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Canonical anti-commutation relations

Throughout this chapter, (Y, ν) is a Euclidean space, that is, a real vector space
Y equipped with a positive definite form ν.

In this chapter we introduce the concept of representations of the canonical
anti-commutation relations (CAR representations). The definition that we use is
very similar to the definition of a representation of the Clifford relations, which
will be discussed in Chap. 15. In the case of CAR representations we assume in
addition that operators satisfying the Clifford relations act on a Hilbert space
and are self-adjoint, whereas in the standard definition of Clifford relations the
self-adjointness is not required.

CAR representations are used in quantum physics to describe fermions. Actu-
ally, CAR representations, as introduced in Def. 12.1, are appropriate for the
so-called neutral fermions. Most fermions in physics are charged, and for them a
slightly different formalism is used, which we introduce under the name charged
CAR representations. Charged CAR representations can be viewed as a special
case of (neutral) CAR representations, where the dual phase space Y is complex
and a somewhat different notation is used.

CAR representations appear in quantum physics in at least two contexts. First,
they describe fermionic systems. This is to us the primary meaning of the CAR,
and most of our motivation and terminology is derived from it. Second, they
describe spinors, that is, representations of the Spin and Pin groups. In most
applications the second meaning is restricted to the finite-dimensional case. We
will also discuss the second meaning (including the Spin and Pin groups over
infinite-dimensional spaces).

12.1 CAR representations

12.1.1 Definition of a CAR representation

Let H be a Hilbert space. Recall that Bh(H) denotes the set of bounded self-
adjoint operators on H and [A,B]+ := AB + BA is the anti-commutator of A

and B.

Definition 12.1 A representation of the canonical anti-commutation relations
or a CAR representation over Y in H is a linear map

Y � y �→ φπ (y) ∈ Bh(H) (12.1)
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314 Canonical anti-commutation relations

satisfying

[φπ (y1), φπ (y2)]+ = 2y1 ·νy21l, y1 , y2 ∈ Y. (12.2)

The operators φπ (y) are called (fermionic) field operators.

Remark 12.2 The superscript π is an example of a “name” of a given CAR
representation.

Remark 12.3 Unfortunately, the analogy between the CAR (12.2) and the CCR
(8.23) is somewhat violated by the number 2 on the r.h.s. of (12.2). The reason
for this convention is the identity φπ (y)2 = (y·νy)1l.

Remark 12.4 Later on we will sometimes call (12.1) neutral CAR representa-
tions, to distinguish them from charged CAR representations introduced in Def.
12.17.

In what follows we assume that we are given a CAR representation (12.1).
By complex linearity we can extend the definition of φπ (y) to CY:

φπ (y1 + iy2) := φπ (y1) + iφπ (y2), y1 , y2 ∈ Y.

Definition 12.5 The operators φπ (w) for w ∈ CY are also called field operators.

We have

[φπ (w1), φπ (w2)]+ = 2w1 ·νCw21l, w1 , w2 ∈ CY,

where νC is the complexification of ν.
We will sometimes use a different terminology. Let I be a set. We will say that

{φπ
i : i ∈ I} ⊂ Bh(H) is a CAR representation iff

[φπ
i , φπ

j ]+ = 2δij . (12.3)

Clearly, if Y � y �→ φπ (y) is a CAR representation and we choose an o.n. basis
{ei : i ∈ I}, then φπ

i := φπ (ei) is a CAR representation in the second meaning.

Theorem 12.6 Introduce the notation |y|ν := (y·νy)
1
2 . Let y ∈ Y, dimY > 1.

(1) spec φπ (y) = {−|y|ν , |y|ν }, ‖φπ (y)‖ = |y|ν .
(2) Let t ∈ C, y ∈ Y. Then ‖t1l + φπ (y)‖ = max{|t + |y|ν |, |t− |y|ν |}.
(3) eiφπ (y ) = cos |y|ν 1l + i sin |y |ν

|y |ν φπ (y).
(4) Let Ycpl be the completion of Y. Then there exists a unique extension of

(12.1) to a continuous map

Ycpl � y �→ φπ c p l
(y) ∈ B(H). (12.4)

(12.4) is a representation of CAR.

Proof Since (φπ )2(y) = |y|2ν 1l, we have spec φπ (y) ⊂ {−|y|ν , |y|ν }. If there exists
y0 ∈ Y with y0 �= 0 and φπ (y0) = λ1lH, then dimY = 1. But we assumed that
dimY > 1. Therefore, the spectrum of φπ (y) cannot consist of only one element,
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12.1 CAR representations 315

which proves (1). Statements (2) and (3) follow from (12.2), and statement (4)
follows from (1). �

Motivated by Thm. 12.6 (4), henceforth we will assume that Y is a real Hilbert
space.

12.1.2 CAR representations over a direct sum

Constructing a CAR representation over a direct sum of two spaces is not as
simple as the analogous construction for CCR relations (compare with Prop. 8.6).

Proposition 12.7 Let Y1 , Y2 be two real Hilbert spaces. Suppose that I1 ∈
B(H1) is such that

Y1 ⊕ R � (y1 , t) �→ φ1(y1) + tI1 ∈ B(H1),

Y2 � y2 �→ φ2(y2) ∈ B(H2)

are CAR representations. Then

Y1 ⊕ Y2 � (y1 , y2) �→ φ1(y1)⊗ 1l + I1 ⊗ φ2(y2) ∈ B(H1 ⊗H2)

is a CAR representation.

12.1.3 Cyclicity and irreducibility

The following concepts are essentially the same as in the case of CCR represen-
tations.

Definition 12.8 We say that a subset U ⊂ H is cyclic for (12.1) if

Span
{
φπ (y) · · ·φπ (yn )Ψ : Ψ ∈ U , y1 , . . . , yn ∈ Y

}
is dense in H. We say that Ψ0 ∈ H is cyclic for (12.1) if {Ψ0} is cyclic for
(12.1).

Definition 12.9 We say that the representation (12.1) is irreducible if the only
closed subspaces of H invariant under the φπ (y) for y ∈ Y are {0} and H.

Proposition 12.10 (1) A CAR representation is irreducible iff B ∈ B(H) and
[φπ (y), B] = 0 for all y ∈ Y implies that B is proportional to identity.

(2) In the case of an irreducible CAR representation, all non-zero vectors in H
are cyclic.

12.1.4 Intertwining operators

Let

Y � y �→ φ1(y) ∈ Bh(H1), (12.5)

Y � y �→ φ2(y) ∈ Bh(H2) (12.6)

be CAR representations over the same Euclidean space Y.
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Definition 12.11 We say that an operator A ∈ B(H1 ,H2) intertwines (12.5)
and (12.6) iff

Aφ1(y) = φ2(y)A, y ∈ Y.

We say that it anti-intertwines (12.5) and (12.6) iff

Aφ1(y) = −φ2(y)A, y ∈ Y.

