Both the Eulerian and Lagrangian formulations were used, and it was shown that the
results of the two approaches are in quantitative agreement. An earlier weakly nonlinear
analysis by Shankar & Kumaran (2001b), which employed the linear strain measure ((3.11)
without the last term on the right-hand side), arrived at qualitatively similar results. The
regions in the H–μr parameter space for the supercritical and subcritical instabilities
were mapped out in Chokshi & Kumaran (2008a), and it was found that the instability
is subcritical in most of the parameter space, though there are isolated regions where the
instability is supercritical. However, the reduction in Γc upon inclusion of the second- and
third-order terms in the amplitude equation is relatively small, indicating that the linear
analysis provides an accurate estimate of Γc. The theoretical predictions for the value
of Γc and the nature of the bifurcation are in agreement with experimental results; the
comparison is discussed in § 8. Thus, the viscous instability in the Couette flow past a
compliant surface is now a well-understood phenomenon.

Though the stability of a viscous flow past a viscoelastic wall has been relatively well
studied, there are fewer studies of other wall models. Thaokar et al. (2001) used (3.1) and
(3.2) discussed in § 3.1, and showed that tangential motion of the interface has a qualitative
effect on the flow stability at zero Reynolds number. The stability of the flow past an
infinitesimal membrane in the low-Reynolds-number limit was considered by Thaokar &
Kumaran (2002), using the model discussed in § 3.2. This configuration was found to be
unstable for all non-zero values of the fluid velocity due to a long-wavelength instability
– the growth rate of perturbations increased proportional to k2 when the wavenumber k is
small.

5.2. Pressure-driven flow
The stability of a pressure-driven flow is found to be extremely sensitive to the model used
for the solid and the nature of the boundary conditions. In the absence of inertia, the fluid
equation is the same as that for a Couette flow, (5.1), but the solid equation cannot be
reduced to a fourth-order equation with constant coefficients.
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The first study of the pressure-driven flow in a pipe (Kumaran 1995) employed the
linear strain measure ((3.11) without the last term on the right-hand side) for the solid
constitutive relation which is not invariant under rotation. A linear instability was predicted
when the parameter Γ exceeded a critical value. The mechanism, the transport of energy
from the mean flow to the fluctuations due to the shear work at the interface, is the
same as that for a Couette flow. The neo-Hookean wall model was used by Gkanis &
Kumar (2005), with strain given by (3.11), for the pressure-driven flow in a channel lined
with one or two compliant walls, as well as a combined Couette/Poiseuille flow. They
reported that the Couette flow is easier to destabilise than the Poiseuille flow, but the
Poiseuille flow does become unstable when the scaled characteristic velocity exceeds
a critical value. The normal stress difference in the solid in the base state causes a
short-wave instability, which is stabilised by surface tension. At finite wavenumber, there
is an instability due to the shear work done at the interface. In addition, there is a term
in the normal stress boundary condition due to the variation in the normal stress with
height in the base state. This term arises because the boundary conditions were applied at
the perturbed surface on the solid side, and not on the unperturbed surface as appropriate
for the Lagrangian formulation. This additional term in the normal stress equation has
a stabilising effect, and due to this, the Poiseuille flow is more stable than the Couette
flow.

The flow in a deformable channel in the viscous limit was also studied by Gaurav
& Shankar (2010) using the rotational invariant strain measure (equation (3.11)), who
reported that the viscous flow in a channel is unstable only to the short-wavelength
modes caused by the normal stress difference. They did not find an instability at finite
wavenumber due to the shear work done at the interface. Gaurav (2009) came to the same
conclusion for the viscous flow in a tube which has an annular wall made of a neo-Hookean
solid. The models used by Gkanis & Kumar (2005) and Gaurav & Shankar (2010) are
exactly the same, but there is a difference in the continuity conditions at the solid–fluid
interface. On the fluid side, the variation of the shear stress with cross-stream distance,
which is the second term on the right-hand side in (3.45), was not included in Gkanis &
Kumar (2005), but was included in Gaurav & Shankar (2010). On the solid side, Gkanis
& Kumar (2005) included a term due to the gradient of the normal stress difference in the
base state in the normal stress balance equation; this was not included in Gaurav & Shankar
(2010) because the boundary conditions were applied at the undeformed interface in the
Lagrangian formulation. Neither Gkanis & Kumar (2005) nor Gaurav & Shankar (2010)
included the streamwise contribution to the normal stress balance due to the pressure
gradient, which is the last term on the right-hand side in (3.44). The linear stability analysis
of Gaurav & Shankar (2010) and Gaurav (2009) was based on a Taylor expansion of the
quantities about the equilibrium state (figure 4a) and not about the strained base state
(figure 4b). These issues were revisited in Patne et al. (2017) and Patne & Shankar (2019a),
who used a consistent formulation where the perturbation is applied on the base steady
state. The qualitative nature of the instability does not change, and the high-wavenumber
modes due to the normal stress difference are the critical modes in this case.

The studies conducted so far reveal that the stability of a pressure-driven flow
in a channel or tube with compliant walls is extremely sensitive to the wall model
used, and small differences in the interface conditions qualitatively change the stability
characteristics. The stability of the pressure-driven flow is also difficult to verify
experimentally, since the parameter regime of low Reynolds number and finite Γ requires
a very large pressure difference for driving the flow, and soft materials will not be able to
sustain the pressure generated. This is discussed in § 8.1.
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6. High-Reynolds-number instability

There are three kinds of instabilities for a flow past a compliant wall at high Reynolds
number. The first are the ‘inviscid’ modes, where the instability is predicted by the inviscid
Euler equations when the viscous effects are neglected. The second are structurally similar
to the Tollmien–Schlichting modes which destabilise the flow in a rigid channel. These
involve an internal critical layer of thickness Re−1/3 within the flow at a location where
the flow velocity is equal to the wave velocity. At high Reynolds number, the flow becomes
unstable due to the viscous effects in the critical layer. The third are the wall modes. These
are present for the flow in a rigid channel/tube (Gill 1965), but are always stable. For the
wall modes, the effect of viscosity is significant in a layer of thickness Re−1/3 at the wall
of the channel. This is in contrast to the Tollmien–Schlichting modes, where the effect
of viscosity is important in an internal critical layer of thickness Re−1/3 within the flow.
The mechanism of destabilisation of the wall modes is the transport of energy from the
mean flow to the fluctuations due to the shear work done at the interface; this mechanism
is present only when the wall is deformable. In this respect, the wall mode instability is
qualitatively different from, and is not a simple continuation of, the Tollmien–Schlichting
instability in a rigid tube/channel.

6.1. Theorems for inviscid flow
Equivalents of the classical theorems for inviscid flows (Drazin & Reid 1981) can be
derived for the spring-backed wall model, but with restrictions, as indicated in table 2.
Inertial scaling is used for the fluid velocity and pressure in the present section. The scaled
fluid and wave velocity are defined as ṽ†

i = (ṽi/Vf ), c† = (c/Vf ) and t† = (tVf /hf ), where
Vf is the characteristic velocity. The fluid pressure is defined as p†

f = pf /(ρf V2
f ). All other

quantities are non-dimensionalised as shown in table 1.
The wall displacement u∗ is zero in the base state. The wall displacement due to the

fluid perturbation is expressed in a manner similar to that for the fluid in (2.6):

u∗ = ũ∗ exp (ık∗
x (x

∗ − c†t†)+ ık∗
z z∗). (6.1)

The boundary conditions at the surface are the continuity of normal velocity and the
continuity of normal stress at the perturbed surface. When these conditions are expressed
using a Taylor expansion about their values at the flat wall, the normal velocity condition
is

ṽ†
y = −ık∗

x c†ũ∗. (6.2)

The relation (3.1) between the fluid pressure and the wall displacement is combined with
the above normal velocity continuity (6.2) to provide a relation between the pressure and
the normal velocity at the surface:

p̃†
f = ± ı(E∗ − k∗2

x c†2I∗ − ık∗
x c†

xD∗ + T∗(k∗2
x + k∗2

z ))ṽ
†
y

k∗
x c† , (6.3)

where the positive sign is applicable at the upper boundary y∗ = y∗
u in figure 3(b) where

the unit normal is in the −y direction and the negative sign is applicable at the lower
boundary y∗ = y∗

l where the unit normal is in the +y direction.
A brief derivation of some of the classical theorems is given here for the flow in

a channel with compliant walls; these and the equivalent results for a tube flow are
summarised in table 2. The objective is to demonstrate how the wall dynamics is
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Channel Tube

Squire theorem (Squire 1933)

If a flow past a spring-backed wall with parameters
E∗, I∗,D∗,T∗ becomes unstable to
three-dimensional disturbances with
wavenumber (k∗

x , k∗
z ) at Reynolds number Re, the

flow past a spring-backed wall with parameters
E‡ = (E∗k‡2

x /k∗2
x ), I∗,D‡ = (D∗k‡

x/k∗
x ),T∗

becomes unstable to two-dimensional
disturbances with wavenumber (k‡

x , 0) at
Re(k∗

x/k
‡
x ), where k‡2

x = k∗2
x + k∗2

z .

No equivalent

Rayleigh theorem (Rayleigh 1880)

An unstable mode exists only if v̄†
x

d2 v̄
†
x

dy∗2 < 0
somewhere in the flow.

An unstable mode exists only if
v̄†

x
dG
dr∗ < 0 somewhere in the

flow.

Corollary

All modes are neutral/stable if v̄†
x

d2 v̄
†
x

dy∗2 ≥ 0
throughout the flow and the dissipation
coefficient D∗ is zero/positive.

All modes are neutral/stable if
v̄†

x
dG
dr∗ > 0 throughout the flow

and the dissipation coefficient
D∗ is zero/positive.

Fjørtoft theorem (Fjørtoft 1950)

For a flow with dv̄†
x

dy∗ ≷ 0 at y∗ = y∗
l and dv̄†

x
dy∗ ≶ 0 at

y∗ = y∗
h and c†

R ≷ 0, an unstable mode exists

only if d2 v̄
†
x

dy∗2 ≶ 0 somewhere in the flow.

For a flow with dv̄†
x

dr∗ ≶ 0 at the
wall, an unstable mode with
cR ≷ 0 exists only if dG

dr∗ ≶ 0
somewhere in the flow.

Corollary

For a flow with dv̄†
x

dy∗ ≷ 0 at y∗ = y∗
l and dv̄†

x
dy∗ ≶ 0 at

y∗ = y∗
h, all modes with c†

R ≷ 0 are neutral/stable

if d2 v̄
†
x

dy∗2 ≷ 0 everywhere in the flow and the
dissipation coefficient D∗ is zero/positive.

For a flow with dv̄†
x

dr∗ ≶ 0 at the
wall, all modes with cR ≷ 0 are
neutral/stable if dG

dr∗ ≷ 0
everywhere in the flow and the
dissipation coefficient D∗ is
zero/positive.

v̄
†
xL < c†

R < v̄
†
xU v̄

†
xL < c†

R < v̄
†
xU

|c†|2 < Max(v̄†2
x ) |c†|2 < Max(v̄†2

x )

Howard semicircle theorem (Howard 1961)

[c†
R − 1

2 (v̄
†
xL + v̄

†
xU)]

2 + c†2
I < [ 1

2 (v̄
†
xL + v̄

†
xU)]

2 [c†
R − 1

2 (v̄
†
xL + v̄

†
xU)]

2 + c†2
I <

[ 1
2 (v̄

†
xL + v̄

†
xU)]

2

Høiland theorem (Høiland 1953)

k∗
x c†

I < Max| dv̄†
x

dy∗ | k∗
x c†

I <

Max[ r2

4(n2+k∗2
x r∗2) (

dv̄†
x

dr∗ )2]1/2

Table 2. The conditions for the existence of unstable modes in channel and tube flows when the mean
velocity is zero at the compliant walls, and all walls with non-zero mean velocity are rigid. The function

G = r∗
n2+k∗2

x r∗2
dv̄†

x
dr∗ , the velocity v̄†

xL = Min(Min(v̄†
x ), 0) and v̄†

xU = Max(Max(v̄†
x ), 0).
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incorporated in the calculation, and to show how the restrictions arise on the wall
dynamics. The important restriction for the channel flow is that either the mean velocity
should be zero at the surface if it is compliant or the surface should be rigid if the mean
velocity is non-zero. Thus, the present analysis will apply to configurations of the type
shown in figure 1, but the theorems would not apply in general when there are two
compliant surfaces moving relative to each other. In the case of a tube flow, the important
restriction is that the mean velocity at the tube surface should be zero. The detailed
calculation for a rigid channel is given in Drazin & Reid (1981) and the adaptation for
a channel with a compliant wall is given in Yeo & Dowling (1987). The derivation of the
classical theorems for a rigid tube was first carried out by Howard & Gupta (1962) and
Maslowe (1974), and the calculation for a tube with a compliant wall is given in Kumaran
(1996) and Shankar & Kumaran (2000).

To derive the equivalent of Squire’s theorem, add the x momentum equation (2.8) and
(k∗

z /k
∗
x )× the z momentum equation (2.10), and use the transformation

k‡
x =

√
k∗2

x + k∗2
z , k‡

x ṽ
‡
x = k∗

x ṽ
†
x + k∗

z ṽ
†
z , p̃‡

f = (p̃†
f k∗

x/k
‡
x), Re‡ = Re(k∗

x/k
‡
x)

(6.4a–d)
to obtain the transformed x momentum conservation equation:

ık‡
x(v̄

†
x − c†)ṽ‡

x + ṽ†
y

dv̄†

dy∗ = −ık‡
x p̃‡

f + 1
Re‡

(
d

dy∗2 − k‡2
)
ṽ‡

x . (6.5)

The transformation (6.4a–d) is applied on the mass conservation equation (2.7) to obtain

ık‡
x ṽ

‡
x + dṽ†

y

dy∗ = 0. (6.6)

The y momentum conservation equation, (2.9), is multiplied by (k‡
x/k∗

x ) to obtain

ık‡
x(v̄

†
x ( y)− c†)ṽ†

y = −
dp̃‡

f

dy∗ + 1
Re‡

(
d2

dy∗2 − k‡2
x

)
ṽ†

y . (6.7)

Equations (6.5)–(6.7) are the linear stability equations for a two-dimensional flow with
wavenumber k‡

x ; from these, it can be inferred that if a three-dimensional perturbation
with wavenumber (k∗

x , k∗
z ) has growth rate k∗

x c† when the Reynolds number is Re, a
two-dimensional perturbation with wavenumber k‡

x has a higher growth rate k‡
xc† at a lower

Reynolds number Re‡ = (Rek∗
x/k

‡
x). This leads to Squire’s theorem, which states that

two-dimensional disturbances are always more unstable than three-dimensional ones, and
therefore the stability limit can be identified by examining two-dimensional disturbances
alone. For a flow bounded by a spring-backed plate, it is necessary to transform the
parameters in (6.3) as well,

E‡ = (E∗k‡2
x /k

∗2
x ), D‡ = (D∗k‡

x/k
∗
x ), (6.8a,b)

to obtain the condition equivalent to (6.3) for the two-dimensional perturbation with
wavenumber k‡

x :

p̃‡ = ± ı(E‡ − k‡2
x c†2I∗ − ık‡

xc†
xD† + T∗k‡2)ṽ†

y

k‡
xc†

. (6.9)

Therefore, for a parallel shear flow with Reynolds number Re and wall parameters
E∗, I∗,D∗ and T∗, a three-dimensional disturbance with wavenumbers k∗

x , k∗
z has
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growth rate −ık∗
x c†; a two-dimensional disturbance with wavenumber k‡

x and lower
Reynolds number Re‡ = (Rek∗

x/k
‡
x) with higher wall elasticity and dissipation,

(E∗k‡2
x /k∗2

x ), (D
∗k‡

x/k∗
x ) and the same inertia parameter I∗ and surface tension T∗, has a

growth rate −ık‡
xc† that is larger in magnitude. Thus, Squire’s theorem relates the stability

of a three-dimensional flow to a two-dimensional flow with lower Reynolds number and
higher wall elasticity and dissipation.

There is no equivalent of Squire’s theorem for the flow in a pipe with either rigid or
compliant walls.

For two-dimensional disturbances, the Orr–Sommerfeld equation is obtained by adding
(d/dy∗)× (2.8) and −ık∗

x× (2.9), and using the mass conservation equation (2.7) to express
ṽ†

x in terms of ṽ†
y :

ık∗
x (v̄

†
x − c†)

(
d2

dy∗2 − k∗2
x

)
ṽ†

x − ık∗
x ṽ

†
y

d2v̄†
x

dy∗2 = 1
Re

(
d2

dy∗2 − k∗2
x

)2

ṽ†
y . (6.10)

The Orr–Sommerfeld equation is usually expressed in terms of the stream function, but
here it is expressed in terms of the cross-stream velocity fluctuation so that it is easier to
apply the boundary conditions. An inviscid flow, where viscous effects are neglected, is
described by the Rayleigh equation:

(
d2

dy∗2 − k∗2
x

)
ṽ†

y − ṽ†
y

v̄† − c†
d2v̄†

dy∗2 = 0. (6.11)

The pressure is related to the velocity through x momentum equation (2.8) in which the
viscous term is neglected:

p̃† = (v̄† − c†)

ık∗
x

dṽ†
y

dy∗ − ṽ†
y

ık∗
x

dv̄†
x

dy∗ . (6.12)

At the compliant boundary, the pressure is related to the normal velocity ṽ† by (6.3).
Substituting for the pressure from (2.8) into (6.12), we obtain a relation between the normal
velocity and its derivative at the compliant boundary:

dṽ†
y

dy∗ = ṽ†
y

v̄
†
x − c†

dv̄†
x

dy∗ ∓ (E∗ − k∗2
x c†2I∗ − ık∗

x c†D∗ + T∗k∗2
x )ṽ

†
y

c†(v̄
†
x − c†)

, (6.13)

where the negative (positive) sign multiplies the second term on the right-hand side at the
upper (lower) boundary in figure 3(b).