We say that (12.5) and (12.6) are unitarily equivalent, resp. anti-equivalent if
there exists a unitary U ∈ U(H1 ,H2) intertwining, resp. anti-intertwining (12.5)
and (12.6).

Proposition 12.12 If the representations (8.11) and (8.12) are irreducible, then
the set of operators (anti-)intertwining them equals either {0} or {λU : λ ∈ C}
for some U ∈ U(H).

Proof The proof is an obvious modification of the proof of the analogous fact
about CCR representations and about C∗-algebras; see Thm. 8.13. �

12.1.5 Volume element

Consider a CAR representation (12.1). Let X be a finite-dimensional oriented
subspace of Y. Let (e1 , . . . , en ) be an o.n. basis of X compatible with the orien-
tation.

Definition 12.13 The volume element of the subspace X in the representation
(12.1) is defined by

Qπ
X := φπ (e1) · · ·φπ (en ).

In what follows we drop the superscript π. Note that QX does not depend
on the choice of an oriented o.n. basis. Changing the orientation amounts to
changing QX into −QX . We have

Q2
X = (−1)n(n−1)/21l, Q∗

X = Q−1
X = (−1)n(n−1)/2QX .

Thus QX is self-adjoint iff n = 0, 1 (mod 4); otherwise it is anti-self-adjoint.
Define uX ∈ O(Y) by

uX = (−1l)⊕ 1l,

where we use the decomposition Y = X ⊕ X⊥. Clearly,

QXφ(y)Q−1
X = (−1)nφ(uX y), y ∈ Y.

12.1.6 CAR over Kähler spaces

In this subsection we fix a CAR representation (12.1). We use the notation and
results of Subsects. 1.3.6, 1.3.8 and 1.3.9.
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12.1 CAR representations 317

The following proposition shows that choosing a sufficiently large subspace
of anti-commuting field operators is equivalent to fixing a Kähler structure in
(Y, ν).

Proposition 12.14 Suppose that Z ⊂ CY is a subspace such that

(1) CY = Z ⊕ Z;
(2) z1 , z2 ∈ Z implies [φπ (z1), φπ (z2)]+ = 0 (or equivalently, Z is isotropic for

νC).

Then there exists a unique Kähler anti-involution j on (Y, ν) such that

Z = {y − ijy : y ∈ Y}. (12.7)

Proof (1) implies that there exists a linear map j ∈ L(Y) such that Z is given
by (12.7). (2) implies

0 = (y1 + ijy1)·νC(y2 + ijy2)

= y1 ·νy2 − (jy1)·ν(jy2) + i ((jy1)·νy2 + y1 ·νjy2) .

Hence,

y1 ·νy2 − (jy1)·ν(jy2) = 0, (jy1)·νy2 + y1 ·νjy2 = 0,

which shows that j is orthogonal and anti-symmetric, hence is a Kähler anti-
involution. �

Motivated in part by the above proposition, let us fix j, a Kähler anti-involution
on (Y, ν). Recall that the space Z given by (12.7) is called the holomorphic
subspace of CY.

Definition 12.15 We define the j-creation and j-annihilation operators:

aπ∗(z) := φπ (z), aπ (z) := φπ (z), z ∈ Z.

They are bounded operators, adjoint to one another.

Proposition 12.16 One has φπ (z, z) = aπ∗(z) + aπ (z), z ∈ Z,

[aπ∗(z1), aπ∗(z2)]+ = 0, [aπ (z1), aπ (z2)]+ = 0,

[aπ (z1), aπ∗(z2)]+ = (z1 |z2)1l, z1 , z2 ∈ Z.

The Kähler structure appears naturally in the context of Fock representations.
It also arises when the Euclidean space (Y, ν) is equipped with a charge 1 U(1)
symmetry, as in Subsect. 1.3.11. We discuss the latter application in the following
subsection.
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318 Canonical anti-commutation relations

12.1.7 Charged CAR representations

CAR representations, as defined in Def. 12.1, provide a natural framework for the
description of neutral fermions. Therefore, sometimes we will call them neutral
CAR representations. In the context of charged fermions (much more common
than neutral fermions) physicists prefer to use another formalism described in
the following definition.

Definition 12.17 Suppose that (Y, (·|·)) is a unitary space and H a Hilbert
space. We say that an anti-linear map

Y � y �→ ψπ (y) ∈ B(H)

is a charged CAR representation if

[ψπ∗(y1), ψπ∗(y2)]+ = [ψπ (y1), ψπ (y2)]+ = 0,

[ψπ (y1), ψπ∗(y2)]+ = (y1 |y2)1l, y1 , y2 ∈ Y.

Suppose that y �→ ψπ (y) is a charged CAR representation. Set

φπ (y) :=
(
ψπ (y) + ψπ∗(y)

)
,

y1 ·νy2 := Re(y1 |y2).

Then Y � y �→ φπ (y) ∈ Bh(H) is a neutral CAR representation over the
Euclidean space (Y, ν). In addition, Y is equipped with a charge 1 symmetry
U(1) � θ �→ eiθ ∈ O(Y).

Conversely, charged CAR representations arise when we have a (neutral) CAR
representation and the underlying Euclidean space is equipped with a charge 1
U(1) symmetry. Let us make this precise. Suppose that (Y, ν) is a Euclidean
space and

Y � y �→ φπ (y) ∈ Bh(H)

is a neutral CAR representation. Suppose that

U(1) � θ �→ uθ = cos θ1l + sin θjch ∈ O(Y)

is a charge 1 symmetry. We know that jch is a Kähler anti-involution. Following
the standard procedure described in the previous subsection, we introduce the
holomorphic subspace for jch , that is,

Zch := {y − ijchy : y ∈ Y} ⊂ CY.

We define creation and annihilation operators associated with jch . We have a
natural identification of the space Zch with Y:

Y � y �→ z =
1
2
(1l− ijch)y ∈ Zch . (12.8)
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12.2 CAR representations in finite dimensions 319

We use the identification (12.8) to introduce charged fields parametrized by
elements of Y:

ψπ∗(y) := φπ (z) , ψπ (y) := φπ (z) .

Then we obtain a charged CAR representation over YC with the complex struc-
ture given by jch and the scalar product

(y1 |y2) := y1 ·νy2 − iy1 ·νjchy2 , y1 , y2 ∈ Y. (12.9)

12.1.8 Bogoliubov rotations

Consider a CAR representation (12.1). To simplify notation, we drop π, that is,
we consider a CAR representation

Y � y �→ φ(y) ∈ Bh(H). (12.10)

Let r ∈ O(Y). Clearly,

Y � y �→ φr (y) := φ(ry) ∈ U(H) (12.11)

is also a CAR representation.

Definition 12.18 We say that the representation (12.11) is the Bogoliubov
rotation or transformation of the representation (12.10) by r# .

Proposition 12.19 (1) If r1 , r2 ∈ O(Y), then (φr1 )r2 (y) = φr2 r1 (y).
(2) The set of r ∈ O(Y) such that (12.11) is unitarily equivalent to (12.10) is a

subgroup of O(Y).
(3) (12.11) is irreducible iff (12.10) is.

12.2 CAR representations in finite dimensions

Throughout the section we assume that (Y, ν) is a finite-dimensional Euclidean
space.

In this section we discuss CAR representations in the finite-dimensional case.
In the literature the material of this section is usually described as a part of the
theory of spinors and Clifford algebras.

12.2.1 Volume element

Suppose that Y is oriented and we are given a CAR representation (12.1). Let
(e1 , . . . , en ) be an o.n. basis of Y compatible with the orientation. The following
definition is a special case of Def. 12.13.

Definition 12.20 The operator

Qπ := φπ (e1) · · ·φπ (en )

will be called the volume element in the representation (12.1)
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320 Canonical anti-commutation relations

In what follows we drop the superscript π. Let us summarize the properties of
Q, which follow from Subsect. 12.1.5:

Theorem 12.21 (1) Q depends only on the orientation of Y and changes sign
under the change of the orientation.

(2) Q is unitary. It is self-adjoint for n ≡ 0, 1 (mod 4), otherwise anti-self-
adjoint. Moreover, Q2 = (−1l)n(n−1)/2 .

(3) Qφ(y) = (−1)n−1φ(y)Q, y ∈ Y.
(4) If n = 2m, then Q2 = (−1l)m , Q anti-commutes with φ(y), y ∈ Y, and

R2m+1 � (y, t) �→ φ(y)± tim Q

are two representations of the CAR.
(5) If n = 2m + 1, then Q2 = (−1l)m , Q commutes with φ(y), y ∈ Y, and

H = Ker(Q− im 1l)⊕Ker(Q + im 1l)

gives a decomposition of H into a direct sum of subspaces invariant for the
CAR representation.

Definition 12.22 Let dimY = 2m + 1. We will say that a CAR representation
is compatible with the orientation if Q = im 1l.

12.2.2 Pauli matrices

Consider the space C2 . Occasionally we will need its canonical basis, whose
elements will be denoted | ↑), | ↓).
Definition 12.23 Pauli matrices are defined as

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

Note that σ2
i = 1, σ∗

i = σi , i = 1, 2, 3, and

σ1σ2 = −σ2σ1 = iσ3 ,

σ2σ3 = −σ3σ2 = iσ1 ,

σ3σ1 = −σ1σ3 = iσ2 .

Moreover, B(C2) is generated by {σ1 , σ2}. Clearly, {σ1 , σ2 , σ3} is a CAR repre-
sentation over R3 .

Lemma 12.24 Let {φ1 , φ2} be a CAR representation over R2 in a Hilbert space
H. Then there exists a Hilbert space K and a unitary operator U : C2 ⊗K → H
such that

σ1⊗1lK U = Uφ1 , σ2⊗1lK U = Uφ2 .
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12.2 CAR representations in finite dimensions 321

Proof Set I := iφ1φ2 . Clearly, I = I∗ and I2 = 1l. Note that I �= 1l, since I = 1l
would contradict the fact that φ2 is self-adjoint. Hence, spec I = {1,−1}. Let
K := Ker(I − 1l). We unitarily identify H with K ⊕K by the map

Ψ �→ UΨ :=
(1

2
(φ1 − φ1I)Ψ,

1
2
(1l + I)Ψ

)
.

Then Uφ1 = σ1⊗1lK U , Uφ2 = σ2⊗1lK U . �

12.2.3 Jordan–Wigner representation

In this subsection we introduce certain basic CAR representations over a finite-
dimensional space. We start with the case of an even dimension, which is simpler.

In the algebra B(⊗m C2) we introduce the operators

σ
(j )
i := 1l⊗(j−1) ⊗ σi ⊗ 1l⊗(m−j ) , i = 1, 2, 3, j = 1, . . . ,m.

Note that σ
(j )
3 = iσ(j )

1 σ
(j )
2 . Moreover, B(⊗m C2) is generated by

{σ(j )
i : j = 1, . . . , m, i = 1, 2}.

We also set I0 := 1l, Ij := σ
(1)
3 · · ·σ(j )

3 for j = 1, . . . , m. If we set

φJW
2j−1 := Ij−1σ

(j )
1 , φJW

2j := Ij−1σ
(j )
2 , j = 1, . . . ,m, (12.12)

it is easy to see that

(φJW
1 , . . . , φJW

2m ) (12.13)

is an irreducible CAR representation over R2m in the Hilbert space ⊗m C2 . Note
that Q = Im .

Definition 12.25 The CAR representation (12.13) will be called the Jordan–
Wigner representation over R2m .

In the odd-dimensional case with n = 2m + 1, there exist two inequivalent
irreducible CAR representations, both in ⊗m C2 . They are obtained by adding
the operator ±Im to (12.12). In other words,

(φJW
1 , . . . , φJW

2m , Im ), (12.14)

(φJW
1 , . . . , φJW

2m ,−Im ) (12.15)

are irreducible CAR representations over R2m+1. We have Q = im 1l in the case
of (12.14) and Q = −im 1l in the case of (12.15). Thus the representation (12.14)
is compatible with the natural orientation of R2m+1.

Another useful, but reducible, CAR representation over R2m+1 acts on the
space ⊗m+1C2 . It is given by

(φJW
1 , . . . , φJW

2m , φJW
2m+1). (12.16)
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It decomposes into the sum of two irreducible sub-representations, one equivalent
to (12.14) and the other equivalent to (12.15). We have Q = im 1l⊗m ⊗ σ1 . The
commutant of (12.16) is spanned by 1l⊗(m+1) and Q.

Definition 12.26 The CAR representation (12.16) will be called the Jordan–
Wigner representation over R2m+1 .

12.2.4 Unitary equivalence of the CAR in finite dimensions

The following two theorems can be viewed as the fermionic analog of the Stone–
von Neumann theorem. Again, we first deal with the even-dimensional case.

Theorem 12.27 Let (φ1 , φ2 , . . . , φ2m ) be a CAR representation over R2m in
a Hilbert space H. Then there exists a Hilbert space K and a unitary operator
U : ⊗m C2 ⊗K → H such that

UφJW
j ⊗ 1lK = φjU, j = 1, . . . , 2m.

The representation is irreducible iff K = C.
In particular, every irreducible CAR representation over an even-dimensional

space is unitarily equivalent to the corresponding Jordan–Wigner representation.

Proof Set

Ĩ0 := 1l, Ĩj := ij φ1 · · ·φj , j = 1, . . . , n,

σ̃
(j )
1 := Ĩj−1φ2j−1 , σ̃

(j )
2 := Ĩj−1φ2j , j = 1, . . . ,m.