The theorems derived here are applicable when the mean velocity at the wall is zero in
the base state when the surface is compliant, as shown in figure 1(b), or when the moving
boundary is rigid, as shown in figure 1(a) for the top moving surface. In the former case,
the mean velocity in (6.13) is equal to zero at the boundaries, while in the latter ṽ†

x and ṽ†
y

are both zero at the boundary. Therefore, (6.13) is simplified by setting the mean velocity
equal to zero in the following analysis.
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Stability and the transition to turbulence

If we multiply the Rayleigh equation (6.11) by ṽ†cc
y , the complex conjugate of ṽ†

y , and
integrate across the channel, we obtain

ṽ†cc
y

dṽ†
y

dy

∣∣∣∣∣
y∗=y∗

u

y∗=y∗
l

−
∫ y∗

u

y∗
l

dy∗
(

dṽ†
y

dy∗
dṽ†cc

y

dy∗ + ṽ†
y ṽ

†cc
y

v̄
†
x − c†

d2v̄†
x

dy∗2 + k∗2
x ṽ

†
y ṽ

†cc
y

)
= 0. (6.14)

Substituting the value of (dṽ†/dy∗) at the boundary from (6.13), and setting v̄x = 0 at the
boundaries, we obtain

− ṽ†
y ṽ

†cc
y

c†
dv̄†

x

dy∗

∣∣∣∣∣
y∗

u

y∗
l

+
∑
y∗

l ,y
∗
u

(E∗ + T∗k∗2
x − k∗2

x c†2I∗ − ık∗
x c†D∗)ṽ†

y ṽ
†cc
y

c†2

−
∫ y∗

u

y∗
l

dy∗
(

dṽ†
y

dy∗
dṽ†cc

y

dy∗ + ṽ†
y ṽ

†cc
y

v̄
†
x − c†

d2v̄†
x

dy∗2 + k∗2
x ṽ

†
y ṽ

†cc
y

)
= 0. (6.15)

The Rayleigh theorem is derived by multiplying (6.15) by c†, and taking the imaginary
part of the resulting equation, to obtain

− c†
I

∫ y∗
u

y∗
l

dy∗
⎛
⎝
∣∣∣∣∣dṽ

†
y

dy∗

∣∣∣∣∣
2

+ |ṽ†
y |2v̄†

x

|v̄†
x − c†|2

d2v̄†
x

dy∗2 + k∗2
x |ṽ†

y |2
⎞
⎠

−
∑
y∗

l ,y
∗
u

[
c†

I

(
(E∗ + T∗k∗2

x )

|c†|2 + I∗k∗2
x

)
+ k∗

x D∗
]

|ṽ†
y |2 = 0. (6.16)

The second term on the left-hand side in the above equation is negative for unstable modes
with c†

I > 0, because the term in the square bracket is positive. Therefore, unstable modes
with c†

I > 0 can exist only if the first term on the left-hand side is positive, that is, if
v̄†

x (d
2v̄†

x/dy∗2) is negative somewhere in the flow. This is the equivalent of the Rayleigh
theorem for the flow past a spring-backed plate. A corollary is that if v̄†

x (d
2v̄†

x/dy∗2) > 0
everywhere in the domain, then perturbations are neutrally stable (c†

I = 0) if D∗ is zero,
and stable (c†

I < 0) if D∗ is positive.
The Fjørtoft theorem is derived from the imaginary part of (6.15):

|ṽ†
y |2c†

I

|c†|2
dv̄†

y

dy∗

∣∣∣∣∣
y∗

u

y∗
l

− c†
I

∫ y∗
u

y∗
l

dy∗ |ṽ†
y |2

|v̄† − c†|2
d2v̄†

x

dy∗2

−
∑
y∗

l ,y
∗
u

c†
R

|c†|2
(

2c†
I (E

∗ + T∗k∗2
x )

|c†|2 + k∗
x D∗

)
|ṽ†

y |2 = 0. (6.17)

For a downstream/upstream travelling wave, c†
R ≷ 0, if the first term on the left-hand

side is negative/positive, an unstable mode with c†
I > 0 can exist only if (d2v̄†

x/dy∗2) ≶ 0
somewhere in the flow. This leads to a rather restrictive statement for the Fjørtoft theorem
in table 2.
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A bound on the real part of cR can be derived by defining the function g̃ = (ṽ†
y/(v̄

†
x −

c)). The Rayleigh equation (6.11) is be expressed in terms of g̃, multiplied by (v̄†
x − c†)

and simplified:
d

dy∗

(
(v̄†

x − c†)2
dg̃
dy∗

)
− k∗2

x (v̄
†
x − c†)2g̃ = 0. (6.18)

The boundary condition (6.13) can be expressed in terms of g̃:

dg̃
dy∗ = ±(E

∗ + T∗k∗2
x − k∗2

x c†2I∗ − ık∗
x c†D∗)g̃

c†2 . (6.19)

Equation (6.19) is is multiplied by g̃cc, the complex conjugate of g̃, and integrated over the
height of the channel to obtain

g̃ccc†2 dg̃
dy∗

∣∣∣∣
y∗=y∗

u

y∗=y∗
l

−
∫ y∗

u

y∗
l

dy∗(v̄†
x − c†)2

(
dg̃
dy∗

dg̃cc

dy∗ + k∗2
x g̃g̃cc

)
= 0. (6.20)

Here, the mean velocity is assumed to be zero at the boundaries. Substituting (6.19) for
(dg̃/dy∗) at the boundaries, we obtain

∑
y∗

l ,y
∗
u

(E∗ − k∗2
x c†2I∗ − ık∗

x c†D∗)|g̃|2 −
∫ y∗

u

y∗
l

dy∗(v̄†
x − c†)2

(∣∣∣∣ dg̃
dy∗

∣∣∣∣
2

+ k∗2
x |g̃|2

)
= 0.

(6.21)
The imaginary part of (6.21) is

2c†
I

∫ y∗
u

y∗
l

dy∗(v̄†
x − c†

R)

(∣∣∣∣ dg̃
dy∗

∣∣∣∣
2

+ k∗2
x |g̃|2

)
=
∑
y∗

l ,y
∗
u

c†
R(2k∗2

x c†
I I∗ + k∗

x D∗)|g̃|2. (6.22)

For unstable modes with c†
I > 0, the right-hand side of the above equation has the same

sign as c†
R. For c†

R > 0, the right-hand side is positive, and a necessary condition for the
existence of solutions is Max(v̄†

x ) > 0 and c†
R < Max(v̄†

x ). For c†
R < 0, the right-hand side

is negative, and a necessary condition for the existence of solutions is that Min(v̄†
x ) < 0

and c†
R > Min(v̄†

x ). From this, we obtain the condition in the seventh row of table 2, that
v̄

†
xL < c†

R < v̄
†
xU , where v̄†

xL = Min(Min(v̄†
x ), 0) and v̄†

xU = Max(Max(v̄†
x ), 0).

Equation (6.21) is multiplied by c†cc, the complex conjugate of c†, and the imaginary
part of the resulting equation is

− c†
I

∫ y∗
u

y∗
l

dy∗(|c†|2 − v̄†2
x )

(∣∣∣∣ dg̃
dy∗

∣∣∣∣
2

+ k∗2
x |g̃|2

)

=
∑
y∗

l ,y
∗
u

((E∗ + T∗k∗2
x )c

†
I + k∗2

x |c†|2c†
I I∗ + k∗

x |c†|2D∗)|g̃|2). (6.23)

The right-hand side of the above equation is positive for unstable modes with (c†
I > 0), and

therefore a necessary condition for the existence of such modes is that |c†|2 < Max(v̄†2
x ).

This provides the condition in the eighth row of table 2, that |c†|2 < Max(v̄†2
x ) somewhere

in the flow.
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Stability and the transition to turbulence

For a channel with compliant walls, the Rayleigh theorem requires that v̄†
x (d

2v̄†
x/dy∗2)

is negative somewhere in the flow; this is in contrast to the flow in a rigid channel where
(d2v̄†

x/dy∗2) passes through zero somewhere in the flow. Therefore, this is not an ‘inflection
point’ theorem. The parabolic flow in a channel could be unstable in the inviscid limit
because the curvature is negative, but the Couette flow is always stable. The Fjørtoft
theorem is much more restrictive in comparison with that for a rigid channel, since there
are constraints on the slope of the velocity profiles at the boundaries. The bounds on the
real part and the magnitude of the wave speed for unstable modes, and the Howard and
Høiland theorems (Yeo & Dowling 1987) are identical to those for the flow in a rigid
channel. These are useful, because the range of the wavenumber for unstable solutions is
restricted.

The equivalent of the classical theorems for the flow in a tube with spring-backed wall
are provided in table 2. The reader is referred to Shankar & Kumaran (2000) for the
derivation. The practical implications of these theorems are as follows. The parabolic
flow in a cylindrical tube is stable to axisymmetric disturbances, because (dG/dr∗) is
zero for a parabolic flow with n = 0. However, the parabolic flow could be unstable to
non-axisymmetric disturbances. The entrance flow in a tube and the flow in a converging
tube could be unstable to axisymmetric and non-axisymmetric disturbances, since these
have a lower curvature at the centre and higher gradients at the walls, resulting in a negative
value for (dG/dr∗). However, the flow in a diverging tube is always stable, because it turns
out that (dG/dr∗) is positive. Though these results are obtained only for a simple wall
model, subsequent studies show that the results appear to hold even when the calculations
are carried out for a viscoelastic continuum wall.

6.2. Internal critical layer
The limits for the magnitude, real and imaginary parts of the wave speed in the seventh
to tenth rows of table 2 significantly simplify the search for solutions for the growth
rates. However, these introduce a complication for neutral modes with c†

I = 0. From the
condition on the seventh row of table 2, the wave velocity is in the interval 0 ≤ c†

R ≤
Max(v̄x). In this case, the Rayleigh equation (6.11) becomes singular at the cross-stream
location y∗ = y∗

c where the flow velocity is equal to the wave velocity, v̄†
x = c†

R. It is
necessary to consider viscous effects in a ‘critical layer’ in the vicinity of the location
y∗ = y∗

c to resolve this singularity. Due to the condition v̄†
xL < c†

R < v̄
†
xU (seventh row in

table 2), there always exists an internal critical layer where viscous stress is significant,
and so the flow is destabilised by viscosity even in the limit of high Reynolds number, as
first suggested by Reynolds (1883).

The two solutions near the regular singular point can be determined using a Forbenius
expansion in ( y∗ − y∗

c):

ṽ
†
y1( y∗) = ( y∗ − y∗

c)P1( y∗ − y∗
c),

ṽ
†
y2( y∗) = P2( y∗ − y∗

c)+ ( y∗ − y∗
c) log ( y∗ − y∗

c)P1( y∗ − y∗
c).

}
(6.24)

The solution ṽ†
y2 has a term proportional to log ( y∗ − y∗

c), which is not only singular at
y∗ = y∗

c , but is also multi-valued near the critical point. If we consider log ( y∗ − y∗
c) =

log (|y∗ − y∗
c |) for y∗ > y∗

c , there are two possibilities log ( y∗ − y∗
c) = log (|y∗ − y∗

c |)± ıπ
for y∗ < y∗

c . To determine the correct solution, it is necessary to include the viscous terms
and solve the complete Orr–Sommerfeld equation in a thin region of thickness Re−1/3
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around the critical point, where viscous and inertial effects are comparable, as discussed
in chapter 4 of Drazin & Reid (1981). The matched asymptotic analysis was first carried
out in the classic works of Tollmien (1929) and Lin (1945), and it turns out that the correct
solution is log ( y∗ − y∗

c) = log (|y∗ − y∗
c |)− ıπ for y∗ < y∗

c , if (dv̄∗
x /dy∗) > 0 at y∗ = y∗

c .
Though the velocity eigenfunctions for these inviscid modes have the same mode

structure as the Tollmien–Schlichting modes in a rigid-walled channel, these are not, in
general, continuations of the Tollmien–Schlichting modes. For a rigid-walled channel,
the only velocity scale for the Tollmien–Schlichting mode is the flow velocity, and wave
speed of the Tollmien–Schlichting mode decreases to zero as the Reynolds number is
increased. In contrast, there is an additional velocity scale, the shear wave velocity of
the wall, in the flow through soft-walled conduits. Thus there are additional inviscid
modes with a critical layer in a soft-walled conduit, which are not continuations of the
rigid-wall Tollmien–Schlichting mode, but whose wave speed scales with the solid shear
wave velocity. These modes do become unstable in the high-Reynolds-number limit. Thus,
in addition to the modification of the rigid-wall Tollmien–Schlichting modes, there are
additional inviscid modes with or without a critical layer which could become unstable in
a compliant conduit.

6.3. Wall layer
At high Reynolds number, there are solutions of the linear stability equations where the
viscous stress is confined to a region of thickness Re−1/3 at the wall. When the distance
from the wall is small compared to the characteristic length, the fluid mean velocity can
be approximated as a linear profile:

v̄†
x = γ̇ †

wy∗, (6.25)

where γ̇ †
w is the strain rate at the wall for the mean flow scaled by (Vf /hf ). The scaled

wall coordinate is defined as yw = εy∗, where ε � 1. This is substituted into the mass and
streamwise momentum equations (2.7) and (2.8):

1
ε

dṽ†
y

dyw
+ ık∗

x ṽ
†
x = 0, (6.26)

ık∗
x (εγ̇

†
wyw − c†)ṽ†

x + ṽ†
y

dv̄†
x

dy∗ = −ık∗
x p̃† + 1

Reε2

(
d2

dy2
w

− ε2k∗2
x

)
ṽ†

x . (6.27)

The wall-layer velocities are defined as ṽwx = ṽ†
x and ṽwy = εṽ†

y for a balance between the
terms in the mass conservation equation (6.26). In the limit of high Reynolds number, there
is a balance between the inertial and viscous terms in the x momentum equation for ε =
Re−1/3, c† = Re−1/3cw and p̃† = Re−1/3p̃fw. Neglecting terms O(Re−1/3) and smaller, the
scaled x momentum equation is

ık∗
x (γ̇

†
wyw − cw)ṽwx + γ̇ †

w ṽwy = −ık∗
x p̃fw + d2ṽwx

dy2
w
. (6.28)

As is usual for boundary layer flows, the leading-order y momentum equation states that
the pressure gradient across the wall layer is zero:

dp̃fw

dyw
= 0. (6.29)
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Stability and the transition to turbulence

Fluid Solid

Quantity Wall layer Outer solution Quantity

ṽx Vf ṽwx Re−1/3Vf ṽwx ũx (Re1/3hf ṽwx)

ṽy Re−1/3Vf ṽwx Re−1/3Vf ṽwx ũy (Re1/3hf ṽwx)

p̃f Re−4/3ρf V2
f ṽwx Re−1/3ρf V2

f ṽwx p̃s (GRe1/3ṽwx)

σxy Re2/3(μf Vf /hf )ṽwx Re−1/3(μf Vf /hf )ṽwx σxy (GRe1/3ṽwx)

Table 3. The magnitude of the velocity and pressure in the wall layer and outer flow and the displacement and
pressure in the solid (right-hand column) relative to the tangential velocity in the wall layer for the wall mode
instability.

Equation (6.28) is differentiated with respect to yw, and the mass conservation equation
and zero pressure gradient condition (equations (6.26) and (6.29)) are used to obtain one
equation for ṽwx:

ık∗
x (γ̇

†
wyw − cw)

dṽwx

dyw
− d3ṽwx

dy3
w

= 0. (6.30)

The solution of (6.30) for ṽwx is the generalised Airy function, Ai((ık∗
x γ̇

†
w)

1/3( yw −
cw/γ̇

†
w), 1). There is a second linearly independent solution, Bi((ık∗

x γ̇
†
w)

1/3( yw −
cw/γ̇

†
w), 1), which diverges for yw  1, and the coefficient of this is set equal to zero

so that the solution decreases to zero for yw  1. For a rigid surface, the wave velocity
cw is determined from the no-slip condition ṽwx = 0 at yw = 0, and it is found (Corcos &
Sellars 1959; Gill 1965) that these modes are always stable.

The Airy function solution of (6.30) is not complete, because it does not satisfy the
zero normal velocity boundary condition at the surface. The inviscid part of the solution,
(ṽox, ṽoy, p̃fo), is obtained by solving the Rayleigh equation (6.11) with appropriate
boundary conditions at the upper wall of the channel or the centre of the tube. This
solution is designated the outer solution with subscript o. From the zero normal velocity
boundary condition, it is evident that ṽoy ∼ ṽwy ∼ Re−1/3ṽwx. From the mass conservation
equation, the streamwise and cross-stream velocity perturbations in the outer layer are of
equal magnitude, and the pressure scales as ρVf ṽox ∼ Re−1/3ρf Vf ṽwx, as shown in table 3.

The solid dynamics is governed by (3.39)–(3.42). The characteristic length scale for
the solid displacement field is the solid thickness, hs, and the displacement fluctuations
in the streamwise and cross-stream directions are of equal magnitude in an expansion in
Re−1/3. The viscous terms are neglected in an expansion in Re−1/3, since they are O(Re−1)
smaller than the inertial and elastic terms. For the stability calculation, it is necessary to
calculate the leading order and the O(Re−1/3) correction for the displacement field. The
displacement field is expressed as ũ∗

i = ũ(0)i + Re−1/3ũ(1)i . Similarly, the wave velocity is
expanded in a series cw = c(0)w + Re−1/3c(1)w .