From the CAR we get

Ĩ∗j = Ĩj , Ĩ2
j = 1l,

φk Ĩj = −Ĩj φk , k ≤ 2j, φk Ĩj = Ĩj φk , k > 2j.
(12.17)

This implies that

σ̃
(j )
1 σ̃

(j )
2 = φ2j−1φ2j , Ĩj = ij σ̃(1)

1 σ̃
(1)
2 · · · σ̃(j )

1 σ̃
(j )
2 ,

φ2j−1 = Ĩj−1 σ̃
j
1 , φ2j = Ĩj−1 σ̃

(j )
2 .

(12.18)

We observe that the pairs {σ̃(j )
1 , σ̃

(j )
2 } satisfy the CAR over R2 and commute

with each other. Applying Lemma 12.24 inductively we see that there exists a
Hilbert space K and a unitary map U : ⊗nC2 ⊗K → H such that

Uσ
(j )
1 ⊗ 1lK = σ̃

(j )
1 U, Uσ

(j )
2 ⊗ 1lK = σ̃

(j )
2 U, j = 1, · · · ,m.

From (12.18) we get that UIj ⊗ 1lK = ĨjU , and hence

UIj−1σ
(j )
1 ⊗ 1lK = φ2j−1U, UIj−1σ

(j )
2 ⊗ 1lK = φ2jU, j = 1, · · · ,m.

This completes the proof of the theorem. �
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Theorem 12.28 Let (φ1 , φ2 , . . . , φ2m+1) be a representation of CAR over R2m+1

in a Hilbert space H. Then there exist Hilbert spaces K− and K+ and a unitary
operator U : ⊗m C2 ⊗ (K+ ⊕K−) → H such that

UφJW
j ⊗ 1lK+ ⊕K− = φjU, j = 1, . . . , 2m;

UIm ⊗ (1lK+ ⊕−1lK−) = φ2m+1U.

The representation is irreducible iff K+ ⊕K− = C.
In particular, every irreducible CAR representation over an odd-dimensional

oriented space compatible with its orientation is unitarily equivalent to (12.14).

Proof Let Ĩj , σ̃
(j )
1 , σ̃

(j )
2 be as in the proof of Thm. 12.27. Let U1 : ⊗m C2 ⊗

K → H be a unitary operator as in Thm. 12.27 for the CAR representation
(φ1 , . . . , φ2m ) over R2m . From (12.17) and the CAR we get

[φj , Ĩm φ2m+1] = 0, j = 1, . . . , 2m. (12.19)

Since B(⊗m C2) is generated by {σ(j )
i , j = 1, . . . , m, i = 1, 2}, we see that

U∗
1 Ĩm φ2m+1U1 = 1l⊗A, A ∈ B(K).

Again using the CAR, we get (Ĩm φ2m+1)2 = 1l. Hence, A2 = 1l.
If A = ±1lK, we get Ĩm φ2m+1 = ±1lH. Hence, φ2m+1 = ±Ĩm . In this case the

CAR representation is one of the two constructed in Subsect. 12.2.3. In the
general case we have K = K+ ⊕K−, A = 1lK+ ⊕−1lK− , and hence

UIm ⊗ (1lK+ ⊕−1lK−) = φ2m+1U.

The other identities follow from Thm. 12.27. �

Corollary 12.29 (1) Suppose that Y is an even-dimensional Euclidean space.
Let Y � y �→ φ1(y) ∈ Bh(H) and Y � y �→ φ2(y) ∈ Bh(H) be two irreducible
representations of the CAR. Then they are unitarily equivalent.

(2) The same is true if Y is odd-dimensional and oriented, and both representa-
tions are compatible with its orientation.

12.3 CAR algebras: finite dimensions

As in the previous section, we assume that (Y, ν) is a finite-dimensional Euclidean
space.

In this section we discuss ∗-algebras generated by the CAR in finite dimension.
As pure ∗-algebras they are not very interesting – they are full matrix algebras
over a 2m -dimensional space in the case of even dimension, and the direct sum of
two such algebras in the case of odd dimension. They become interesting when
we consider them together with the linear subspace of distinguished elements
φ(y), y ∈ Y.
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12.3.1 CAR algebra

Let (Y, ν) be a finite-dimensional Euclidean space.

Definition 12.30 CAR(Y) is the complex unital ∗-algebra generated by elements
φ(y), y ∈ Y, with relations

φ(λy) = λφ(y), λ ∈ R, φ(y1 + y2) = φ(y1) + φ(y2),

φ∗(y) = φ(y), φ(y1)φ(y2) + φ(y2)φ(y1) = 2y1 ·νy21l.

The following theorem is a simple algebraic fact:

Proposition 12.31 If

Y � y �→ φπ (y) ∈ B(H)

is a CAR representation, then there exists a unique ∗-homomorphism

π : CAR(Y) → B(H)

such that π(1l) = 1lH and π(φ(y)) = φπ (y), y ∈ Y.

Definition 12.32 Applying Prop. 12.31 to the Jordan–Wigner representations
(12.13) or (12.16) we obtain ∗-homomorphisms

πJW : CAR(R2m ) → B(⊗m C2),

πJW : CAR(R2m+1) → B(⊗m+1C2).

Proposition 12.33 (1) The ∗-homomorphisms πJW for n = 2m are bijective
and CAR(R2m ) is ∗-isomorphic to B(⊗m C2).

(2) The ∗-homomorphisms πJW for n = 2m + 1 are injective and CAR(R2m+1)
is ∗-isomorphic to B(⊗m C2)⊕B(⊗m C2).

Proof Choose an o.n. basis (e1 , . . . , en ) in Y. For an ordered subset {i1 , . . . , ik}
of {1, . . . , n}, set φi1 ,...,ik

:= ik(k−1)/2φi1 · · ·φik
. It is easy to prove that the ele-

ments φi1 ,...,ik
are self-adjoint and are a basis of CAR(Rn ). Their commutation

relations are determined by the CAR.
Following the construction of the Jordan–Wigner representations we see that

B(⊗m C2), if n = 2m, and B(⊗m C2)⊕B(⊗m C2), if n = 2m + 1, have self-
adjoint bases satisfying the same relations. �

The Jordan–Wigner representation determines a unique C∗-norm on CAR(Y).
Henceforth we will treat CAR(Y) as a C∗-algebra.

If Y1 ⊂ Y2 are two finite-dimensional spaces, then CAR(Y1) is isometrically
embedded in CAR(Y2).
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12.3.2 Parity

CAR algebras have a natural Z2-grading. Therefore, they are examples of super-
algebras. Consistently with the terminology of super-algebras, we introduce the
following definition:

Definition 12.34 The map α(φ(y)) := −φ(y) extends to a unique
∗-isomorphism α of CAR(Y). For j = 0, 1, we set

CARj (Y) :=
{
B ∈ CAR(Y) : α(B) = (−1)jB

}
.

Elements of CAR0(Y), resp. CAR1(Y) are called even, resp. odd.

Suppose that Y is oriented. The following definition is closely related to Def.
12.13.

Definition 12.35 The volume element of the algebra CAR(Y) is defined by

Q := φ(e1) · · ·φ(en ), (12.20)

where (e1 , . . . , en ) is any o.n. basis of Y compatible with its orientation.

Note that Q is never proportional to 1l as an element of CAR(Y).

Proposition 12.36 (1) Let A ∈ CAR0(Y) commute with φ(y), y ∈ Y (and
hence with all CAR(Y)). Then A is proportional to 1l.

(2) Let a non-zero A ∈ CAR1(Y) commute with φ(y), y ∈ Y (and hence with all
CAR(Y)). Then dimY is odd, and A is proportional to Q.

(3) Let a non-zero A ∈ CAR(Y) anti-commute with φ(y), y ∈ Y (and hence with
all CAR1(Y)). Then dimY is even, and A is proportional to Q.

12.3.3 Complex conjugation and transposition

Definition 12.37 The map c(φ(w)) := φ(w), w ∈ CY, extends to a unique anti-
linear ∗-isomorphism c of CAR(Y). We introduce the Clifford algebra over (Y, ν)
as the real sub-algebra

Cliff(Y) :=
{
B ∈ CAR(Y) : c(B) = B

}
. (12.21)

We also introduce the transposition A# := c(A∗), which is a linear anti-
automorphism.

Cliff(Y) is a real ∗-algebra with a basis

φi1 · · ·φik
, {i1 , . . . , ik} ⊂ {1, . . . , n}. (12.22)

In Chap. 15 we will introduce a more general notion of Clifford algebras, defined
for an arbitrary symmetric form on a vector space. The algebra Cliff(Y) defined
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in Def. 12.37 corresponds to the special case of a real space equipped with a
Euclidean scalar product.

12.3.4 Bogoliubov automorphisms

Proposition 12.38 If r ∈ O(Y), then the map r̂ (φ(y)) := φ(ry) extends to a
unique ∗-automorphism r̂ of CAR(Y). We have r̂1r2 = r̂1 r̂2 .

Definition 12.39 r̂ is called the Bogoliubov automorphism associated with r.

12.4 Anti-symmetric quantization and real-wave
CAR representation

In this section we introduce a natural parametrization of operators in a CAR
algebra by anti-symmetric polynomials. This parametrization, which we call the
anti-symmetric quantization, can be viewed as the fermionic analog of the Weyl–
Wigner quantization.

We also define a representation given by the GNS construction from the tracial
state. This representation has some analogy to the real-wave CCR representation
considered in Sect. 9.3; therefore we will call it the real-wave CAR representation.
In this section we describe the real-wave CAR representation only in the case
of a finite number of degrees of freedom. We will extend it to the case of an
infinite dimension in Subsect. 12.5.3, and then we will continue its study using
the formalism of Fock spaces in Subsect. 13.2.1.

In this section, (Y, ν) is a finite-dimensional Euclidean space.

12.4.1 Anti-symmetric quantization

Definition 12.40 Let y1 , . . . , yn ∈ CY. We can treat these as elements of
CPol1a(Y# ) and take their product y1 · · · yn ∈ CPola(Y# ). We define

Op(y1 · · · yn ) :=
1
n!

∑
σ∈Sn

sgn(σ) φ(yσ (1)) · · ·φ(yσ (n)) ∈ CAR(Y). (12.23)

The map extends uniquely to a linear bijective map

CPola(Y# ) � b �→ Op(b) ∈ CAR(Y), (12.24)

called the anti-symmetric quantization.

The above definition should be compared with Def. 8.65, where the Weyl–
Wigner quantization was introduced.

Definition 12.41 The inverse of (12.24) will be called the anti-symmetric sym-
bol. The anti-symmetric symbol of an operator B ∈ CARalg(Y) will be denoted
sB ∈ CPola(Y# ).
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As usual, N denotes the number operator, which in the context of CPola(Y# )
is perhaps better called the degree operator. Recall that in Chap. 3 we introduced

Λ := (−1)N (N −1l)/2 , I := (−1)N ;

see (3.9) and (3.29). We will use the functional notation for elements of
CPola(Y# ); see Subsect. 7.1.1. The generic variable in Y# will be denoted v.
We equip Y with a volume form compatible with the scalar product ν. We will
use the corresponding Berezin integral on CPola(Y# ), defined in Subsect. 7.1.4.

Proposition 12.42 (1) Op(b)∗ = Op(Λb).
(2) Let Z be an isotropic subspace of CY for νC. Let f1 , . . . , fn ∈ Pola(Z# ) ⊂

CPola(Y# ). Then

Op(f1) · · ·Op(fn ) = Op(f1 · · · fn ).

(3) If b, b1 , b2 ∈ CPola(Y# ) and Op(b) = Op(b1)Op(b2), then

b(v) = exp (∇v2 ·ν∇v1 ) b1(v1)b2(v2)
∣∣
v1 =v2 =v

(12.25)

=
ˆ

Y#

ˆ

Y#

e(v−v1 )·ν−1 (v−v2 )b1(v1)b2(v2)dv2dv1 . (12.26)

(4) If b ∈ CPola(Y# ), y ∈ CY, then

1
2

(φ(y)Op(b) + Op(Ib)φ(y)) = Op(y · b), (12.27)

1
2

(φ(y)Op(b)−Op(Ib)φ(y)) = Op((νy)·∇v b). (12.28)

Proof Statements (1) and (2) are immediate. Let us prove (12.25). Let us fix
an o.n. basis (e1 , . . . , ed) of Y such that Ξ = en ∧ · · · ∧ e1 . We use the Berezin
calculus introduced in Subsect. 7.1.5. We rename the variable v1 as v and the
variable v2 as w. We will write vi = ei · v, wi = ei · w. Without loss of generality,
we can assume that b1(v) =

∏
i∈I

vi , b2(w) =
∏
i∈J

wi for I, J ⊂ {1, . . . , d}. We have

exp

(
d∑

i=1

∇wi
· ∇vi

)
=

∑
K⊂{i,...,d}

∏
i∈K

∇wi
· ∇vi

. (12.29)

The only term in (12.29) giving a non-zero contribution to

exp

(
d∑

i=1

∇wi
· ∇vi

)
b1(v) · b2(w)

∣∣
w=v

is K = I ∩ J . Without loss of generality we can further assume that 1 ≤ p ≤ n ≤
m and

b1(v) = v1 · · · vp · vp+1 · · · vn , b2(w) = wn · · ·wp+1 · wn+1 · · ·wm .
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Then
n∏

i=p+1

∇wi
· ∇vi

b1(v) · b2(w)
∣∣
w=v

= v1 · · · vp · vn+1 · · · vm =: b(v).