The relative magnitudes of the fluid velocity and solid displacement fields are
determined by the matching conditions at the interface. The magnitudes of perturbations to
the outer flow velocity and solid pressure and the pressure and displacement, summarised
in table 3, are briefly explained here. The elastic stress in the solid and the viscous stress
in the fluid are balanced for G ∼ Re−1/3ρf V2

f or Re ∼ Σ3/5. The asymptotic analysis of
Kumaran (1998) revealed that the wall modes are always stable in this regime, but there
was an instability when one of these modes was numerically continued to lower values
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of elasticity. A modified asymptotic analysis where Re ∼ Σ3/4 revealed that the flow
could be unstable (Shankar & Kumaran 2001a, 2002). The magnitudes of the perturbation
quantities are shown in table 3, based on the assumption that the magnitude of the
velocity in the wall layer is Vf ṽwx. Here, the scaling between Σ and Re is determined
by balancing the pressure in the solid with the pressure in the outer flow in the fluid,
Re−1/3ρf V2

f ṽwx ∼ GRe1/3ṽwx, which reduced to Re ∼ Σ3/4.
Using the scalings in table 3, the leading order and the first correction to the normal

velocity condition at the interface (3.43a,b) are

0 = ũ(0)y and ṽwy + ṽoy = −ık∗
x (c

(0)
w ũ(1)y + c(1)w ũ(0)y ), (6.31a,b)

and the tangential velocity conditions at the interface (3.43a,b) are

ũ(0)y = 0 and ṽwx + γ̇ †
wũ(1)y = −ık∗

x c(0)w ũ(0)y . (6.32a,b)

The leading order and first correction to the normal stress balance, (3.44), are

− p̃(0)f = −p̃(0)s + 2
dũ(0)y

dY∗ and − p̃(1)f = −p̃(1)s + 2
dũ(1)y

dY∗ . (6.33a,b)

The leading order and first correction to the shear stress balance, (3.45), are

0 = dũ(0)x

dY∗ + ık∗
x ũ(0)y and

dṽwx

dy∗ = dũ(1)x

dY∗ + ık∗
x ũ(1)y . (6.34a,b)

The reasons for the above balances are as follows. The relation Re ∼ Σ3/4 was determined
from the condition that the normal stress in the solid and the pressure due to the outer flow
in the fluid are of equal magnitude. Using this scaling, it is easily verified from table 3 that
the shear stress in the wall layer, which is the dominant contribution to the fluid stress, is
O(Re−1/3) smaller than that in the solid. Therefore, the shear stress in the solid is set equal
to zero in the leading approximation in (6.34a,b), and the first correction to the shear stress
in the solid is set equal to the shear stress in the wall layer in the fluid. From table 3, it
is evident that the normal velocity in the fluid ṽy is Re−1/3 smaller than that in the solid,
kxcũy. Therefore, the normal displacement of the solid is set equal to zero in the leading
approximation in (6.31a,b), and the first correction to the displacement field is balanced
by the leading-order normal displacement in the fluid. The tangential velocity boundary
condition, (3.43a,b), is interesting, because the largest term turns out the be the change in
the fluid mean velocity due to the surface displacement, γ̇wũy. This is O(Re1/3) larger the x
velocity of the surface, cũy, because the wave speed c is Re−1/3 smaller than Vf . Similarly,
γ̇wũy is also O(Re1/3) larger than the fluid velocity perturbation at the interface.

Both the normal and tangential velocity conditions prescribe ũ(0)y = 0 at the interface,
and the leading-order tangential stress is zero from (6.34a,b). Thus, the gel dynamics in
the leading approximation is that of an elastic solid with zero normal displacement and
zero tangential stress prescribed at the interface. The perturbations are neutrally stable in
this leading approximation, since there is no dissipation included. Therefore, c(0)w is real,
and there are multiple solutions for c(0)w which are like the fundamental modes and
harmonics of a solid layer. The natural frequencies of these modes of oscillation are
−k∗

x c(0)w . In order to determine the stability of the system, it is necessary to calculate
the first correction to the wave speed c(1)w . The results of the analysis show that the
flow becomes unstable when the Reynolds number exceeds a critical value Rec, which is
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proportional toΣ3/4 (Kumaran 1998; Shankar & Kumaran 2001a, 2002). The mechanism
of destabilisation is the transfer of energy from the mean flow to the fluctuations due to
the shear work done at the interface.

6.4. Numerical linear stability analyses
The flow in a channel bounded by spring-backed walls, with configuration shown in
figure 1(b), was considered by Rotenberry (1992), Rotenberry & Saffman (1990), Davies
& Carpenter (1997a,b) and Larose & Grotberg (1997). In these studies, with the exception
of Larose & Grotberg (1997), the normal wall motion was described by a constitutive
relation similar to (3.1), while the tangential velocity was zero at the wall. The effect of
the compliant wall on the Tollmien–Schlichting instability was considered in Rotenberry
(1992), Rotenberry & Saffman (1990) and Davies & Carpenter (1997b), who found that
wall compliance has a stabilising effect which leads to transition delay. This conclusion
should be interpreted with care, because it is known that the transition in a rigid channel
is highly subcritical; even though linear stability analysis predicts that the transition
Reynolds number is about 5772, the transition is observed in experiments at a much lower
Reynolds number of about 1200 due to the highly subcritical nature of the transition. An
interesting result of Rotenberry & Saffman (1990) is that the bifurcations transform from
subcritical to supercritical as the wall compliance is increased. This result suggests that the
linear stability analysis may be more accurate for a compliant tube than for a rigid tube;
however, there does not appear to be further work on this issue.

The effect of wall compliance on the FISI was considered by Davies & Carpenter
(1997a). They found two types of instabilities, travelling wave flutter and static divergence,
which are also found in the boundary layer flow past a compliant wall (Carpenter &
Garrad 1985, 1986). The travelling wave flutter is associated with an internal critical
layer within the fluid which generated a phase shift between the normal velocity and
pressure at the wall, in a manner similar to that for the Tollmien–Schlichting instability.
It was shown by Huang (1998) that the flutter instability is adequately captured by an
inviscid analysis, if the phase shift in the normal velocity at the critical layer is included in
the analysis. The asymptotic analysis of the viscous critical layer, carried out by Gajjar
& Sibanda (1996), showed that while wall compliance was stabilising, dissipation in
the wall could have a destabilising effect on the travelling wave flutter. The asymptotic
basis of the static divergence has not been fully understood. Tangential wall motion was
included in the analysis of Larose & Grotberg (1997), using a model similar to (3.2),
who considered the channel configuration shown in figure 1(b) as a model for a collapsed
lung airway. The Reynolds number was lower than the critical Reynolds number for the
Tollmien–Schlichting mode. In addition to the travelling wave flutter, Larose & Grotberg
(1997) also reported a long-wave instability; the latter is present only when wall tangential
motion is included. They also found that the travelling wave flutter and the long-wave
instability could appear simultaneously, resulting in a codimension 2 bifurcation.

The stability of the pressure-driven flow in a channel with one wall made of a
massless tensioned membrane was studied by Stewart et al. (2010). In this case, the
membrane response was represented by an equation similar to (3.1) with zero inertia
and spring constant, and the tangential velocity of the fluid at the wall was set equal
to zero. Several modes of instability were identified, including the Tollmien–Schlichting
mode and the travelling wave flutter. The authors found that the downstream travelling
Tollmien–Schlichting mode has an asymptotic structure which is different from that in
a rigid channel. Stewart et al. (2009) considered a situation where only a finite section
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of one of the channel walls was made of a massless tensioned membrane, and found
global instabilities with characteristic mode shapes, even in situations where a local
stability analysis indicated that there is no absolute instability. In contrast, the study of
Kumaran & Srivatsan (1998) considered the configuration shown in figure 2(a) where
the flow is driven by moving walls. Here, analytic continuation was used to extend the
low-Reynolds-number viscous instability to higher Reynolds numbers. It was found that
as the Reynolds number is increased, the system first becomes unstable at a transition
Reynolds number, and then becomes stable again as the Reynolds number is increased.
The transition Reynolds number at the lower stability boundary increases proportional to
the square of the parameter ΣT = (ρf Thf /μ

2
f ) at low Reynolds number, where T is the

surface tension, while the upper boundary is a constant.
An issue that needs to be carefully considered in the flows bounded by spring-backed

plates and membranes is the pressure gradient and the shear stress acting at the wall, which
results in wall deformation even at steady state. In spring-backed plate walls, the pressure
gradient will result in the narrowing of the channel/tube with downstream distance, which
is typically not incorporated in the stability analysis. It is necessary to assume that this
narrowing is much smaller than the channel width. The shear stress exerted on the wall
results in a variation in the tension with downstream distance. It is necessary to assume
that the pretension is much larger than the variation in tension due to the shear stresses.
These difficulties do not exist in the case of an incompressible viscoelastic wall, where it is
shown in § 3.3.3 that the base state is steady and fully developed in which the displacement
field is independent of the streamwise coordinate.

The Couette flow past a viscoelastic surface, shown in figure 3(a), does not contain
an internal critical layer; here, the only possible mode of destabilisation is the wall
mode. The high-Reynolds-number flow was studied by Chokshi & Kumaran (2008b), who
identified the presence of the wall mode instability. That study included a weakly nonlinear
analysis, where the domains of subcritical and supercritical bifurcations were identified.
It was found that the instability is supercritical over most of parameter space, though
there are small domains where the instability is subcritical. This indicates that there is
a continuous transition in the flow past a compliant surface, in contrast to the flow through
rigid conduits where the transition is supercritical. Pierce (1992) conducted the initial
study of the Poiseuille flow in a channel bounded by viscoelastic walls of finite thickness
using variational principles. The linear wall model ((3.11) without the last term on the
right-hand side) was used, and the coupled equations for the wall displacement and fluid
velocity were solved. A Ginzburg–Landau equation was solved for the amplitude of the
interface perturbations. The boundary conditions do not appear to be complete, since only
the normal velocity and stress conditions are balanced at the interface. This was perhaps
the first theoretical study to suggest that the transition Reynolds number for a channel
with a viscoelastic wall is lower than that for a rigid channel, and the transition Reynolds
number decreases as the wall thickness increases. However, only the modification of the
rigid-wall instability due to wall compliance was considered.

The stability of the parabolic flow in a tube with an annular viscoelastic wall was
studied by Kumaran (1996) in the high-Reynolds-number limit for ‘regular inviscid’ modes
which do not contain a critical layer. The linear viscoelastic model was used for the
wall dynamics. The system was found to be neutrally stable in the inviscid approximation,
but the inclusion of viscous effects stabilised the perturbations. Shankar & Kumaran
(1999) carried out a similar study for a non-parabolic flow in the entrance section of a
tube or in a converging tube. In all cases, the ‘regular inviscid’ modes, which do not
contain a critical layer, are neutrally stable in the inviscid limit, but become stable due
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to viscous dissipation. However, ‘singular inviscid’ modes, which do contain a critical
layer, could become unstable if the Reynolds number is increased beyond a transition
value. In Shankar & Kumaran (2000), it was found that the parabolic flow is always stable
for axisymmetric modes, but it does become unstable to non-axisymmetric modes due to
the presence of a viscous critical layer within the flow. Non-axisymmetric modes with
meridional wavenumber n = 1 were the most unstable.

The studies of Kumaran (1996) and Shankar & Kumaran (1999, 2000) were carried
out using the linear elastic model for a solid with a linear strain measure ((3.11) without
the last nonlinear term on the right-hand side), which is not material frame invariant.
The stability for channel and pipe flows for the neo-Hookean model was analysed by
Gaurav (2009) and Gaurav & Shankar (2010). Both the singular inviscid modes with
scaling Ret ∝ Σ1/2 and the wall modes with scaling Ret ∝ Σ3/4 were identified in these
studies. The results for the linear and the neo-Hookean model were qualitatively similar for
the most unstable mode, but there were numerical differences in the transition Reynolds
number. The effect of different wall models on the stability has been compared by Patne
et al. (2017) and Patne & Shankar (2019a), who also find that the high-Reynolds-number
inviscid and wall modes exist for the neo-Hookean and the Mooney–Rivlin models. Thus,
the high-Reynolds-number instabilities are not sensitive to the wall model, though there
are quantitative differences in the transition Reynolds number for different wall models.
The reason for this is discussed at the end of § 3.3, where it is shown that the strain in
the base state in the solid decreases as an inverse power of the Reynolds number: Re−1

for the inviscid modes and Re−1/3 for the wall modes. If the terms multiplying the strain
in the base state are neglected, the linear model for the viscoelastic wall is obtained.

7. Non-Newtonian fluids

There have been a few studies which have considered viscoelastic fluids (Chokshi &
Kumaran 2007; Chokshi et al. 2015), where the Oldroyd B model is usually used, and the
stress tensor is written as the sum of a viscous part σv and an elastic part σ p. The elastic
stress is related to the second-order polymer ‘conformation tensor’ c, which represents
the dyadic product of the end-to-end vector of the polymer chains. The equation for the
conformation tensor is

Dc
Dt

= −c − ceq

λ
, (7.1)

where λ is the polymer relaxation time and the equilibrium conformation tensor ceq =
(kBT/H)I , where kB and T are the Boltzmann constant and absolute temperature, H is
the polymer ‘spring constant’ and I is the identity tensor. The upper convected derivative
(D/Dt) is the rate of change of the confirmation tensor in a coordinate system moving,
rotating and stretching with the fluid:

Dc
Dt

= ∂c
∂t

+ v · ∇c − c · ∇v − (∇v)T · c. (7.2)

The polymer contribution to the stress tensor is then calculated from the conformation
tensor:

σ p = μpH
λkBT

(c − ceq), (7.3)
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where μp is the polymer contribution to the viscosity. The total stress is written as the sum
of the polymeric and solvent stresses:

σ f = σ p + σ v, (7.4)

where σ v is the solvent stress described by Newton’s law of viscosity and μf is the solvent
viscosity. The ‘retardation’ parameter β, which is defined as (μf /μ) = (μf /(μf + μp)),
is a measure of the solvent contribution to the total stress.

There are two dimensionless parameters in the Oldroyd model: the Weissenberg number,
which is usually defined as We = (λVf /hf ), and the retardation parameter β. It should be
noted that the Weissenberg number is defined differently in Chokshi & Kumaran (2007)
and Chokshi et al. (2015) as (λG/μf ), but the standard definition in terms of the fluid strain
rate is used here. The upper convected Maxwell model is a simplification of the Oldroyd
model for β = 0. The Oldroyd model in (7.1)–(7.4) does not consider spatial variations in
the polymer concentration field and the flux of polymers due to concentration gradients
and stresses. A more detailed model, the ‘diffusive Oldroyd’ model (Chokshi & Kumaran
2007), has been used, which couples the polymer concentration and conformation fields
to the stress tensor.

Shankar & Kumar (2004) studied the stability of the Couette flow of a viscoelastic
fluid past a neo-Hookean surface in the configuration shown in figure 3(a). The upper
convected Maxwell model was used for the fluid, and the zero-Reynolds-number flow
was considered. Earlier work by Gorodtsov & Leonov (1967) showed that there are two
distinct modes for an upper convected Maxwell fluid in a channel with rigid walls which
are always stable. Shankar & Kumar (2004) found that one of the Gorodtsov–Leonov
modes does become unstable as the wall compliance is increased. However, viscoelasticity
has a stabilising effect on the instability due to a compliant wall, and there is a critical
Weissenberg number beyond which the flow is always stable.

The analysis was extended to the Oldroyd B model for a viscoelastic fluid by Chokshi
& Kumaran (2007). For relatively dilute polymeric solutions with retardation parameter
β > 0.5, the results were in agreement with those of Shankar & Kumar (2004) that an
instability could exist only when the Weissenberg number is below a maximum value.
However, for relatively concentrated solutions with β < 0.5, there could be an instability in
the viscous limit for any Weissenberg number, when the scaled velocity Γ = (Vfμf /Ghf )
exceeds a critical value. The weakly nonlinear analysis carried out by Chokshi & Kumaran
(2007) showed that the bifurcation is subcritical when there is no dissipation in the solid,
but it transforms into a supercritical bifurcation for (

√
μr/H) > 1. Here, μr and H are the

ratio of viscosities and thicknesses of the solid and fluid.
The high-Reynolds-number wall mode instability of the Couette flow of an Oldroyd

B fluid was examined in Chokshi et al. (2015). The transition Reynolds number was
found to scale as Ret ∝ Σ3/4, which is the same as that for a Newtonian fluid, but the
transition Reynolds number was found to be lower, by up to a factor of 10, in comparison
with a Newtonian fluid. Thus, it was found that viscoelasticity has a strong destabilising
effect on the wall mode instability. However, in a small region in parameter space for
very dilute polymers with β > 0.9 and when the solid thickness is less than the fluid
thickness, viscoelasticity had a stabilising effect. Thus, by a careful choice of parameters,
it is possible to stabilise or destabilise the flow. Numerical calculations also indicated the
presence of an inviscid instability with transition Reynolds number Ret ∝ Σ1/2 which
could be smaller than that for the wall mode at high Reynolds number. However, the
growth rate of this instability was found to be smaller than that of the wall mode instability
by a factor of 10−3, suggesting that these might be difficult to observe in experiments.
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The decrease in the transition Reynolds number due to viscoelasticity was observed in the
experiments of Srinivas & Kumaran (2017a) discussed in § 8.

The power-law and Bingham models are the other class of models used for
non-Newtonian fluids. The stress has the form

σ = σ y + κ(∇v)|∇v|n−1, (7.5)

where σ y is the yield stress and n is the power-law index. For the Bingham model, the
power-law index is 1 and κ is the fluid viscosity. For the power-law model, the yield stress
is zero. Patne & Shankar (2019b) studied the stability of the pressure-driven flow of a
Bingham fluid, where the stress is the sum of a yield stress and a viscous stress, through
a channel with compliant walls. This was different from the results for the same flow of
a Newtonian fluid (Gaurav & Shankar 2010; Patne et al. 2017), where no instability was
found. There is an unyielded region at the centre of the channel in a Bingham fluid which is
not present for a Newtonian fluid, and the authors suggested that the unyielded region acts
as a moving upper wall for the flowing region, in a manner similar to that for the Couette
flow in a channel. This resulted in a finite-wavelength instability similar to that observed
for the Couette flow in a channel in the viscous limit (Kumaran et al. 1994; Chokshi &
Kumaran 2008a).

The stability of wall modes at high Reynolds number in the Couette flow of a power-law
fluid past a compliant surface was studied by Giribabu & Shankar (2017). The authors
carried out high-Reynolds-number asymptotic and numerical studies. The asymptotic
analysis showed that the thickness of the viscous wall layer scales as Re−n/(2n+1) times the
channel width; this reduced to the scaling Re−1/3 for a Newtonian fluid with n = 1. The
transition Reynolds number scales as Ret ∝ Σ(2n+1)/2(n+1). The numerical results were in
agreement with the asymptotic analysis when the power-law index was greater than 0.3,
but the scaling of the transition Reynolds number was closer to that for the inviscid modes,
Ret ∝ Σ1/2, for power-law index less than 0.3.

8. Experimental studies

In most experimental studies, the soft walls for channels/tubes have been fabricated using
two materials, polyacrylamide and polydimethylsiloxane (PDMS) gels. Polyacrylamide
gels are used in gel electrophoresis for separation of biological molecules based on their
electrophoretic mobility. These are transparent hydrophilic materials which consist of
a three-dimensional cross-linked polymer network swollen with water. The acrylamide
molecules are cross-linked by methylene bisacrylamide cross-linker, and ammonium
persulphate and tetramethylene diamine act as initiator and terminator for the chain
reaction. The cross-linking of the acrylamide monomers takes place at room temperature
in a few hours. The cross-link density and the elasticity modulus are varied by changing
the proportions of the different constituents, and shear elasticity modulus can be varied in
the range 1 kPa to 0.5 MPa. The bulk elasticity modulus is 10–50 times the shear modulus.
The channels/tubes are made by template-assisted fabrication, where a rod or a slide made
of a hard material like glass is used as the template. A container is fabricated in the shape
of the outer surface of the channel wall, and the template is held in position at the centre of
the container. The pre-gelation mixture is poured into the container, and the cross-linking
takes place at room temperature. After the gelation is complete, the template is withdrawn,
resulting in a conduit of rectangular or circular cross-section within the gel block. The
characteristic dimension of the conduit has to be 0.5 mm or more, since a feature of size
of less than 0.5 mm may not retain its integrity.
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Figure 7. Steps in a typical fabrication procedure for a microchannel in PDMS using soft lithography.

A PDMS gel is a silicone-based gel which is used in microfluidics and lab-on-a-chip
applications. This gel is also transparent, but it is hydrophobic and is not wetted by water.
The monomer is dimethylsiloxane with dimethylvinyl termination, and the cross-linker
is usually a dimethylhydrogensiloxane. A catalyst, chlorplatinic acid which is a platinum
complex, and an elevated temperature of about 60–80 ◦C are required for the cross-linking
reaction. Polydimethylsiloxane is used for template-assisted fabrication, but is especially
suitable for soft lithography, where a pattern is transferred from a hard substrate to a
soft gel. The steps used in a typical process for fabricating microchannels is shown in
figure 7. Usually, the negative of the desired channel is patterned on a silicon wafer using
a photoresist such as SU-8. The photoresist of the desired thickness is spin-coated on to
a silicon wafer. This is exposed to light in the patterned regions, where the photoresist
is chemically modified usually by cross-linking. The non-exposed regions are washed off
using a developer, resulting in a photoresist pattern on the wafer in the exposed regions.
The PDMS pre-gelation mixture is poured onto the wafer, and the PDMS is cross-linked
in an oven. The PDMS stamp is then peeled off the silicon wafer, containing the channel
features as indentations in the PDMS block. This is then closed, usually with a glass
plate or another PDMS layer, using a process called plasma bonding. Here, the PDMS is
treated with oxygen plasma, which exposes silanol groups on the surface. When contacted
with a glass or another PDMS layer similarly exposed, the formation of Si–O–Si bonds
between the two layers results in strong adhesion and a leak-proof channel. The procedure
for PDMS fabrication is more complicated than that for polyacrylamide fabrication. The
minimum elasticity modulus of about 10 kPa is higher than that for polyacrylamide. The
important advantage of PDMS is that the minimum feature size that can be transferred to
a PDMS surface is of the order of micrometres, and so it is possible to fabricate features
of very small dimensions.
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Figure 8. (a) Schematic, not to scale, of the experimental set-up of Krindel & Silberberg (1979) and (b) figure
6 of Krindel & Silberberg (1979) showing the scaled flow rate (Q/Q0) as a function of the Reynolds number.
Here, Q is the flow rate in the experiments and Q0 is the flow rate for a laminar flow for the same conduit
geometry and pressure drop. The horizontal axis in (b), log10(Re), varies from 101.4 to 103.6. In (b), line (2)
for the rigid tube exhibits a discontinuous transition and line (3) is for the gel-walled tube that has a lower flow
rate in comparison to the rigid tube for the same Reynolds number. Panel (b) reprinted with permission from
Krindel & Silberberg (1979).

The pioneering experiments on the effect of wall compliance on the transition in a tube
were performed by Lahav et al. (1973) and Krindel & Silberberg (1979). The tube was a
cylindrical bore of diameter about 0.15 mm at the centre of a cylinder of polyacrylamide
gel of length 5 cm and diameter 2.6 or 9 mm. A cylindrical cavity of diameter 2.6 or
9 mm was drilled into a rigid Perspex block, the pre-gelation reaction mixture was poured
into the block, a hypodermic needle of 30 gauge was inserted into the centre and the ends
were closed. After completion of the cross-linking, the needle at the centre of the tube was
withdrawn, leaving a cylindrical bore at the centre. The ends of the tube were connected
to the fluid inlet and outlet, and the pressures at the inlet and outlet were measured using
pressure transducers. The authors measured the flow rate Q as a function of the pressure
drop Δp across the tube. When a pressure difference is applied across the ends, there is
a variation in the tube diameter, and this variation was measured using imaging under
a microscope. A provision was made to insert a dye stream at the centre of the tube,
and examine the flow of the dye under a microscope. A schematic, not to scale, of the
experimental set-up depicting a tubular bore inside a cylindrical gel block is shown in
figure 8(a).

The scaled flow rate was defined as (Q/Q0), the ratio of the actual flow rate and
the flow rate expected for a Hagen–Poiseuille flow for the same pressure drop, Q0 =
(πΔp/(8μf Lt〈R−4〉)), and the Reynolds number was based on the flow rate and tube
radius, Re = (2ρf Q/πμf )〈R−1〉). Here, Lt is the length of the tube, Δp is the pressure
difference between the ends, R is the local tube radius and 〈R−n〉 is the average of R−n

carried out over the length of the tube. The scaled flow rate (Q/Q0) is 1 for a laminar flow
with a parabolic velocity profile and is less than 1 for a turbulent flow. An example of the
result is shown in figure 8(b), where (Q/Q0) is plotted as a function of log (Re). The filled
symbols are the results for a rigid tube and the open symbols are the results for gel-walled
tubes with two different shear elastic moduli. The dashed line (1) is the scaled flow rate
for the laminar flow, which differs from 1 because the pressure has been adjusted for the
kinetic energy of the flow. The authors report a transition at a Reynolds number of 700 for
the rigid tube, where the flow rate decreases discontinuously at a fixed pressure drop, as
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shown by line (2) in figure 8(b). For the flow through the gel-walled tube, the scaled flow
rate is significantly lower than that for a rigid tube, and it decreases continuously. Based on
visualisation of the dye stream introduced at the centre of the channel, the authors reported
that there was a transition to turbulence at a Reynolds number of 570 when the elasticity
modulus of the gel wall was 320 Pa and about 870 when the elasticity modulus of the gel
wall was 1200 Pa. However, the scaled flow rate decreased below 1 at a lower Reynolds
number for both the shear moduli; the authors interpreted this to mean that the flow rate
near the wall was turbulent even when the flow rate at the centre containing the dye stream
was laminar.

The experiments of Krindel & Silberberg (1979) have been criticised for many reasons.
The transition Reynolds number of 700 for a rigid tube reported by them is much lower
than the commonly accepted transition Reynolds number of 2100. The computational study
of Yang et al. (2000) indicated that the decrease in the scaled flow rate can be explained on
the basis of the tube deformation, without having to postulate a decrease in the transition
Reynolds number. Nevertheless, Lahav et al. (1973) and Krindel & Silberberg (1979) were
the first to suggest that the transition in a compliant tube could take place at a lower
Reynolds number than that in a rigid tube, and that the transition was induced by wall
oscillations.

8.1. Low-Reynolds-number transition
Experiments on the Couette flow past a compliant surface in the low-Reynolds-number
limit have been carried out, but there have not been any experiments on pressure-driven
flow. This is because soft deformable materials are unlikely to be able to withstand
the pressure difference and the shear stress required to drive a viscous fluid through a
channel/tube at low Reynolds number. For a low-Reynolds-number flow, the viscous stress
in the fluid and the elastic stress in the solid are comparable for (ρf Vhf /μf ) � 1 and
(Vμf /Ghf ) ∼ 1, where V is the characteristic velocity and hf is the characteristic length
scale in the fluid. This implies that the velocity-independent parameter (ρf Gh2

f /μ
2
f ) � 1.

The minimum elasticity modulus for soft materials such as polymer gels is ∼103 Pa and
the density of most liquids is approximately 103 kg m−3. If we consider a characteristic
dimension of 1 mm, (ρf Gh2

f /μ
2
f ) < 1 for very viscous fluids with viscosity ∼1 kg m−1 s−1

(about 103 times the viscosity of water). The pressure gradient required to drive the flow
scales as (μf V/h2

f ), which is ∼(G/hf ), if we assume the scaled velocity (Vμf /Ghf ) is 1.
Thus, the pressure difference across the length L of the tube is (GL/hf ), and the pressure
at the inlet of the tube is larger, by approximately the ratio of the tube length and diameter,
than the elasticity modulus of the tube.

In the linear stability analyses, it is assumed that the wall of the tube is made of
an incompressible material. Real elastic materials are compressible, though their bulk
modulus is much larger than their shear elasticity modulus. For example, Srinivas &
Kumaran (2017b) report that the bulk modulus of polyacrylamide gel is 10–50 times
the shear modulus. Therefore, for the flow in a channel/tube with length 10 times the
tube diameter/channel width or greater, the gel wall cannot be considered incompressible.
Moreover, the failure stress for polymer gels is 2–5 times the elasticity modulus, and so
material failure is likely to result if the channel/tube length is 10 or more times the tube
diameter/channel height. Due to these constraints, experiments in pressure-driven fully
developed flows are difficult to accomplish at low Reynolds number. The development of
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Figure 9. Schematic of (a) a rheometer showing the base, the rotor and the fluid and (b) a modified rheometer
with a gel slab placed on the base, and the fluid above the gel slab.

the equivalent of superelastic materials that are highly deformable and have high failure
stress is necessary to study the viscous instability in pressure-driven channel/tube flows.

The experiments on the Couette flow past a compliant surface have used one standard
experimental set-up, which is a modification of the commercially available rheometer,
shown in figure 9(a). The fluid layer is placed on the static base, and the top plate attached
to a rotor is lowered on to the fluid layer. The diameter of the top plate is in the range
2–4 cm and the fluid layer thickness is in the range 0.3–1 mm. For the measurement of
the viscosity of a Newtonian fluid, a constant torque is then applied on the rotor in the
stress-controlled mode of measurement, and the angular velocity is measured. The stress
and strain rate at the outer edge of the rheometer are calculated assuming that the flow is
laminar, and the fluid viscosity is the ratio of the stress and the strain rate.

For the experiments on the viscous instability in the flow past a gel, a slab of gel is
placed on the base. The fluid layer is placed on the gel slab, and the top plate is lowered on
to the fluid, as shown in figure 9(b). The thickness of the gel slab is in the range 1–5 mm
and so the gel thickness is usually larger than the fluid thickness. The first experiments
on the viscous flow past a gel surface were carried out by Kumaran & Muralikrishnan
(2000) and Muralikrishnan & Kumaran (2002), followed by Eggert & Kumar (2004) on
the dynamics after transition and Neelamegam, Giribabu & Shankar (2014) on single-layer
and two-layer polymer gels. The compliant surface was a polyacrylamide gel slab with
shear modulus in the range 1–4 kPa and the fluid was silicone oil with viscosity about
1 kg m−1 s−1. Since silicone oil is hydrophobic, it is not miscible with acrylamide, and
so there is no swelling of the gel due to contact with the fluid. The fluid layer thickness
was varied in the range 0.3–1 mm and the thickness of the gel slab was about 4.5 mm. A
schematic of the measurement is shown in figure 10(a), where the viscosity (ratio of stress
and strain rate) is plotted as a function of the strain rate. For a Newtonian fluid between
two rigid plates, the blue curve shows that the viscosity remains a constant as the stress
or the strain rate is increased. There is usually some variation at low strain rate due to
instrument resolution limitations.

For the flow of the same fluid over a gel slab, the viscosity reported by the rheometer
software is a constant up to a critical value, after which it starts to increase dramatically,
as shown by the red line in figure 9(b). If a stress ramp is applied in the stress-controlled
mode, the strain rate decreases as the viscosity reported by the rheometer software
increases. It the experiment is stopped after the viscosity increases to very large values,
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Figure 10. (a) The variation of viscosity with strain rate for a stress ramp over a rigid surface (blue line) and
a gel surface (red line) and (b) the scaled critical strain rate Γ = (μf γ̇c/G) as a function of (H/R) for gels
with different thicknesses and elasticity moduli, where γ̇c is the critical strain rate. The solid and dashed lines
in (b) are the theoretical predictions for elasticity moduli 1 and 4 kPa, respectively. Panel (b) reprinted with
permission from Kumaran & Muralikrishnan (2000).

damage is observed on the surface of the gel. However, if the experiment is stopped before
the viscosity increases significantly, there is no damage on the surface. If the experiment
is started again and the shear stress is ramped up from zero, the dramatic increase in the
viscosity is again observed at the same strain rate.

Recall that the rheometer software determines the viscosity from the stress and strain
rate at the outer edge of the top plate assuming the flow is laminar. If there is a transition
from a laminar flow to a more complicated flow profile with higher dissipation, it is
expected that the viscosity reported by the rheometer will be higher than the material
viscosity of the fluid. Thus, the sharp increase in the viscosity at a critical value of the
strain rate is indicative of a transition from a laminar flow to a more complicated flow
profile. This is compared with the theoretical prediction for the viscous instability of the
Couette flow past a compliant surface. Here, the assumption is that the flow near the outer
edge of the top plate, of diameter 2–4 cm, is similar to a Couette flow because the gap
thickness, 0.3–1 mm, is much smaller than the plate radius.

The critical strain rate was found to be in good quantitative agreement with the
theoretical predictions for the viscous instability in Kumaran & Muralikrishnan (2000)
and Neelamegam et al. (2014). A comparison of the experimental result of Kumaran &
Muralikrishnan (2000) with the theoretical prediction of Kumaran et al. (1994) is shown
in figure 10(b). Here, the scaled critical strain rate Γ is shown as a function of the ratio
of the gel and fluid thickness H for gels with different shear moduli in the range 1–4 kPa.
There is quantitative agreement with no adjustable parameters. Neelamegam et al. (2014)
also examined the flow past a two-layered gel, consisting of two layers with two different
shear moduli G1 and G2, and with two different thicknesses. Transition was observed in
the two-layer gel as well, and the strain rate was found to be in quantitative agreement with
the predictions of the linear stability analysis for a viscous flow. The authors defined an
effective shear modulus for the two-layered gel which was correlated to the strain rate for
transition.

Though the study of Kumaran & Muralikrishnan (2000) and Muralikrishnan &
Kumaran (2002) established that there is an instability at a critical strain rate, the
nature of the flow after transition was not explored. Eggert & Kumar (2004) carried
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Figure 11. The variation of the apparent viscosity with time when the stress is increased just above the critical
stress and held constant (a), and the stress is increased and then decreased at different rates (b). Reprinted with
permission from Eggert & Kumar (2004).

out a series of experiments in order to examine the nature of the flow after transition.
The rheometer set-up was as shown in figure 9, and the fluid used was polypropylene
oxide which is immiscible with the polyacrylamide gel. For a constant stress ramp, these
experiments confirmed the transition in the viscosity–strain rate graphs of the kind shown
in figure 10(a). The authors also programmed the rheometer to ramp the stress at a constant
rate to a value just above the transition value, and then hold the stress constant. The
important observation by the authors, shown in figure 11(a), is that above the transition
stress, even if the stress is held constant, there are periodic oscillations. A steady state with
a constant stress value was not observed after transition. The period of the oscillations,
which was in the range 10–20 s, was much larger than the period of rotation of the
rheometer top plate (∼1 s), the inverse of the fluid strain rate (∼4 ms) or the ratio of
the viscosity and the elasticity modulus (μf /G) ∼ 0.5s. Thus, the post-transition flow was
found to have a definite period much larger than the intrinsic or imposed time scales. The
other important feature observed by Eggert & Kumar (2004) was the presence of hysteresis
in the apparent viscosity–strain rate curves, as shown in figure 11(b). In these experiments,
the stress is ramped up at a constant rate until the viscosity reaches a preset value, and
then the stress is decreased at the same rate. The apparent viscosity–strain rate curves
for stress ramps at different rates are shown by the different symbols. When the stress is
increased at a constant rate, the apparent viscosity traverses the same curve independent
of the rate at which stress is ramped up. When the stress is decreased, the trajectory of the
apparent viscosity does depend on the stress ramp rate, and there was variation between
different experimental runs. Another important observation was that even when the stress
is decreased below its transition value, oscillations are observed in the viscosity; these
are absent when the stress is increased. This indicates that the transition is subcritical
and there could be bistable states close to transition. The flow after transition is complex,
and is not just a non-viscometric steady flow, of the type observed in the Taylor–Couette
or Rayleigh–Bénard instabilities. The flow is complex and time-dependent, and is likely
sensitive to small variations in experimental conditions. However, the subcritical nature
of the transition observed in Eggert & Kumar (2004) is in agreement with the predictions
of the weakly nonlinear stability analysis of Shankar & Kumaran (2001b) and Chokshi &
Kumaran (2008a).
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8.2. High-Reynolds-number transition
Transition occurs at a Reynolds number of about 2100 in a rigid tube and at about 1000 in
a two-dimensional channel of infinite extent in the spanwise direction. An instability in a
conduit due to compliant walls will be detected in experiments only if it occurs at a lower
Reynolds number in comparison with that for a rigid conduit. This requirement places
restrictions on the dimensions of the conduit and the flow velocity required for observing
the transition in experiments. For the high-Reynolds-number inviscid modes, it is shown in
§ 6 that there is a balance between the inertial stress in the fluid and the elastic stress in the
wall for ρf V2

f /G ∼ 1, and the velocity required to observe the predicted transition scales
as (G/ρf )

1/2. The minimum elasticity modulus that can be attained in soft polymer gels
is approximately 1 kPa, and the density of most materials is ∼103 kg m−3, and therefore
the minimum velocity required for observing the instability is 1 m s−1. For this average
flow velocity, the Reynolds number (ρf Vf hf /μf ) is below 1000 only for hf <1 mm if we
consider a fluid such as water with ρf ∼ 103 kg m−3 and μf ∼ 10−3 kg m−1 s−1. It is
necessary to carry out experiments in conduits with dimensions 1 mm or less with soft
walls, and generate a flow velocity of the order of 1 m s−1. Similarly, for the wall mode
instability, it is shown in § 6.3 that the transition Reynolds number scales as Ret ∼ Σ3/4

and it is necessary to design experiments such that Σ3/4 = (ρf Gh2
f /μ

2
f )

3/4 < 1000. If we
again consider water flowing through a conduit with soft gel walls of elasticity modulus
103 Pa, the characteristic length hf � 10−4 m, and the velocity is approximately 1 m s−1.
Therefore, the instabilities can be observed in practice only for channels and tubes of
characteristic length 100 μm–1 mm, and with relatively large velocity of the order of
1 m s−1.