We have

Op(b1) = φ(e1) · · ·φ(ep) · φ(ep+1) · · ·φ(en ),

Op(b2) = φ(en ) · · ·φ(ep+1) · φ(en+1) · · ·φ(em ),

and

Op(b1)Op(b2) = φ(e1) · · ·φ(ep) · φ(en+1) · · ·φ(em ) = Op(b),

using the CAR. This proves (12.25).
To obtain (12.26), we apply Prop. 7.19 to the even-dimensional space

X = Y ⊕ Y. Let x = (y1 , y2), ξ = (v1 , v2) be the generic variables in X and

X # . Let ζ =
[

0 ν−1

−ν−1 0

]
∈ La(X # ,X ), so that 1

2 x · ζ−1x = y2 · νy1 and

1
2 ξ · ζξ = v1 · ν−1v2 . The Pfaffian of ζ w.r.t. dv2 ∧ dv1 is equal to 1, which by
Prop. 7.19 proves the second identity of (3).

To prove (4), we can assume without loss of generality that b(v) = vi1 · · · vip

and 〈y|v〉 = vj . Then Op(b) = φ(ei1 ) · · ·φ(eip
), φ(y) = φ(ej ). Using the CAR we

get
1
2
(
φ(ej )φ(ei1 ) · · ·φ(eip

) + (−1)pφ(ei1 ) · · ·φ(eip
)φ(ej )

)
=

{
0 if j ∈ {i1 , . . . , ip},
φ(ej )φ(ei1 ) · · ·φ(eip

) if j �∈ {i1 , . . . , ip},
which proves the first statement of (4). The second can be proved similarly. �

Theorem 12.43 If b, b1 , . . . , bn ∈ CPola(Y# ) and

Op(b) = Op(b1) · · ·Op(bn ),

then the following version of the Wick theorem for the anti-symmetric quantiza-
tion is true:

b(v) = exp
(∑

i>j

∇vi
·ν∇vj

)
b1(v1) · · · bn (vn )

∣∣
v=v1 =···=vn

.

12.4.2 Real-wave CAR representation

Definition 12.44 For A ∈ CAR(Y), we define

trA = 2−m Tr πJW (A), dimY = 2m,

trA = 2−m−1Tr πJW (A), dimY = 2m + 1,
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where πJW is the Jordan–Wigner representation. tr is called the canonical tracial
state on CAR(Y).

Theorem 12.45 (1) tr is a tracial state on CCR(Y), which means

tr(AB) = tr(BA), A,B ∈ CAR(Y).

(2) It satisfies

tr(A) = tr(c(A)) = tr(α(A)) = tr(r̂(A)), A ∈ CAR(Y), r ∈ O(Y).

(3) If b, c ∈ CPola(Y# ) � Γa(CY), then

tr(Op(b)∗Op(c)) = (b|c). (12.30)

(4) For y, y1 , y2 ∈ X , we have the expectation values

tr (φ(y)) = 0,

tr (φ(y1)φ(y2)) = y1 ·νy2 .

More generally,

tr (φ(y1) · · ·φ(y2m−1)) = 0,

tr (φ(y1) · · ·φ(y2m ))=
∑

σ∈Pair2 m

sgn(σ)
m∏

j=1

yσ (2j−1) ·νyσ (2j ) .

Definition 12.46 Let (πtr ,Htr ,Ωtr) denote the GNS representation of CAR(Y)
w.r.t. the state tr. The CAR representation

Y � y �→ φtr(y) := πtr(φ(y)) ∈ Bh(Htr)

will be called the real-wave or tracial CAR representation.

12.4.3 Real-wave CAR representation in coordinates

Let n be an integer. We are going to describe the real-wave representation over
Rn more explicitly.

Clearly, ⊗nC2 has a natural conjugation, denoted as usual ⊗nC2 � Ψ �→ Ψ ∈
⊗nC2 . For typographical reasons, it will sometimes be denoted by χ. The cor-
responding real subspace of ⊗nC2 obviously equals ⊗nR2 . Linear operators pre-
serving ⊗nR2 are called real.

The conjugation of A ∈ B(⊗nC2) is denoted by A or χAχ.
Define the “vacuum vector” Ω := | ↓)⊗ · · ·⊗| ↓). Clearly, Ω = Ω.
Introduce the following operators on ⊗nC2 :

N :=
n∑

j=1

1l⊗j⊗σ3 + 1l
2

⊗1l⊗(n−j ) , Λ := (−1)N (N −1l)/2 .
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The role of these operators will become clear in Chap. 13, where we will iden-
tify ⊗nC2 with the fermionic Fock space Γa(Cn ) and they will coincide with
the operators defined in (3.9) and (3.29). Therefore, in particular, N is called
the number operator. For further reference let us note the following identities
involving Λ:

Λ1l⊗(j−1)⊗σ1⊗1l⊗(n−j )Λ = (−σ3)⊗(j−1)⊗σ1⊗(−σ3)⊗(n−j ) ,

Λ1l⊗(j−1)⊗σ2⊗1l⊗(n−j )Λ = −(−σ3)⊗(j−1)⊗σ2⊗(−σ3)⊗(n−j ) ,

Λ1l⊗(j−1)⊗σ3⊗1l⊗(n−j )Λ = 1l⊗(j−1)⊗σ3⊗1l⊗(n−j ) .

In order to describe the real-wave CAR representation over Rn , introduce the
following operators

φl
j = σ

⊗(j−1)
3 ⊗σ1⊗1l⊗(n−j ) ,

φr
j = 1l⊗(n−j )⊗σ1⊗σ

⊗(j−1)
3 = Λφl

jΛ.

Theorem 12.47 (1) We have two mutually commuting CAR representations:

φl
1 , . . . , φ

l
n , (12.31)

φr
1 , . . . , φ

r
n . (12.32)

That means

[φl
i , φ

l
j ]+ = 2δi,j , [φr

i , φ
r
j ]+ = 2δi,j , [φl

i , φ
r
j ] = 0, i, j = 1, . . . , n.

(2) Let πl : CAR(Rn ) → B(⊗nC2) be the ∗-homomorphism obtained by Prop.
12.31 from the CAR representation (12.31). Then

tr(A) = (Ω|πl(A)Ω), A ∈ CAR(Rn ),

and πl (CAR(Rn )) Ω = ⊗nC2 . Thus Ω is a cyclic vector representative for
the state tr, and hence πl is the GNS representation of CAR(Rn ) for the
state tr.

(3) Let J be the modular conjugation for the state tr. Then J = Λχ (where χ

denotes the complex conjugation). We have

Jφl
j J = φr

j , j = 1, . . . , n.

(4) We have

φl
i = φl

i , i = 1, . . . , n.

Therefore,

πtr(c(A)) = πtr(A), A ∈ CAR(Rn ).