Wall deformation is an important issue in experiments on soft-walled conduits. In
theoretical studies, a planar channel with parallel walls or a cylindrical tube is considered,
the wall material is considered to be incompressible and the flow and solid displacement
field are considered to be steady and fully developed. Due to this, wall deformation
due to the streamwise variations in pressure is always present in experiments. While
it is not possible to avoid wall deformation, the theoretical analysis could be modified
to incorporate wall deformation. One procedure that has been used is to measure the
dimensions for the deformed wall, and then compute the laminar velocity profile for the
deformed shape of the channel or tube. This can then be used in the linear stability analysis
to estimate the transition Reynolds number. In pressure-driven flows, the wall deformation
does depend on the specific configuration and, more importantly, on the length of the
conduit. Therefore, it is not possible to directly compare the experimental results with
theoretical predictions for the steady fully developed base state in a rectangular channel or
a cylindrical tube. The stability analysis has to be carried out for the laminar flow profile
for the specific deformed geometry of the channel/tube.

Even in a deformed channel/tube, the shear strain in the wall is small. If we consider a
flow with velocity 1 m s−1 in a channel/tube with characteristic dimension 0.1–1 mm,
the viscous stress at the wall is 1–10 Pa for a fluid such as water with viscosity
10−3 kg m−1 s−1. If the elasticity modulus of the wall material is 1–10 kPa, the shear strain
in the material is 10−3–10−2. The small magnitude of the strain in the material has two
implications. The first is that it will be very difficult to observe the surface displacement
in experiments. Even if we consider a gel wall with a rather large thickness of 5 mm, the
wall displacement due to the strain will be of the order of 5–50 μm. The fluctuations in the
wall displacement, which could be even smaller in magnitude, will be close to the optical
resolution. The second implication is that the linear model for the stress–strain relationship
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in the solid would be a good approximation for high-Reynolds-number flows, and it may
not be necessary to use more sophisticated frame-invariant models.

Though the shear strain is small, the compressional strain is not necessarily small in
pressure-driven flows at high Reynolds number. The ratio of the pressure and wall shear
stress scales as the ratio of the length to the exit and the channel tube/diameter. The ratio
of the length and diameter could be in the range 102–103 in the tube flow experiments
described in § 8.2.1, where the tube diameter is approximately 1 mm and the length is
about 10 cm, while in the channel flow experiments discussed in § 8.2.2, the channel height
is 100–160 μm and the channel length is 3 cm. In these cases, the pressure at the entrance
is 102–103 times the wall shear stress. Even if the compression modulus is 10 times the
shear modulus, the compressional strain is larger than the shear strain by a factor 10–102.
Using the estimate 10−3–10−2 for the shear strain calculated in the preceding paragraph,
the compressional strain could be in the range 10−2–1. Thus, compressional deformation
perpendicular to the wall is expected to be much larger than the shear deformation along
the wall. Though the compressional deformation is large, the slope of the wall α is still
small in the experiments. The displacement perpendicular to the surface is the product of
the compressional strain and the wall thickness, and the slope of the wall is the ratio of
the displacement and the length of the channel/tube. Thus, the wall slope is compressional
strain times the ratio of the wall thickness and length of the tube/channel, which is small
in the experiments conducted so far.

The other important parameter is the characteristic frequency for the wall dynamics. For
a flow dominated by inertia, the frequency scales as (G/ρf h2

f )
1/2; for a viscous-dominated

flow, the frequency scales as (G/μf ). Considering the lower bound of G = 1 kPa and
the viscosity and density of water, the frequency for a flow dominated by viscosity is
106 s−1, while that for an inertia-dominated flow is 103 s−1 if we consider a channel/tube
of characteristic dimension 1 mm. Wall motion with amplitude of the order of a few
micrometres and frequency in the range 103–106 Hz is experimentally very difficult to
detect.

Another issue of importance is the flow conditioning and accurate flow characterisation
at the entrance to the channel/tube. In experimental studies on transition in rigid
tubes/channels, great care is taken to ensure that the flow at the entrance is laminar
and that there are no disturbances. The development length for a fully developed flow
is ∼0.06Re times the tube diameter/channel height, and in experiments such as those of
Patel & Head (1969), the entrance length is hundreds of times the pipe diameter. The
requirements on the uniformity of the surface of the pipe/channel are also stringent – in
the experiments of Darbyshire & Mullin (1995), the variations in the diameter of a 20 mm
pipe were controlled at ±0.01 mm. Such careful control is not possible in millimetre-sized
tubes and channels made with flexible materials, but it is essential to ensure that there
are no disturbances at the inlet to the soft conduit. For this purpose, there is usually a
‘development section’ upstream of the test section which is made of hard non-deformable
material. This development section has to be of sufficient length that there is a fully
developed flow at the entrance to the test section, and the disturbances introduced by
the upstream flow manifold are damped out. It is also essential for there to be seamless
bonding between the development and test sections, so that irregularities at the joint do
not generate disturbances. In Verma & Kumaran (2012, 2013) and Neelamegam & Shankar
(2015), for example, the development and test sections are made of the same gel, but with
different catalyst concentrations, so that the gel in the development section is rigid with a
shear modulus of about 0.5 MPa, while that in the test section has a shear modulus in the
range 17–55 kPa.
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8.2.1. Tube flow
Verma & Kumaran (2012), Neelamegam & Shankar (2015) and Chandra, Shankar & Das
(2019) carried out experiments on soft-walled tubes fabricated using the template-assisted
method with slender glass rods as the template. The walls of the tubes were made of PDMS
having shear modulus in the range 17.5–86.4 kPa in all the studies, and the tube diameter
was 0.8–1.2 mm in the case of Verma & Kumaran (2012), about 1.65 mm in Neelamegam
& Shankar (2015) and about 0.4 mm in Chandra et al. (2019). Upstream of the test section
was a development section of the same cross-section and length made of ‘hard’ PDMS
with shear modulus 0.5 MPa. Transition was detected using different methods. Verma
& Kumaran (2012) and Neelamegam & Shankar (2015) detected transition using the
dye-stream method, where a stream of dye was injected at the inlet of the development
section, and transition was detected from the break-up of the dye stream. The friction
factor method was also used by Verma & Kumaran (2012) and Neelamegam & Shankar
(2015), where the the pressure drop across the test section was measured with a pressure
transducer. The Fanning friction factor f for pipe flow is expressed in terms of the flow
rate as

f = π2d5

32Q2ρf

Δp
L
, (8.1)

where d is the tube diameter, Q is the flow rate, Δp is the pressure difference across
the test section and L is the length of the test section. The Reynolds number based on
the average velocity and tube diameter, when expressed in terms of the flow rate, is
Re = (4ρf Q/πdμf ). The friction factor is (16/Re) for a laminar flow, and transition is
detected when the friction factor departs from (16/Re). For a tube that deforms due to the
pressure gradient, it is appropriate to use 〈d5〉 instead of d5 in (8.1), and 〈d〉 instead of
d in the definition of the Reynolds number, where 〈d〉 is the diameter averaged over the
streamwise coordinate. Verma & Kumaran (2012) also attempted to detect wall oscillations
by directing a He–Ne laser at the interface between the fluid and the wall, and measuring
the intensity of the scattered light as a function of time. The root mean square of the
temporal fluctuations in the scattered light intensity was used to detect the onset of wall
oscillations. Chandra et al. (2019) measured the ratio of the maximum and mean velocity
of the tube, which is 2 for a laminar flow and decreases below 2 for a turbulent flow.
Chandra et al. (2019) also measured the ratio of the root mean square of the velocity
fluctuations at the onset of turbulence.

These studies reached the same broad conclusions: there is a transition at a Reynolds
number as low as 500 for the tubes with the lowest shear modulus in the studies of Verma
& Kumaran (2012) and Neelamegam & Shankar (2015) and as low as 250 in the study
of Chandra et al. (2019) with a smaller tube diameter. However, there were differences
in the detail which indicate that the origins of the instability may not be the same. An
example of the dye-stream visualisation of the flow through a tube of diameter 1.2 mm
in a polymer gel of shear modulus 17 kPa from the study of Verma & Kumaran (2012)
is shown in figure 12. The images of the flow of the dye stream in the tube are shown at
different downstream locations – the location of the joint between the development and
test section is L = 0, the development section is on the left-hand side and the test section
is on the right-hand side. It is observed that even at a Reynolds number of 1000, there is
break-up of the dye stream in the downstream section of the tube, though the dye stream
near the entrance of the test section is intact. As the Reynolds number increases, there is
upstream progression of the break-up of the dye-stream. This is in contrast to the flow in
a rigid tube, where the transition occurs at a Reynolds number of about 2100. Figure 12
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Figure 12. Images at different downstream locations of the flow in a gel-walled tube of diameter 1.2 mm in
the undeformed state made of PDMS of shear modulus 17.5 kPa in the test section (right of L = 0) and 83 kPa
in the development section (left of L = 0). (a) Reynolds number of 1000 and (b) Reynolds number of 1030.
Reprinted with permission from Verma & Kumaran (2012).

also shows that there is substantial deformation of the tube in the test section. There is a
significant expansion just downstream of the start of the test section, and then a decrease
in the tube diameter with downstream distance. The diameter of the tube was measured at
different downstream locations in the experiments, and these were used to determine the
length-averaged functions of the diameter used in the friction factor (equation (8.1)) and
Reynolds number.

The early transition is also observed in figure 13, where the friction factor is shown as a
function of the Reynolds number. The black line is the result for a rigid tube, in which both
the development and test sections have elasticity modulus 83 kPa. Here, the friction factor
departs from the (16/Re) line at the rigid-tube transition Reynolds number of 2100. As the
elasticity modulus is decreased, the transition Reynolds number decreases monotonically,
and it has a minimum of about 900 for a tube of diameter 1.2 mm with a wall of modulus
17 kPa and about 500 for a tube of diameter 0.8 mm with a wall of modulus 17 kPa.
The nature of the friction factor curves is also qualitatively different for the transition in a
gel-walled tube. Whereas there is a discontinuity in the friction factor for the flow through a
rigid tube at a Reynolds number of 2100, the transition is continuous for a gel-walled tube.
Moreover, the friction factor exhibits an increase with Reynolds number for a gel-walled
tube, in contrast to the monotonic decrease in the friction factor for a rigid tube.

In order to rule out the effect of the change in shape of the tube on the transition, Verma
& Kumaran (2012) also carried out experiments using a rigid gel-walled tube, made of hard
gel with shear modulus 0.5 MPa, in which the diameter varies with downstream distance
in the same manner as the gel-walled tube with shear modulus 17.5 kPa. The transition
in this tube of non-uniform diameter was found to be at a much higher Reynolds number
than that in a gel-walled tube, indicating that the transition is due to a dynamical coupling
between the flow and the wall, and not due to wall deformation alone.

In the dye-stream visualisation experiments, the amplitude and the frequency of
the oscillations were measured near transition. The amplitude was found to increase
continuously, in contrast to the discontinuous change found in a rigid tube (Reynolds
1883), and the frequency was in the range (0.01–0.1)× (G/ρf d2)1/2 in the experiments
of Verma & Kumaran (2012) and Neelamegam & Shankar (2015). All of these results
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Figure 13. The friction factor as a function of the Reynolds number for the flow in a tube of diameter 1.2 mm
made of polyacrylamide gel with shear modulus of 0.5 MPa (black), 86 kPa (brown), 38 kPa (green), 25 kPa
(blue) and 17.5 kPa (red). Redrawn, with permission, from Verma & Kumaran (2012).

suggest that the transition in a gel-walled tube is qualitatively different from that in a rigid
tube, and that the transition is due to a dynamical coupling between the flow and the wall
dynamics.

The transition Reynolds number is shown as a function of the parameter Σ in figure 14.
Verma & Kumaran (2012) found that the scaling law Ret ∝ Σ5/8 provided the best fit
for the transition Reynolds number. This is between the power laws Ret ∝ Σ1/2 for the
inviscid modes and Ret ∝ Σ3/4 for the wall modes. This was explained by considering the
flow in the downstream converging section, where the flow is more plug-like in comparison
to the laminar flow. Due to this, the strain rate at the wall is higher than that for a laminar
flow by a factor (Reα)1/2, where α is the slope of the wall of the tube. The slope was
estimated as α ∼ (Re/Σ) in Verma & Kumaran (2012), and this provided the scaling law
Ret ∝ Σ5/8 for the wall mode instability. Neelamegam & Shankar (2015) found that a
scaling law Ret ∝ Σ3/2 provided the best fit for the transition Reynolds number, as shown
in figure 14. This could not be satisfactorily explained based on the slope of the wall in the
converging or diverging sections. The range of Σ for the experiments of Neelamegam &
Shankar (2015) extends only over a factor of 2 on a logarithmic scale, which may be too
small to reliably infer scaling laws. The experiments of Chandra et al. (2019) in a tube of
diameter 400 μm at lower Reynolds number showed a scaling law Ret ∝ Σ0.65, which is
quite close to Ret ∝ Σ5/8 proposed by Verma & Kumaran (2012).

A global stability analysis for the flow in a deformed tube has not been carried out so far.
An approximate analysis for a quasi-fully developed flow has been carried out by Verma
& Kumaran (2015). This is valid when the slope of the wall α is small, so that the flow
can be considered locally parallel. Even when the slope is small, the velocity profile could
be very different from the parabolic profile for Reα ∼ 1, because the inertial terms in the
momentum equations scale as Reα. The detailed explanation of this procedure is provided
for a channel flow in the next subsection, and so it is not repeated here.
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Figure 14. The transition Reynolds number as a function of the parameter Σ from Verma & Kumaran (2012)
(black), Neelamegam & Shankar (2015) (blue) and Chandra et al. (2019) (red). The different black symbols
represent the transition Reynolds number from friction factor (◦), dye-stream visualisation (�) and detection
of wall oscillations (∇). Redrawn and augmented, with permission, from Verma & Kumaran (2012).

The stability analysis of Verma & Kumaran (2015) predicted that the growth rate of
perturbations first becomes positive in the downstream converging end of the test section;
this is in agreement with the visual observations in, for instance, figure 12. The value
of the transition Reynolds number was in quantitative agreement with the experimental
results. It was also reported that there is agreement only if the effect of tube deformation
on the velocity profile and pressure gradient is considered in the linear stability analysis;
for a parabolic flow and a constant pressure gradient, the transition Reynolds number is
higher than the experimental value by a factor of 10. An analysis of the eigenfunctions of
the most unstable mode in Verma & Kumaran (2015) indicated that the perturbations are
confined to thin regions both in the fluid and in the gel, suggesting that transition is due to
the wall-mode instability.

8.2.2. Channel flow
The transition in a microchannel of height (smallest dimension) 100 and 160 μm, width
about 1.5 mm and length about 3 cm with three hard walls and one soft wall was studied
by Verma & Kumaran (2013). An indentation of depth 100 or 160 μm in the shape of a
channel was made in a hard PDMS stamp of shear modulus 0.55 MPa; one of the channel
shapes, the two-inlet shape, is shown in figure 15(a). The stamp made of hard PDMS was
bonded with a layer of soft PDMS of the desired shear modulus mounted on a glass slide.
This results in a rectangular channel of height 100–160 μm and width 1.5 mm in a gel
block, three walls of which are made of hard gel and one of soft gel. A schematic of the
cross-section is shown in figure 15(b). The top view of the set-up is shown in figure 15(c),
where the microchannel within the gel block is highlighted by blue ink.

The microchannel has a development section of length about 0.8 cm, where all four walls
are made of hard gel, to ensure that disturbances are damped out before the fluid enters the
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Figure 15. (a) Top view of the microchannel configuration with Y inlet. (b) Cross-section showing three hard
walls and one soft wall. (c) Image from the top of the gel block with blue dye showing the location of the
microchannel. Redrawn with permission from Verma & Kumaran (2013).

test section. The development section is fabricated by adding extra catalyst to a portion of
the soft PDMS film before it is bonded to the hard PDMS stamp. The microchannel also
contains a pressure port at the entrance to the test section, which can be used for the inlet
pressure measurement. The channel height, which is h0 = 100/160 μm in the absence
of flow, can increase in the test section when a pressure difference is applied across the
ends. However, the Reynolds number based on the flow rate and the channel width W,
Re = (ρf Q/μf W), does not change when there is a change in the channel height.

Transition was detected in two ways. The first used a dye stream, where black dye is
injected through one inlet in figure 15(a) and clear water through the other inlet. Images
taken from above are used to examine whether there is cross-stream mixing across the
microchannel. The second method is the measurement of the pressure drop as a function
of the flow rate. When there is substantial wall deformation, friction factor relations
derived for a rigid channel cannot be used to indicate transition; as discussed below, a
more sophisticated procedure is required. In order to detect wall oscillations, fluorescent
microbeads are embedded in the soft wall of the microchannel. These are illuminated from
the side by a laser beam, and light scattered from the microbeads is imaged from above.
The onset of wall oscillations is indicated by a sharp increase in the root mean square of
the intensity fluctuations of the scattered light.

Figure 16 shows images, from above, of the flow in the microchannel at different flow
rates when the soft wall is made of PDMS gel with shear modulus 18 kPa. Water with
black dye and clear water are pumped into the lower and upper inlets at equal flow rates.
The images are centred at the locations L1, L2, L3 and L4 in figure 15(a). Note that the
location L1 is in the development section, where all four walls are made of hard gel, while
the other locations are in the test section. The edges of the microchannel are shown by
the black dashed lines, and the width of 1.5 mm provides a scale for the images. At a low
flow rate, it is observed that there is no cross-stream mixing over the time required for the
fluid to flow through the microchannel. As the flow rate is increased, there is the onset
of intense cross-stream mixing at a Reynolds number of about 200 at the downstream
locations in the channel. Even when there is near-complete mixing downstream, there is
virtually no mixing at the upstream location L2 at Re = 200. When the Reynolds number
is increased, intense mixing is observed at the upstream location L2 as well, but there
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Figure 16. Top view of the mixing between a clear water stream and a stream of water coloured with black
dye in the Y-channel configuration shown in figure 15(a) when the compliant wall is made of gel with shear
modulus about 18 kPa. Reprinted, with permission, from Verma & Kumaran (2013).

is no mixing in the development section, indicating that the flow is laminar. This intense
cross-stream mixing at a low Reynolds number of 200 indicates a transition from a laminar
flow to a more complicated flow profile; the transition Reynolds number is five times lower
than the value of 1000 for a rigid channel. The transition Reynolds number was found to
depend on the shear modulus of the soft wall – it was about 289 when the wall had a shear
modulus of about 28 kPa and 311 when the wall had a shear modulus of about 35 kPa.

There is substantial deformation of the soft wall due to the applied pressure gradient,
as shown in figure 17. Figure 17(a) shows the side view of the channel in the absence
of flow, while figure 17(b) shows the side view when the Reynolds number is 222 in a
channel in which the soft wall is made of material of shear modulus about 18 kPa. It
is observed that there is virtually no expansion in the development section, but there is
significant expansion in the test section. The channel first diverges at the entrance to the
test section, and then converges further downstream as the fluid pressure decreases. The
maximum height of the channel is about 3–4 times the height of the undeformed channel
in this particular case. However, the expansion is only in the soft wall, and the other three
walls are undeformed.

Due to the substantial deformation, the laminar flow in the channel is not a Poiseuille
flow, and it is necessary to compute the velocity profile and the pressure drop for the
deformed channel. The channel is reconstructed from the dimensions measured in the
side view in figure 17(b), and the reconstruction assumes that the three rigid walls are
undeformed and only the soft wall is deformed. The side view of the reconstructed channel
is shown in figure 17(c) and the cross-sections at different downstream locations are
shown in figure 17(d). The reconstructed shape of the channel was used in computational
fluid dynamics (CFD) simulations employing the ANSYS FLUENT software in order to
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Figure 17. Side view of the channel with soft wall made of material of shear modulus 18 kPa in the absence of
flow (a) and the deformed channel in the presence of flow at a Reynolds number of 200 (b); the side view (c)
and cross-section at different downstream locations (d) of the deformed channel reconstructed in a simulation.
Reprinted, with permission, from Verma & Kumaran (2013).

determine the velocity profile and the pressure as a function of the downstream location.
In the CFD simulations, the flow is assumed to be laminar, a constant flow rate boundary
condition with a plug flow is applied at the inlet and zero pressure is applied at the outlet.
The velocity profiles are different from a parabolic profile in a channel with parallel walls –
they have a gentler gradient at the wall and a higher curvature at the centre in the upstream
diverging section, and a sharper gradient at the wall and a lower curvature at the centre in
the downstream converging section. The pressure is not a linear function of downstream
distance; the pressure gradient is small in the upstream expanding section of the channel
and it increases in the downstream converging section.

Since the pressure difference across the ends of the channel is calculated assuming
the flow is laminar in the CFD simulations, the experimental pressure drop will be
higher than that predicted for a laminar flow after transition. Therefore, the transition
Reynolds number based on the pressure difference is the Reynolds number at which the
experimental pressure drop is higher than that predicted by the laminar flow simulations
for a channel of the same shape. In addition to the dye-mixing method and the detection of
wall oscillations, this provides the third method for detecting transition used by Verma &
Kumaran (2013). Verma & Kumaran (2013) also carried out a linear stability analysis using
the parallel flow approximation locally at different streamwise locations along the channel.
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Figure 18. The transition Reynolds number as a function of the parameter Σ for the flow in a microchannel.
(a) The transition Reynolds number measured by different experimental methods superposed on the theoretical
predictions at the downstream locations x = 3 cm and x = 2.7 cm shown in figure 17(c) from Verma &
Kumaran (2013). (b) The transition Reynolds number from Verma & Kumaran (2013) (blue), Srinivas &
Kumaran (2017b) (black) and Kumaran & Bandaru (2016) (red). The horizontal dashed line is the hard-wall
laminar–turbulent transition Reynolds number and the inclined dashed line is the scaling law Ret ∝ Σ5/8. Panel
(a) redrawn and augmented with permission from Verma & Kumaran (2013).

The linear analysis assumes that the flow is two-dimensional and fully developed with
a mean velocity profile and pressure gradient obtained, at each location, from the CFD
simulations for a laminar flow. This is valid only if the wavelength of the perturbations
is much smaller than the length scale for flow development and the spanwise extent of
the channel. In figure 18(a), the experimental results for the transition Reynolds number
from the dye-mixing method and the pressure difference method are compared with the
theoretical prediction from the linear stability analysis. The results from the three methods
are in quantitative agreement. From the linear stability analysis, it was found that the
flow first goes unstable at the downstream converging section of the microchannel. The
Reynolds numbers for the onset of an instability at the outlet (x = 3 cm) and at a location
3 mm upstream of the outlet (x = 2.7 cm) are superposed on the experimental results.
The experimental results for the transition Reynolds number are bracketed by results
of the linear stability analysis at the two downstream locations. This indicates that the
linear stability analysis has some predictive capability for predicting the transition in the
downstream converging section.

The transition Reynolds numbers from the study of Verma & Kumaran (2013) are
plotted along with those of Srinivas & Kumaran (2017b) for larger channels of height
0.6–1.8 mm made of polyacrylamide, and smaller channels of height 35–100 μm in the
study of Kumaran & Bandaru (2016), in figure 18(b). These studies cover a range of about
three orders of magnitude in the parameter Σ and about two orders of magnitude in the
transition Reynolds number. The scaling law Ret ∝ Σ5/8 appears to fit the data reasonably
well over this entire range, though there is a spread in the data. One reason for the spread
is that the experiments are carried out at discrete values of the Reynolds number separated
by 50–100, and so the precise transition Reynolds number is difficult to pinpoint. The other
is the variation in the deformed channel configuration in different experiments at the same
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Figure 19. The top view (a) and side view (b) of the microchannel and the PIV camera and laser sheet for the
measurement of turbulence statistics in a microchannel. The dimensions of the cross-section are the same as
those in figure 15(b). Redrawn with permission from Srinivas & Kumaran (2015).

Reynolds number – the deformed configuration depends on the cross-section, the length
and height of the channel and the elasticity of the material used.

An interesting observation in figure 18(b) is the presence of transition even above the
hard-wall laminar–turbulent transition Reynolds number of 1000 in the experiments of
Srinivas & Kumaran (2017b) for the two experiments with the highest Σ . It is observed
that there is a transition between two distinct types of turbulence, hard-wall and soft-wall
turbulence, at a higher Reynolds number compared with the hard-wall laminar–turbulent
transition. This is discussed in § 8.3.

8.3. Turbulence
There have been only two studies, those of Srinivas & Kumaran (2015) and Srinivas &
Kumaran (2017b), on the nature of the flow after transition. Both of these studies indicate
that the flow can be characterised as a turbulent flow, but there are qualitative differences
from the turbulent flow in a rigid channel.

The analysis of a turbulent flow by Srinivas & Kumaran (2015) was carried out for
the same set-up as Verma & Kumaran (2013). The fluid velocities were measured using
particle image velocimetry (PIV) with polymer microspheres of diameter about 2 μm
as seed particles for flow visualisation. Recall that the channel has one soft wall at the
bottom and three hard walls, and has a rectangular cross-section with width 1.5 mm and
height 160 μm in the absence of flow. A laser sheet from above was used to illuminate
the channel, as shown in figure 19(b), and masking tapes were used to restrict the laser
illumination to a width of 200 μm along the mid-plane of the channel in the spanwise
direction. A nanosecond pulsed laser was used to generate pairs of images separated by
a time interval of a few nanoseconds. Two-dimensional images were taken from the side
through a high-resolution camera at three different locations in the streamwise direction
shown in figure 19(a), and these were used to generate the velocity profiles. In the velocity
profiles, the height across the microchannel is measured from the bottom (soft) surface, as
shown in figure 19(b).

The salient features of the turbulent flow are summarised in figure 20, which shows the
turbulent statistics for a flow through a channel with one soft wall made of PDMS gel
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Figure 20. The mean velocity (a), mean square of the streamwise fluctuating velocity (b), the Reynolds stress
(c) and the turbulent energy production rate (d) obtained from PIV measurements along the centreline of
the microchannel at location C in figure 19(b), for a laminar flow at Reynolds number 222 (◦, blue) and for
turbulent flows at Reynolds number 277 (�, red) and 415 (∇). Redrawn with permission from Srinivas &
Kumaran (2015).

with elasticity modulus 18 kPa at the downstream location C in figure 19(a). These results,
redrawn from Srinivas & Kumaran (2015), are shown for three Reynolds numbers based
on the flow rate and channel width, one (Re = 222) lower and the other two (Re = 277
and 415) higher than the transition Reynolds number. The location y = 0 is the soft wall
in figure 19(b), and the location of the top hard wall is shown by the dashed lines on the
right. The latter changes due to increased channel deformation as the Reynolds number
is increased. In all cases, the symbols are the experimental results, and the error bars
show one standard deviation over three independent runs carried out on the same channel
geometry for the same flow rate.

The mean velocity profiles are shown by the symbols in figure 20(a). The solid lines are
the velocity profiles obtained from simulations for the laminar flow at the same location for
the flow in a channel of the same shape as that in the experiments. These were obtained
as explained in the discussion around figure 17. It is observed that there is quantitative
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agreement between the experimental and simulation mean velocity profiles for Re = 222.
However, after transition, the experimental result is not in agreement with the laminar
velocity profile. The experimental result is more plug-like, with a smaller curvature in
the centre and larger gradients near the walls in comparison to the laminar flow – the
experimental profile is similar to the velocity profile for a turbulent flow in a rigid channel.

Figures 20(b) shows the root mean square of the velocity fluctuations in the streamwise
direction. It should be noted that the intensity of the fluctuations is measurable even
for the pre-transition flow at Re = 222 – as explained at the beginning of this section,
flow conditioning is not perfect in a channel of submillimetre size with compliant walls.
However, there is a clear increase in the intensity of the fluctuations after transition at
Re = 277, and a further increase at Re = 415. The near-wall maximum in the streamwise
root mean square velocity, which is a characteristic of turbulent channel flows, is clearly
observed in figure 20(b). More interestingly, the profiles of the velocity fluctuations are not
symmetric, and the maximum near the bottom (soft) wall is about two times larger than
that near the top (hard) wall. This asymmetry is observed in the profiles of the cross-stream
root mean square velocity as well. This clearly indicates that the dynamics of the bottom
wall plays a significant role in the generation of turbulent fluctuations. In figure 20(b), the
velocity statistics could not be obtained within a region of thickness about 10 μm from the
wall, due to limitations with the resolution of the measurements and the size of the seed
particles. Therefore, it is not clear if the root mean square velocity decreases to zero at the
wall.

The correlation �v′
xv

′
y, which is the ratio of the Reynolds stress and the fluid density,

is shown as a function of the cross-stream distance in figure 20(c). The Reynolds stress
is zero, to within the experimental error bars, for the laminar flow at Re = 222. After
transition, the characteristic near-wall maximum of the Reynolds stress is observed. The
Reynolds stress profiles are asymmetric, with the stress near the bottom (soft) wall
significantly higher than that near the top (hard) wall. The Reynolds stress does decrease
to zero at the top wall. However, it is difficult to extrapolate the Reynolds stress to zero
at the bottom (soft) wall, though it is not possible to rule out a sharp decrease in the
Reynolds stress to zero. Figure 20(d) shows the turbulent energy production rate, which
is the product of the Reynolds stress and the strain rate. If the Reynolds stress is non-zero
at the bottom wall, the turbulent energy production rate is a maximum at the bottom wall.
This is in contrast to the flow past a rigid surface, where the turbulent energy production
rate has a near-wall maximum and it decreases to zero at the wall.

The turbulent flow past a rigid surface contains a logarithmic layer for 5 <
y+ < 30, where the velocity profiles are described by the logarithmic law (v̄x/v ≈
2.5 log ( yv∗/ν)+ 5). This law is found to apply at Reynolds number greater than about
3500. For the flow in a soft-walled channel, Srinivas & Kumaran (2015) reported that the
flow does exhibit a logarithmic layer close to the wall, but the logarithmic law is different
from that in a hard channel, and it does depend on the wall shear modulus. This is an
aspect that is intriguing, but which requires a lot more confirmation.

In summary, the flow after transition in a soft-walled microchannel at Reynolds number
as low as 250 does exhibit many of the features of a turbulent flow in a rigid channel,
including the plug-like nature of the mean velocity profile, the near-wall maximum in
the streamwise root mean square velocity and the characteristic shape of the Reynolds
stress curves. However, it is clear that wall flexibility does play a role in generating
turbulence, because the velocity fluctuations are significantly higher near the soft wall in
comparison with the rigid surface. There are still unanswered questions, including whether
the magnitude of the root mean square velocity does decrease to zero at the flexible surface,
and whether there is a viscous sublayer at the wall. However, it is clear that that the flow
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Figure 21. Channel top view (a), cross-section (b) and deformed cross-section (c) used in the experiments of
Srinivas & Kumaran (2017b). Redrawn with permission.

after transition can be accurately characterised as turbulent, but one that is qualitatively
different from the turbulent flow in a rigid channel.

The magnitudes of the velocity fluctuations in this turbulent flow, when scaled by the
average velocity, are rather large. The background level of fluctuations in a soft-walled
channel is rather large even for a laminar flow. After transition, the level of the fluid
velocity fluctuations is much larger than that in a rigid channel. At Reynolds number
250–400 in a microchannel, when scaled by the suitable powers of the average velocity,
the mean square velocities are comparable to or larger than those in a rigid channel at
Reynolds number in the range 12 000–20 000.

Srinivas & Kumaran (2017b) carried out experiments in a larger rectangular channel of
height 0.6 and 1.8 mm and width 1.3 cm made of polyacrylamide. The cross-section and
the dimensions of the channel are shown in figure 21. There was a development section of
length about 13 cm where the walls were made of hard gel of shear modulus about 16 kPa,
followed by a test section where the gel was made with shear modulus 0.75 or 2.18 kPa.
The velocity was measured using PIV with a set-up similar to that in figure 19, using glass
beads of diameter 8–14 μm as seed particles. Compared with the flow in a microchannel, a
much larger Reynolds number could be examined in the channel of larger dimension, and
the wall displacement was much larger due to the lower shear modulus of polyacrylamide.
The range of Reynolds numbers in the experiments exceeded the Reynolds number of 1000
for the laminar–turbulent transition in a rigid channel, and so the effect of wall compliance
on the transition in a rigid channel could also be examined. In contrast to the microchannel
geometry in figure 19, all four walls of the channel are made with the same shear modulus.
However, there was an asymmetry between the top and bottom walls because the bottom
wall was mounted on a rigid glass plate, while the top wall was unrestrained.

The average and the root mean square of the fluctuations in the wall displacement were
measured by optical imaging in the direction parallel to the surface using a camera looking
vertically downward. Glass beads of diameter 8–14 μm were embedded in the gel wall,
and the tangential displacement was measured separately on the top and bottom surfaces
by focusing the camera appropriately. The displacement perpendicular to the surface was
measured on the top and bottom surfaces using a camera from the side. The results for the
root mean square of the displacement fluctuations are shown in figure 22 for a channel
with undeformed height 1.8 mm and made of material of shear modulus 0.75 kPa in
the test section. The tangential displacement is shown in figure 22(a) separately for the
top and bottom walls. The transition Reynolds number ∼1000 for a rigid tube is shown
by the line labelled HW in figure 22. There is no evident increase in the displacement
fluctuations in either the tangential or the normal direction at this Reynolds number,
although, as discussed next, the fluid velocity fluctuations do exhibit a discontinuous
change. Figure 22(a) shows that there is an increase in the streamwise displacement
fluctuations at a higher Reynolds number of about 1400, labelled SW. The increase is
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Figure 22. The root mean square of the displacement parallel (a) and perpendicular (b) to the surface in a
channel of height 1.8 mm in the absence of flow at downstream location III in figure 21(a) when the wall is
made of polyacrylamide gel of shear modulus 0.75 kPa. In (a), the solid and dashed lines are the tangential
displacements on the top and bottom walls, and (b) shows the normal displacement on the top wall. Redrawn
with permission from Srinivas & Kumaran (2017b).

approximately the same on the top and bottom walls. However, there is no discernible
cross-stream displacement fluctuation in figure 22(b). When the Reynolds number is
increased beyond 1700, labelled WF (wall flutter), there is an increase in the displacement
fluctuations both parallel and perpendicular to the surface at the top wall. There is no
commensurate increase in the displacement fluctuation at the bottom wall. Srinivas &
Kumaran (2017b) reported that there are visible travelling waves on the top wall alone.
The asymmetry between the top and bottom wall is because the bottom wall is fixed to a
glass substrate, while the top wall is unrestrained; when the top wall is also constrained
with a glass plate, the wall flutter is not observed.