Consequently, πtr(Cliff(Rn )) consists of real elements of πtr(CAR(Rn )).
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(5) Let Q be the operator defined in (12.20). We have

πl(Q) = Jπl(Q)J = φl
1 · · ·φl

n = φr
n · · ·φr

1

=

{
(−1)m σ2⊗σ1⊗ · · ·⊗σ2⊗σ1 , n = 2m;

(−1)m σ1⊗σ2⊗ · · ·⊗σ2⊗σ1 , n = 2m + 1.

By Thm. 12.47 (2), the representation φl can be identified with the real-wave
CAR representation defined in Def. 12.46.

The analysis of the real-wave CAR representation, in the case of an arbitrary
dimension, will be continued in Subsect. 13.2.1, where we will use the formalism
of Fock spaces.

12.5 CAR algebras: infinite dimensions

Throughout this section (Y, ν) is a Euclidean space, possibly infinite-
dimensional.

One aspect of the theory of CAR algebras simplifies in infinite dimensions: it
is not necessary to distinguish between the even and odd cases. On the other
hand, the topological aspects become more subtle. In particular, it is natural to
define (at least) three different kinds of CAR algebras: the algebraic, the C∗-
and the W ∗-CAR algebra. (The situation is, however, simpler than in the case
of CCR algebras.)

12.5.1 Algebraic CAR algebra

The definition of the algebraic CAR algebra is the same as that of the CAR
algebra in finite dimension:

Definition 12.48 The algebraic CAR algebra over Y, denoted CARalg(Y), is
the complex unital ∗-algebra generated by elements φ(y), y ∈ Y, with relations

φ(λy) = λφ(y), λ ∈ R, φ(y1 + y2) = φ(y1) + φ(y2),

φ∗(y) = φ(y), φ(y1)φ(y2) + φ(y2)φ(y1) = 2y1 ·νy21l.

Clearly, Prop. 12.31 extends to infinite dimension, with CARalg(Y) replac-
ing CAR(Y). The parity α, the complex conjugation c and the transposi-
tion # naturally extend to CARalg(Y). If r ∈ O(Y), we can introduce a unique
∗-automorphism r̂ of CARalg(Y), called the Bogoliubov automorphism, satisfying
r̂(φ(y)) = φ(ry) as in Def. 12.39.

Definition 12.49 Let j = 0, 1. We introduce

CARalg
j (Y) :=

{
B ∈ CARalg(Y) : α(B) = (−1)jB

}
,

Cliffalg (Y) :=
{
B ∈ CARalg(Y) : c(B) = B

}
.
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Note that if Y is infinite-dimensional, CARalg(Y) does not contain an operator
analogous to the operator Q defined in (12.20). (The same remark applies to
CARC ∗

(Y) and CARW ∗
(Y) defined later on.)

12.5.2 C∗-CAR algebra

Proposition 12.50 There exists a unique C∗-norm on CARalg(Y).

Proof We already know that this is true if Y is finite-dimensional.
If Y has an infinite dimension, then CARalg(Y) is the union of CAR(Y1)

for finite-dimensional subspaces of Y. So CARalg(Y) is equipped with a unique
C∗-norm. �

Definition 12.51 The CAR C∗-algebra over Y is defined as

CARC ∗
(Y) :=

(
CARalg(Y)

)cpl
,

where the completion is w.r.t. the C∗-norm defined above. CARC ∗
(Y) is a

C∗-algebra.

The relationship between CAR representations and the algebra CARC ∗
(Y) is

given by the following theorem:

Proposition 12.52 If

Y � y �→ φπ (y) ∈ Bh(H)

is a CAR representation, then there exists a unique ∗-homomorphism of
C∗-algebras

π : CARC ∗
(Y) → B(H)

such that π(φ(y)) = φπ (y), y ∈ Y.

Proof We already know that this is true if we replace CARC ∗
(Y) with

CARalg(Y). π extends to CARC ∗
(Y) by continuity.

To see the uniqueness, note that every ∗-homomorphism between C∗-algebras
is continuous. �

Clearly, CARC ∗
(Y) coincides with CARC ∗

(Ycpl). Hence, it is enough to restrict
to complete Y.

Proposition 12.53 The parity α, the complex conjugation c and the trans-
position # are isometric, and hence extend by continuity from CARalg(Y) to
CARC ∗

(Y). For r ∈ O(Y), the same is true concerning the Bogoliubov automor-
phism r̂.
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Proof Let A ∈ CARalg(Y). Then

spec A = spec α(A) = spec c(A) = spec A# = spec r̂(A).

Therefore, α, c, # and r̂ do not change the spectral radius of A. Hence, they are
isometric. �

Definition 12.54 We define CARC ∗
i (Y), i = 0, 1, and CliffC ∗

(Y) as in
Def. 12.49.

Theorem 12.55 If Y is an infinite-dimensional real Hilbert space, then
CARC ∗

(Y) is simple. If in addition Y is separable, then CARC ∗
(Y) is isomorphic

to UHF(2∞) defined in Subsect. 6.2.9.

Proof Choose an o.n. basis (e1+ , e1−, e2+ , e2−, . . . ) of Y. Let Yn be the space
spanned by the first n vectors of this basis. We have a commuting diagram,

CAR(Y2m ) ⊂ CAR(Y2m+2)
↓ ↓

B(⊗m C2) → B(⊗m+1C2),

where the vertical arrows are ∗-isomorphisms and the lower horizontal arrow is
A �→ A⊗1lC2 . Clearly,

⋃∞
m=1 Y2m is dense in Y. Hence,

CARC ∗
(Y) =

( ∞⋃
m=1

CAR(Y2m )

)cpl

�
( ∞⋃

m=1

B(⊗m C2)

)cpl

= UHF(2∞).
�

12.5.3 W ∗-CAR algebra

In Thm. 12.47 we defined the state tr on CAR(Y) for any finite-dimensional
Y. For an arbitrary Y this gives rise to a state on CARalg(Y), and hence on
CARC ∗

(Y), also denoted tr. We can perform the GNS representation using the
state tr and obtain the triple (Htr , πtr ,Ωtr), where

πtr : CARC ∗
(Y) → B(Htr)

is a faithful ∗-representation, Ωtr ∈ Htr is a vector cyclic for πtr(Htr) and

tr(A) = (Ωtr |πtr(A)Ωtr).

Definition 12.56 We define the W ∗-CAR algebra of Y as

CARW ∗
(Y) :=

(
πtr
(
CARC ∗

(Y)
))′′

.
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Since πtr is faithful, it defines an isomorphism of CARC ∗
(Y) onto

πtr(CARC ∗
(Y)). Therefore, in what follows these two algebras will be identi-

fied. Thus CARC ∗
(Y) is a σ-weakly dense sub-algebra of CARW ∗

(Y).
We have a normal state

(Ωtr |AΩtr), A ∈ CARW ∗
(Y). (12.33)

On CARC ∗
(Y) it coincides with tr. In what follows, we will write trA also for

(12.33).
Thm. 12.45 extends with obvious adjustments:

Theorem 12.57 (1) tr is a tracial state on CARW ∗
(Y).