The velocity statistics also show signs of two different transitions, after the
laminar–turbulent transition at a Reynolds number of about 1000, as shown in figure 23.
The flow is laminar at a Reynolds number of 768 and there is a transition to a turbulent
flow when the Reynolds number is increased to 1071. Here, the mean velocity is distinctly
different from the parabolic profile, shown by the dashed line in figure 23(a). There
is a significant increase in the velocity fluctuations in the streamwise and cross-stream
directions, and the large near-wall maximum in the streamwise velocity fluctuations is
clearly visible in figure 23(b). At this Reynolds number, there are no discernible wall
fluctuations in figure 22. When the Reynolds number is increased from 1332 to 1515, the
onset of tangential wall oscillations in figure 22 is accompanied by a change in the shape of
the mean velocity profile in figure 23(a), a significant increase in the streamwise velocity
fluctuations in figure 23(b) and a significant increase in the Reynolds stress in figure 23(d).
However, the profiles are still symmetric about the centreline of the channel. When the
Reynolds number is further increased from 1734 to 1973, there is a significant expansion
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Figure 23. The mean velocity (a), root mean square of the streamwise (b) and cross-stream (c) fluctuating
velocities and the Reynolds stress (d) at Reynolds number Re = 768 (◦), Re = 1071 (�, brown), Re = 1332
(∇, brown), Re = 1515 (�, blue), Re = 1734 (�, blue) and Re = 1973 (�, red) in a channel of height 1.8 mm in
the absence of flow at downstream location III in figure 21(a) when the wall is made of polyacrylamide gel of
shear modulus 0.75 kPa. Redrawn with permission from Srinivas & Kumaran (2017b).

of the channel accompanying the onset of normal wall oscillations in figure 22(b). There
is a visible asymmetry in the profiles for the mean and fluctuating velocities and in the
Reynolds stress. The velocity fluctuations near the top wall are significantly higher than
those near the bottom wall; this is due to the presence of significantly enhanced wall
displacement fluctuations at the top wall.

The study of Srinivas & Kumaran (2017b) shows that there are at least two distinct
transitions in the turbulent flow in a channel in addition to the hard-wall laminar–turbulent
transition at Re = 1000. The transitions occurred at a Reynolds number lower than 1000
for the channel with height 0.6 mm and at a Reynolds number higher than 1000 for
the channel with height 1.8 mm. The first transition, called the ‘soft-wall’ transition,
has the characteristics of the wall mode instability, where there are visible displacement
fluctuations in the tangential direction, but no discernible fluctuations perpendicular to the
surface. This is accompanied by a sharp increase in the velocity fluctuations in the fluid

924 P1-65

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.602


V. Kumaran

and in the Reynolds stress, but the profiles are symmetric about the centreline. There is
onset of flutter on the top surface at the second ‘wall flutter’ transition, and this occurs
only if the top surface is unrestrained. The significant observation in Srinivas & Kumaran
(2017b) was that the soft-wall transition could take place even in a turbulent flow after the
hard-wall laminar–turbulent transition. The coupling between the wall and fluid dynamics
after transition qualitatively alters the nature of the turbulent flow, and the post-transition
flow, which exhibits features distinct from the turbulence in the flow past rigid surfaces,
was characterised as ‘soft-wall turbulence’.

8.4. Viscoelastic fluids
The flow of viscoelastic fluid past a polymer gel in the viscous limit was studied by
Neelamegam, Shankar & Das (2013) in the context of the ‘purely elastic’ instability due to
the hoop stress in a rotating polymeric fluid (Shaqfeh 1996; Groisman & Steinberg 2004).
When an elastic fluid is placed between two rigid plates as shown in figure 9(a) and the
strain rate is increased, the flow transitions from a simple viscometric flow through a series
of bifurcations to a state called ‘elastic turbulence’. This is indicated by sharp increases in
the apparent viscosity for specific values of the Weissenberg number, which is the product
of the strain rate and the polymer relaxation time. When the bottom rigid plate is replaced
by a soft elastic gel, as shown in figure 9(b), Neelamegam et al. (2013) found that the elastic
instability is suppressed, and the sharp increase in the apparent viscosity is absent. At fixed
strain rate, the presence of a soft bottom surface also suppresses temporal fluctuations in
the stress which are observed when a rigid bottom surface is used. Using flow visualisation,
secondary flow patterns observed in the flow between two rigid surfaces were absent when
one of the surfaces is a soft gel. An important difference between a Newtonian and a
polymeric fluid is the first normal stress difference, which results in an outward force on
the top and bottom surface. The mechanism for the suppression of the instability suggested
by the authors is as follows. When the bottom surface is made of soft gel, the normal
stress difference could compress the gel, increase the width of the fluid layer and thereby
decrease the actual shear rate. Due to this, the actual Weissenberg number is lower than
that calculated assuming that the width of the fluid layer is unchanged, and therefore the
instability is not observed.

The effect of polymers on the transition and turbulence in a compliant channel was
studied by Srinivas & Kumaran (2017a) for the flow through a PDMS microchannel
shown in figure 15 and by Chandra et al. (2019) for the flow in a PDMS microtube
of diameter 300–400 μm. The elasticity modulus of the PDMS gel was 0.55 MPa for
the hard walls and about 18 kPa for the soft walls in Srinivas & Kumaran (2017a), and
in the range 30–50 kPa in Chandra et al. (2019). The viscoelastic fluid consisted of
polyacrylamide polymers (not cross-linked) of molecular weight 4 × 104 and 5 × 106

dissolved in water. The concentration of the polymer was very small. In Srinivas &
Kumaran (2017a), concentrations up to 1500 and 50 p.p.m. were used for the polymer with
molecular weight 4 × 104 and 5 × 106, respectively, and the steady shear viscosity did not
exceed the viscosity of water by more than 10 %. Chandra et al. (2019) used concentrations
up to 2500 p.p.m. for polyacrylamide with molecular weight 5 × 106, and the maximum
viscosity was about five times the viscosity of water.

An important material parameter is the polymer relaxation time. There are different
methods to measure the polymer relaxation time, such as small-amplitude oscillatory
measurements fitted to the Maxwell model (Doi & Edwards 1988), first normal stress
difference (Larson, Shaqfeh & Muller 1990) and capillary break-up (CaBeR) technique
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for the extensional relaxation time (Dinic et al. 2015). Zell et al. (2010) found that there
are significant differences in the results of different measurements. Srinivas & Kumaran
(2017a) used the Zimm model based on the polymer radius of gyration and the solvent
viscosity in order to estimate the relaxation time and found that the relaxation time is about
30 ms for polyacrylamide with molecular weight 5 × 106 and 5 μs for polyacrylamide
with molecular weight 4 × 104. Chandra et al. (2019) used small-amplitude oscillatory
measurements fitted to the Maxwell model to determine the relaxation time and found a
concentration-dependent relaxation time ranging from 1.4 ms for a 100 p.p.m. solution to
about 7 ms for a 2500 p.p.m. solution for polyacrylamide with molecular weight 5 × 106.
The variation in relaxation time also results in a variation in the the elasticity number,
El = (λμf /ρf h2

f ), where λ is the polymer relaxation time. The elasticity number in the
experiments of Srinivas & Kumaran (2017a) was in the range 0.12–1.2 for polyacrylamide
with molecular weight 5 × 106 and 2 × 10−5–2 × 10−4 for polyacrylamide with molecular
weight 4 × 104. In the experiments of Chandra et al. (2019), the elasticity number varied
in the range 8 × 10−3 for a 50 p.p.m. solution to 0.25 for a 2500 p.p.m. solution. Thus, the
elasticity number has been varied over a very wide range in the experiments conducted so
far. Since the solution viscosity considered by Chandra et al. (2019) varied over a wider
range from 1 × 10−3 to 7 × 10−3 kg m−1 s−1, the parameter β in the Oldroyd model,
which is the ratio of the solvent viscosity and the solution viscosity, was also varied over a
wide range. Srinivas & Kumaran (2017a) considered a very dilute solution, so β was close
to 1.

An important parameter is the ratio of the polymer concentration and the ‘overlap’
concentration c∗ (de Gennes 1976, 1979). In a dilute solution with concentration below
the overlap concentration, a polymer molecule in the solution does not interact with
other molecules, whereas interactions between polymer molecules are important in a
semi-dilute solution when the concentration exceeds the overlap concentration. The
overlap concentration was estimated as 150 p.p.m. for polyacrylamide with molecular
weight 5 × 106 and about 1670 p.p.m. for polyacrylamide with molecular weight 4 × 104.
Therefore the experiments of Srinivas & Kumaran (2017a) were entirely in the dilute
regime, whereas the experiments of Chandra et al. (2019) extended over the dilute and
semi-dilute regimes.

The experimental set-up of Srinivas & Kumaran (2017a) was the same as that of Verma
& Kumaran (2013) shown in figure 15. Transition was detected by dye-mixing experiments
of the type shown in figure 16, as well as the velocity statistics measured using PIV as
shown in figure 19. Srinivas & Kumaran (2017a) found that the addition of polymer has no
effect on the transition Reynolds number if the concentration is below a threshold value,
which is about 1 and 500 p.p.m. for polyacrylamide with molecular weight 5 × 106 and
4 × 104, respectively. Above this threshold concentration, there is a systematic decrease
in the transition Reynolds number. For the highest concentration of 1500 p.p.m. for the
polymer with molecular weight 4 × 104, the transition Reynolds number is 139, while for
the highest concentration of 50 p.p.m. for the polymer with molecular weight 5 × 106,
the transition Reynolds number is 39. This is in contrast to the transition Reynolds number
of 291 for the same channel for a Newtonian fluid. Thus, addition of small amounts
of polymer results in a decrease of an order of magnitude in the transition Reynolds
number. This was consistent with the prediction of Chokshi et al. (2015) for the effect
of viscoelasticity on the wall mode instability in a channel.

The second important observation in Srinivas & Kumaran (2017a) was that the polymer
has a significant damping effect on the fluid velocity fluctuations. Figure 20 shows
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that there are significant fluctuations even in a laminar flow. Even when the polymer
concentration is below the threshold concentration and there is no reduction in the
transition Reynolds number, there is a reduction by a factor of 2 in the root mean square of
the velocity fluctuations in comparison to the laminar flow of pure water. In the turbulent
regime, there is a reduction by a factor of 5 in the root mean square velocities and by a
factor of 10 in the Reynolds stress. The equivalent of the images shown in figure 15 for
the flow of polymer solutions do not exhibit the intense cross-stream mixing across the
span, and the instability is indicated by waves at the interface between the two streams
with and without dye. Chandra et al. (2019) detected transition in the tube flow based on
the departure of the velocity profile from the parabolic profile, as well as the intensity
of the velocity fluctuations scaled by the average velocity. For dilute polymer solutions
with concentration less than about 100 p.p.m., there was a reduction in the transition
Reynolds number due to the addition of the polymer solution. The scaling of the transition
Reynolds number was Ret ∝ Σ0.7 for a viscoelastic fluid, which is not very different from
the scaling Ret ∝ Σ0.65 for a Newtonian fluid and the scaling Ret ∝ Σ5/8 found by Verma
& Kumaran (2012). Chandra et al. (2019) concluded that the destabilisation is due the
wall mode instability modified by fluid viscoelasticity, as reported by Srinivas & Kumaran
(2017a). For higher polymer concentration, Chandra et al. (2019) found a very different
cause of destabilisation, which is the elasto-inertial instability (Zakin et al. 1977; Samanta
et al. 2013) due to combined effects of elasticity and inertia. Due to this instability, the
transition Reynolds number for the flow of a viscoelastic fluid through a rigid tube could
be lower than that for a Newtonian fluid. The transition Reynolds number follows the
scaling Ret ∝ El(1 − β)−1/2 (Chandra, Shankar & Das 2018), where El is the elasticity
number and β is the ratio of the solvent and solution viscosity. For the flow in a compliant
tube, when the polymer concentration exceeded 150 p.p.m., Chandra et al. (2019) found
the same scaling as that for a rigid tube, but the transition Reynolds number was lower than
that for a rigid tube. This indicates that the wall flexibility destabilises the elasto-inertial
mode, resulting in a lower transition Reynolds number.

8.5. Mixing
Shrivastava, Cussler & Kumar (2008) carried out an interesting study of the mass transfer
enhancement in the pressure-driven flow in a channel in which one wall was made of
soft PDMS gel with shear modulus in the range 1–3 kPa. The channel of length 10 cm,
width 4 cm and height 1.5 mm was made using polycarbonate blocks, and the working and
counter electrodes of dimension 3 cm × 1 cm made of platinum foil of thickness 0.05 mm
were glued to the top and bottom walls. The gel was placed on the counter electrode,
and a glycerol-based electrolyte solution was pumped through the channel. The Reynolds
number was in the range 0.1–60, and the dimensionless parameter Γ = (μf Vf /Ghf ) was
in the range 10−3–10. A voltage sweep was applied across the reference and working
electrodes to determine the limiting current, and this was related to the mass transfer
coefficient at the gel surface. Control experiments were also carried out where the gel
block was replaced by a rigid block. For Γ < 0.1, the authors found that the limiting
current is the same for the flow past gels and rigid blocks, but as Γ increases, the mass
transfer coefficient past a gel surface is significantly enhanced in comparison to that past
a rigid block. The ratio of the currents in the flow past gel and rigid blocks was plotted
as a function of Γ . It was found that the ratio is 1 for small values of Γ , but it increases
continuously to about 1.25 for the highest value of Γ = 10. This indicates that there is
enhanced mass transfer in the flow past a gel surface in comparison to the flow past a rigid
surface. Though the authors attributed this to an instability at the fluid–gel interface, they
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did not report any discontinuous change in the mass transfer coefficient at a critical value
of Γ . Nevertheless, this was the first study to suggest the possibility of using a soft gel to
enhance mass transfer from a surface in small-scale flows.

Studies of cross-stream mixing across a microchannel have been carried out in Y-shaped
channels of the kind shown in figure 15. Image analysis has been used on images of
dye-mixing experiments (figure 16, for example) to quantify mixing. Images at different
locations, shown by the red rectangles in the top panel in figure 16, are captured and the
mean and standard deviation of the pixel intensity are calculated. The extent of mixing is
related to the standard deviation of the pixel intensity about the mean – a lower standard
deviation indicates less variation in the pixel intensity across the channel, and therefore
better mixing. Verma & Kumaran (2013) defined a segregation index based on image
analysis, and showed that the segregation index decreases discontinuously at transition.

Another method is to pump two contrasting fluids through the two inlets in figure 15,
and to analyse the fluids emerging from the two outlets separately. The fluids at the
two outlets will be a homogeneous mixture of the inlet fluids if the mixing is perfect,
whereas the fluid at the outlet will be the same as the fluid at the corresponding inlet
when there is no mixing. Verma & Kumaran (2012) pumped in deionised water in one
inlet and a solution of tannic acid in the other inlet, and determined the concentration
of tannic acid at the outlet from conductivity measurements. Kumaran & Bandaru (2016)
carried out experiments in smaller microchannels of length 2 cm, width 0.5 mm and height
35–100 μm with two inlets and two symmetric outlets, in which one soft wall was made
with shear modulus 17 kPa. The two contrasting fluids used in Kumaran & Bandaru (2016)
included a combination of one acid and one base where the pH at the outlet was measured,
and a combination of a suspension of 6 μm polystyrene particles and clear fluid where
the concentration of the particles was measured at the outlet. The authors reported that
for the smallest microchannel of height 35 μm, there is no cross-stream mixing when the
Reynolds number is 66, but there is imperfect cross-stream mixing when the Reynolds
number is 133, and there is perfect cross-stream mixing (the two fluids are identical to
within experimental resolution) at a Reynolds number as low as 200.

A striking conclusion is that this ultrafast mixing across the 0.5–1.5 mm width of the
microchannel takes place within a time interval of a few tens of milliseconds. The flow
velocity in the microchannels is of the order of 1 m s−1, while the length of the channel
is 2–3 cm. Therefore, the residence time of the fluid in the channel is of the order of
20–30 ms. Within this time period, there is near-perfect mixing across the width of the
microchannel. This is in contrast to mixing by molecular diffusion in a laminar flow which
is a very slow process. A characteristic molecular diffusion coefficient for solutes with
small molecular weight in water is 10−9 m2 s−1. The characteristic time for molecular
diffusion across a width of 1 mm is the ratio of the square of the width and the diffusion
coefficient, which is 103 s. Thus, the time for mixing due to the soft-wall turbulence is five
orders of magnitude less than that for diffusion in a laminar flow.

This enhanced mixing requires a less-than-proportionate increase in the pumping cost
due to the high flow rate. For a rigid channel, the pressure difference required for driving
the flow is proportional to the flow rate. When the channel is made of a compliant surface,
there is expansion of the channel, as shown in figure 17. Due to this, there is an increase in
the average area of cross-section and a decrease in the pressure difference. Thus, using a
soft wall to induce turbulence is a simple and low-cost method for achieving cross-stream
mixing in microfluidic devices, where slow mixing due to molecular diffusion is a
technological barrier for sample preparation. In Abbasi et al. (2019), the utility of this
technology has recently been demonstrated for a point-of-care device.
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9. Simulation of turbulent flows

The first direct numerical simulation of the flow in a channel with a compliant wall
was carried out by Xu, Rempfer & Lumley (2003) and Rempfer et al. (2003). The
authors used a pseudospectral method for solving the equations that is commonly used
for direct numerical simulations (Moin, Kim & Moser 1987) involving Fourier transforms
in the periodic streamwise and spanwise directions and a Chebyshev transform in the
wall-normal direction. These transforms can be carried out only if the domain is cuboidal,
and it cannot be applied in an irregular domain formed by a deformed wall. Therefore,
the authors used a mapping to convert the irregular domain into a cuboidal domain, and
reformulated the Navier–Stokes equations in a non-orthogonal coordinate system using a
metric tensor.

The compliant surface was modelled as a spring-backed plate, using an equation similar
to (3.1) to relate the normal displacement to the pressure at the surface. However, tangential
displacement was not considered in the model for the compliant wall. The authors found
little modification of the near-wall turbulent structures and the drag on the surface due
to wall compliance, and reported in their abstract that ‘. . . the statistical effect of the
wall compliance on the turbulent channel flow is small’. A subsequent study by Kim &
Choi (2014) also considered the same model, but lower spring stiffnesses and damping
coefficients were considered. This study confirmed that there is very little effect on the
turbulent flow for a stiff wall. For a relatively soft wall, two-dimensional downstream
travelling waves are generated in the wall, which increase fluid velocity fluctuations close
to the wall.