(2) The conjugation c and the parity α extend to σ-weakly continuous involu-
tions on CARW ∗

(Y) preserving tr. For r ∈ O(Y), the same is true for the
Bogoliubov automorphism r̂.

(3) The identities of Thm. 12.45 (3) and (4) are true.

Definition 12.58 We define CARW ∗
i (Y), i = 0, 1, and CliffW ∗

(Y) as in Def.
12.49.

Theorem 12.59 If Y is an infinite-dimensional separable Hilbert space, then
CARW ∗

(Y) is isomorphic to HF (the unique hyper-finite type II1 factor described
in Subsect. 6.2.10).

Recall from Subsect. 6.5.2 that, for any 1 ≤ p ≤ ∞, we can define the space
Lp(CARW ∗

(Y), tr). For p = 1, it coincides with the space of normal functionals
on CARW ∗

(Y). For p = 2, it coincides with the GNS Hilbert space for the state
tr, denoted also Htr . Finally, for p =∞, it coincides with CARW ∗

(Y) itself.
For 1 ≤ p < ∞, CARalg(Y) is dense in Lp(CARW ∗

(Y), tr), so that
Lp(CARW ∗

(Y), tr), can be understood as the completion of CARalg(Y) in the
norm ‖A‖p := (tr|A|p)1/p .

Definition 12.60 Similarly to the case of a finite dimension, in the general case
we define the tracial or real-wave CAR representation over Y by

Y � y �→ φtr(y) := πtr(φ(y)) ∈ Bh(Htr).

12.5.4 Conditional expectations between CAR algebras

Consider a closed subspace Y1 of Y. Clearly, CARW ∗
(Y1) can be viewed as a

W ∗-sub-algebra of CARW ∗
(Y). Besides, CARW ∗

(Y) is equipped with a tracial
state tr. Therefore, by Subsect. 6.5.4, there exists a unique conditional expecta-
tion

EY1 : CARW ∗
(Y) → CARW 1 (Y1)

such that

trA = trEY1 (A), A ∈ CARW ∗
(Y).
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It commutes with the parity:

α ◦ EY1 = EY1 ◦ α.

It restricts to a conditional expectation between the corresponding CAR C∗-
algebras:

EY1 : CARC ∗
(Y) → CARC ∗

(Y1).

If {Yi}i∈I is an increasing net of closed subspaces of Y with ∪
i∈I
Yi dense in Y,

we have the norm convergence

lim
i

EYi
(A) = A, A ∈ CARC ∗

(Y), (12.34)

and the σ-weak convergence

σ−w − lim
i

EYi
(A) = A, A ∈ CARW ∗

(Y).

12.5.5 Irreducibility of infinite-dimensional CAR algebras

The following proposition extends Prop. 12.36 to the infinite-dimensional case.

Proposition 12.61 (1) Let A ∈ CARC ∗
0 (Y) commute with φ(y), y ∈ Y (and

hence with all CARC ∗
(Y)). Then A is proportional to 1l.

(2) Let a non-zero A ∈ CARC ∗
1 (Y) commute with φ(y), y ∈ Y (and hence with

all CARC ∗
(Y)). Then dimY is finite and odd, and A is proportional to Q.

(3) Let a non-zero A ∈ CARC ∗
(Y) anti-commute with φ(y), y ∈ Y (and hence

with all CARC ∗
1 (Y)). Then dimY is finite and even, and A is proportional

to Q.

Proof We pick an increasing net Yi , i ∈ I of finite-dimensional subspaces of
Y with (

⋃
i∈I Yi)cl = Y. Let Ei be the conditional expectation onto CAR(Yi).

Let A ∈ CARC ∗
0 (Y) such that Aφ(y) = φ(y)A for y ∈ Y. Let Ai := Ei(A). Since

Eiφ(y) = φ(y), y ∈ Yi , we obtain from Prop. 6.83 that Aiφ(y) = φ(y)Ai , y ∈ Yi .
By Prop. 12.36, this implies that, for all i, Ai = λi1l. We know that lim

i
Ai = A

by (12.34). Hence, lim
i

λi =: λ exists and A = λ1l. This proves (1).

Let us now prove (2). Let us assume that there exists A with the stated prop-
erties, and that dimY is infinite. We pick an increasing net of finite-dimensional
subspaces Yi of odd dimensions as above, equip them with orientations and
denote by Qi the associated volume elements as in (12.20). Considering the
net Ai := EiA, we know by Prop. 12.36 that, for all i, Ai = λiQi . Clearly, if
i ≤ j, then Ei(Qj ) = Qi , which implies that λi coincide and equal a certain
non-zero number λ. Since A := lim

i
Ai �= 0 exists, lim

i
Qi �= 0. Using now the

CAR we see that if Yi , Yj are two finite-dimensional spaces with Yi � Yj , then

https://doi.org/10.1017/9781009290876.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.013


336 Canonical anti-commutation relations

‖Qi −Qj‖ = 1, which is a contradiction, since Y is infinite-dimensional. The
proof of (3) is similar. �

The following proposition is the W ∗-analog of Prop. 12.61.

Proposition 12.62 (1) Let A ∈ CARW ∗
0 (Y) commute with φ(y), y ∈ Y (and

hence with all CARW ∗
(Y)). Then A is proportional to 1l.

(2) Let a non-zero A ∈ CARW ∗
1 (Y) commute with φ(y), y ∈ Y (and hence with

all CARW ∗
(Y)). Then dimY is finite and odd, and A is proportional to Q.

(3) Let a non-zero A ∈ CARW ∗
(Y) anti-commute with φ(y), y ∈ Y (and hence

with all CARW ∗
1 (Y)). Then dimY is finite and even, and A is proportional

to Q.

Proof The proof of (1) is completely analogous to Prop. 12.61. Let us explain
the modifications for the proof of (2). By the same arguments as in Prop. 12.61,
we obtain that lim

i
Qi exists in the σ-weak topology. Working in the GNS repre-

sentation for the tracial state, we see that lim
i

QiΩ does not exist. The proof of

(3) is similar. �

12.6 Notes

Clifford relations and Clifford algebras appeared in mathematics before quantum
theory, in Clifford (1878). They will be further discussed in Chap. 15.

Canonical anti-commutation relations were introduced in the description of
fermions by Jordan–Wigner (1928).

Pauli matrices were introduced by Pauli (1927) to describe spin 1
2 particles.

Mathematical properties of CAR algebras were extensively studied; see e.g.
the review paper by Araki (1987) and the book by Plymen–Robinson (1994).
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