When the spring-backed wall model is used for a channel, one aspect not considered is
the wall deformation due to the mean pressure gradient required to generate the flow. One
implicit assumption, justified for stiff compliant walls, is that the slope of the wall is small,
and there is very little change in the channel dimension over length scales comparable
to the largest flow structures. A second assumption is that the wall displacement due
to pressure fluctuations is much larger than the displacement due to the mean pressure
difference across the length of the channel. The latter assumption is more restrictive and
requires stronger justification. The wall deformation due to the shear stress tangential to the
surface is also neglected, and the tangential velocity is set equal to zero at the compliant
wall. The assumption here is that the wall is infinitely stiff in the tangential direction.
Due to this simplification, these studies do not consider the destabilisation of the surface
fluctuations due to the shear work done at the surface. Additional approximations have
been made in other studies, such as the linearisation of the velocity boundary condition
in Luhar, Sharma & McKeon (2015), assumption of in-plane fluctuations of the surface in
Jozsa et al. (2019) or one-way coupling where the wall does not affect the fluid turbulence
in Benschop et al. (2019).

A very different approach was used by Rosti & Brandt (2017) to study the flow
in a channel in which one wall was made of a viscoelastic continuum. The mass
and momentum equations were solved throughout the domain, and an additional order
parameter which is the solid volume fraction φs was defined. This order parameter is
1 in the solid and 0 in the fluid, and the interface is identified as the location where
the volume fraction passes through 1

2 . The volume fraction is evolved using using an
advection equation. An Eulerian description is used for the solid displacement, and the
evolution equation for the left Cauchy–Green tensor is obtained from the condition that
its upper-convected derivative is zero. The stress is the volume-weighted sum of the solid
and fluid stresses. The stress in the fluid is modelled using Newton’s law of viscosity,
while the neo-Hookean model is used for the solid stress. The turbulent flow simulations
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were conducted at a fixed Reynolds number of 2800, and the parameter (G/ρf V2
f ) was

fixed in the range 0.5–2. Rosti & Brandt (2017) found that there is substantial modification
of the fluid turbulence due to the soft surface. The streamwise vorticity streaks that are
observed in a turbulent flow past a rigid surface are strongly attenuated when the surface is
compliant, and there are strong correlations in the spanwise direction. The maximum of the
mean velocity profile is shifted away from the compliant wall as the elasticity of the wall
was decreased. The logarithmic layer was modified by a shift in the origin, used for rough
and permeable walls, and a change in the von Kármán constant in the logarithmic law.
The shift in the velocity profile was correlated to the root mean square of the wall-normal
fluctuating velocity, in a manner similar to that over rough or porous surfaces.

The simulations of Rosti & Brandt (2017) were the first to indicate that the root mean
square of the velocity fluctuations and the Reynolds stress are non-zero at the fluid–solid
interface. These are consistent with the experimental observations of Srinivas & Kumaran
(2015, 2017b). Due to this, the wall shear stress at the compliant wall is higher than that
at the rigid wall. The authors also found that the near-wall maxima in the streamwise
and cross-stream fluctuating velocity and the Reynolds stress at the soft wall are higher
than those near the rigid surface, indicating that the soft wall plays a role in generating
turbulent fluctuations. There are large fluctuations in the wall-normal velocity at the
interface between the fluid and the solid; these are comparable with the streamwise
velocity fluctuations. This correlated best with the ‘wall flutter’ reported by Srinivas &
Kumaran (2017b), or the ‘inviscid mode’ instability of Kumaran (1996) and Shankar &
Kumaran (1999, 2000). However, in the case of wall flutter, there are visible waves on the
surface of the soft solid, and the maximum of the mean velocity is closer to the compliant
surface.

It should be noted that the Reynolds number used by Rosti & Brandt (2017) is much
higher than that used to measure turbulent fluctuations in Srinivas & Kumaran (2015,
2017b), so a direct comparison is difficult. However, there are qualitative similarities as
well as differences which require resolution. There is certainly a need for further studies
over a wider parameter range in order to make a closer contact between experiments and
simulations of turbulent flows.

10. Conclusions and outlook

The stability of flows in conduits with compliant walls is a relatively new field, and most
of the theoretical and experimental work has been carried out in the last 25 years. The
theoretical prediction of a subcritical instability in the flow past a compliant wall even in
the limit of zero Reynolds number due to coupling between the wall displacement and
fluid velocity (Kumaran et al. 1994; Shankar & Kumaran 2001b; Chokshi & Kumaran
2008a), discussed in § 5, and the experimental verification of this instability (Kumaran
& Muralikrishnan 2000; Muralikrishnan & Kumaran 2002; Eggert & Kumar 2004),
summarised in § 8.1, is a novel phenomenon uncovered in this field. At high Reynolds
number, at least two different modes of instability have been identified using asymptotic
analysis which are qualitatively different from the Tollmien–Schlichting modes in a rigid
conduit. These are the inviscid modes with or without an internal viscous layer discussed
at the end of § 6.2 and the wall mode instability (§ 6.3) which is not present in a rigid
conduit (Kumaran 1998; Shankar & Kumaran 2001a, 2002; Chokshi & Kumaran 2009).
As discussed in § 6.1, theorems have been derived for the possibility of an instability in
the flow past compliant surfaces, similar to the Rayleigh and Fjørtoft theorems for the
flow in rigid conduits for a spring-backed wall model (Yeo & Dowling 1987; Shankar
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& Kumaran 2000). Though the theorems are derived for the spring-backed wall model,
the results appear to apply even for flows employing the viscoelastic wall model. In
high-Reynolds-number experiments (§ 8.2), transition has been observed at a Reynolds
number as low as 500 in a soft-walled tube (Verma & Kumaran 2012; Neelamegam
& Shankar 2015) and as low as 200 in a microchannel with a soft wall (Verma &
Kumaran 2013). Thus, a multi-fold reduction in the transition Reynolds number has been
demonstrated for the flow conduits with compliant walls. The transition at high Reynolds
number seems to be captured by an approximate local stability analysis of Verma &
Kumaran (2013, 2015) (§ 8.2.2), in contrast to the flow in rigid tubes/channels where the
linear stability analysis does not accurately predict transition.

The initial studies of flow past a viscoelastic wall were carried out using the linear
model for solid elasticity, which is not invariant under rotation. The frame-invariant
neo-Hookean model with the nonlinear strain measure (equation (3.11)) was first used
by Gkanis & Kumar (2003), and this revealed an additional mode of instability due to
the normal stress difference in the wall material. Consistency between the Lagrangian
formulation (§ 3.3.1) and Eulerian formulation (§ 3.3.2) for the viscoelastic solid wall
was shown by Chokshi & Kumaran (2008a), but the study appears to have used different
constitutive relations for both formulations which coincidentally provide the same result.
Subsequently, the consistency between Eulerian and Lagrangian formulations has been
demonstrated by Patne et al. (2017) and Patne & Shankar (2019a) in both Cartesian and
cylindrical coordinates. Though the relation between the stress and strain is still linear in
the neo-Hookean and the Mooney–Rivlin models, the strain is a nonlinear function of the
gradient in the displacement field. There are several intricacies in the implementation of
the boundary conditions at the interface between the solid and liquid, because they have
to be implemented at the displaced interface. This requires an expansion of the quantities
about their values in the base state, and there are several terms in the expansion which have
been missed out in previous studies. The consistent framework for the solid dynamics is
non-trivial, and is one achievement of advances in the field.

One area requiring more work is the solid elasticity model that is appropriate for gels
and soft tissues of relevance to experiments or practical applications. Theoretical studies
so far use the neo-Hookean solid model or the more general Mooney–Rivlin solid model.
In order to make quantitative comparisons for low-Reynolds-number flows where the
solid strain is larger than 1, it is necessary to have independent confirmation that the
experimental stress–strain relationship is in agreement with the theoretical models used.
The qualitative nature of the theoretical predictions does not depend strongly on the solid
model for a Couette flow, especially when the thickness of the solid is larger than that of
the fluid layer. In this case, the theoretical results are in quantitative agreement with the
experimental results for the rheometer geometry shown in figure 9.

For pressure-driven flows in tubes and channels, it was shown by Gaurav (2009), Gaurav
& Shankar (2010), Patne et al. (2017) and Patne & Shankar (2019a) that the results of the
stability analysis strongly depend on the solid model, and even on the terms included in
the interface condition between the fluid and the solid. Therefore, an accurate solid model
is indispensable for an understanding of the stability in experimental systems, especially
in the low-Reynolds-number limit where the solid strain in the base state is not small.
Theoretical models typically assume that the solid is incompressible and the stress–strain
relationship is linear in the solid, and the result for the solid deformation in the base state is
unidirectional and fully developed. It is not clear if such a base state can be obtained if the
stress–strain relationship is nonlinear. For quantitative comparison with linear theoretical
models, it is necessary to use hyperelastic materials, which can undergo large strain,
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in experiments. It will also be necessary to identify materials which can undergo large
strain without failing.

An important assumption in the theoretical studies conducted so far is that the solid is
incompressible. In experimental systems, even if the bulk elasticity modulus is much larger
than the shear modulus, it may not be accurate to assume that the solid is incompressible
for pressure-driven flows. As discussed in § 3.3.6, there is a decrease in the pressure
with downstream distance, and the pressure drop across the conduit is (L/hf ) larger than
the shear stress, where L is the length and hf is the channel width/tube diameter. Thus,
the pressure could be significantly larger than the shear stress for long channels/tubes, and
the compressional strain could be comparable to or larger than the shear strain.

At high Reynolds number, it is shown at the end of § 3.3 that the strain in the solid
in the base state is small, and the linear model for the solid elasticity is more accurate.
As shown in § 8.1, the incompressibility assumption may still not be accurate in conduits
where the length is much larger than the height/diameter. Therefore, a stability analysis
which considers a steady and fully developed base state may not accurately predict the
experimental results. Stability analyses which incorporate the deformation due to the
pressure gradient have been carried out (Verma & Kumaran 2012, 2015), as indicated
in § 8.2.2. Here, the deformed shape is determined from experimental measurements,
and the stability analysis is carried out at different downstream locations assuming the
flow is unidirectional. These assumptions are valid only if the slope of the wall is small,
and the wavelength of unstable modes is smaller than the length scale for the flow
development. Though results of this type of analysis are fairly accurate when compared
with experiments, further progress is required. This could include more detailed models
for compressible solids that can predict the deformed shape of the conduit, and global
stability studies which do not employ the parallel flow approximation.

Further progress is required in identifying the mode of instability and the wavelength
and frequency of the most unstable mode in experiments. There are restrictions on the
conduit dimensions and the flow rate for the transition to be observed at a Reynolds
number lower than the rigid-wall laminar–turbulent transition. As shown at the beginning
of § 8.2, the smallest dimension of the conduit has to be about 1 mm or less, the elasticity
modulus for the wall has to be 1–10 kPa and the fluid velocity has to be 1 m s−1 or more.
Due to these, the experimental geometries are small in size. The estimate for the wall
displacement is of the order of tens of micrometres in typical experimental geometries,
and the frequency from the theoretical predictions is 1 kHz or more. Though an increase
in the root mean square displacement at transition has been detected in experiments,
mapping out the displacement field of a few micrometres at high frequency in experiments
is exceedingly difficult. This is an area where advances in experimental techniques are
required.

Despite the unresolved issues, there is a consensus that there is one class of instability
at low Reynolds number in the absence of inertia for which the transition Reynolds
number scales proportional to Σ . At high Reynolds number, there are two instabilities,
the inviscid modes with an internal viscous layer where the transition Reynolds number is
proportional to Σ1/2 and the wall-mode instability where the transition Reynolds number
is proportional to Σ3/4 (Kumaran 2003). The experimental results for the transition
Reynolds number fall approximately in the range between Σ1/2 and Σ3/4, though clear
scaling laws are not expected due to significant wall deformation in the experiments.

The study of turbulence in conduits with compliant walls at relatively low Reynolds
number is even more recent, and the first experiments were reported within the past five
years. Though the field is relatively less developed, and more verification is required,
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the results are intriguing and suggest that soft-wall turbulence can be considered as a new
class of turbulence distinct from turbulence in the flow past rigid surfaces. Both direct
numerical simulations (Rosti & Brandt 2017), discussed in § 9, and experimental studies
(Srinivas & Kumaran 2015, 2017b), summarised in § 8.3, suggest that the fluid velocity
fluctuations do not decrease to zero at the soft wall and that the Reynolds stress is non-zero
at the wall. This indicates that the wall motion plays a role in generating turbulent velocity
fluctuations.

Experimental results summarised in § 8.3 show that the turbulence energy production
is a maximum at the wall. This is in contrast to turbulence in the flow past a rigid wall,
where the energy production is a maximum in the near-wall region due to the lift-off
and bursting of vortices. This suggests that the mechanism of turbulent energy production
for soft-wall turbulence is very different from that for the flow past a rigid surface. The
turbulence intensity is also very high at Reynolds numbers as small as 250–400. When
scaled by the square of the mean velocity, the root mean square velocity fluctuations for
the flow in a microchannel at Reynolds number 250–400 are higher than those in a rigid
channel at Reynolds numbers 12 000 to 20 000. Thus, soft-wall turbulence appears to be a
distinct class of turbulence where the wall dynamics appears to play a role in generating
turbulence.

A distinct transition between hard-wall turbulence and soft-wall turbulence has also
been observed in a channel at a Reynolds number higher than the hard-wall transition
Reynolds number of about 1000 (Srinivas & Kumaran 2017b). This suggests that transition
due to wall mobilisation and fluid–wall coupling occurs in a flow that is already turbulent.
This transition between two distinct types of turbulence is unusual and significant.
The transition Reynolds number follows the same scaling law as that for the the
laminar–turbulent transition in the flow past a flexible surface. It is necessary to carry
out a stability analysis of the turbulent flow past a stationary surface to determine the
mechanism of transition.

There are still unresolved issues. Due to the small dimension of the channel, the spatial
resolution of the velocity fields is limited. Due to this, it is has not been possible, so far, to
identify coherent structures, though the mean and root mean square velocities have been
measured. One important unresolved issue is the nature of the velocity field close to the
wall. From the experiments, it is not clear whether a viscous sublayer exists and is not
resolved, or whether a viscous sublayer is absent in soft-wall turbulence. The evolution of
the displacement field in the wall has also not been resolved, though the mean square of
the displacement fluctuations has been measured. A lot more work is required for a good
understanding of this phenomenon.

Microfluidic mixing is an important application for the transition in compliant conduits.
Microfluidic devices are currently operated in the laminar regime due to the small size
of the microfluidic channels, and cross-stream mixing is due to diffusion. As estimated
in § 8.5, the diffusion time across a distance of 1 mm in a microchannel is 103 s
for small molecules in water and it could be as high as 106 s for large and complex
biomolecules. Consequently, the length of the conduits in microfluidic channels has to
be of the order of tens of centimetres for complete mixing. A very large pressure drop
is required for flow in lengthy channels with small cross-sectional area; this results in
higher energy cost and the requirement of higher material strength of components to avoid
failure. Several strategies have been proposed for enhancing mixing, but all of these have
their disadvantages. Examples of passive strategies are tortuous channels (Jiang et al.
2004), sequential split-and-recombine procedures (Bessoth, de Mello & Manz 1999; Lee
et al. 2006) and creation of secondary flows by wall roughness (Stroock et al. 2002).
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The disadvantage is that the pressure drop required is further enhanced in curved or rough
channels for equal length and cross-sectional areas. In active strategies, moving parts
such as pumps and stirrers are used to enhance mixing (Mensing et al. 2004). The cost
involved in fabricating small intricate moving parts and the ancillary equipment required
to drive these is the disadvantage of active strategies. The soft-wall instability is an optimal
combination of the two, because mixing is enhanced by wall mobilisation which is due
to a flow instability, and not due to external actuation. It has been shown (Kumaran &
Bandaru 2016) that the mixing time is reduced by up to five orders of magnitude due to
this instability, and this overcomes a significant technological barrier for on-chip sample
preparation and mixing in microfluidic devices (Abbasi et al. 2019).

The transition in compliant tubes is also relevant for cardiovascular flows, where the
walls of the arteries/veins are made of soft tissue. The flow is periodic, and the conduits
are curved and branched. However, transition could still be of relevance, because the time
scale for the growth or the instability is much smaller than the time period of the imposed
flow. It has been known for some time (Aars & Solberg 1971; Stein & Sabbah 1976;
Ha et al. 2018) that the extent of ‘turbulence’ in aortic flow is correlated with several
pathological conditions. However, the term turbulence here often refers to intermittency
and irregular fluid streamlines rather than fluid turbulence, and this is often correlated to
blockage of arteries. The recent study of Saqr et al. (2020) suggests that physiological
flows are turbulent even in normal large arteries at Reynolds number as low as 300, but the
energy spectrum is different from the Kolmogorov spectrum. This is clearly reminiscent
of the results discussed in Srinivas & Kumaran (2017b), which show that the transition
to turbulence in a channel with soft walls of dimension ∼1 mm can occur at Reynolds
number as low as 300. If ‘soft-wall turbulence’ due to a dynamical interaction between the
fluid and the blood vessel is of relevance, it has major implications for the understanding
and modelling of physiological blood flow.

For practical applications, another important finding is the transition from hard-wall to
soft-wall turbulence discussed in § 8.3. This implies that fluid–wall coupling in compliant
conduits could cause a transition even for flows that are already turbulent. The studies
of this subject are as yet preliminary, but there is convincing evidence that there is a
transition from hard-wall turbulence to a flow where the wall is mobilised and coupled to
the fluid turbulence. The characteristics of soft-wall turbulence appear to be very different
from those of the flow past rigid surfaces. This intriguing facet of wall-bounded turbulent
flows could have far-reaching consequences in applications where the flow boundaries are
sufficiently soft that there is a dynamical coupling with the fluid turbulence.
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