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ERGODIC INEQUALITY OF A TWO-PARAMETER
INFINITELY-MANY-ALLELES DIFFUSION MODEL

YOUZHOU ZHOU,∗ McMaster University

Abstract

In this paper three models are considered. They are the infinitely-many-neutral-alleles
model of Ethier and Kurtz (1981), the two-parameter infinitely-many-alleles diffusion
model of Petrov (2009), and the infinitely-many-alleles model with symmetric dominance
Ethier and Kurtz (1998). New representations of the transition densities are obtained for
the first two models and the ergodic inequalities are provided for all three models.
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1. Introduction

The Fleming–Viot process is a very important model in population genetics. It can include
various evolutionary forces in a single model, such as mutations and selections. Let E be the
type space, and P (E) be the set of probability measures on E. The Fleming–Viot process Zt

is a P (E)-valued diffusion process with generator,

AFf (μ) =
∑

1≤i<j≤m

(〈�(m)
ij f, μm−1〉 − 〈f, μm〉) + 〈B(m)f, μm〉

+ 2σ̄

m∑
i=1

(〈K(m)
i f, μm+2〉 − 〈f, μm〉) + σ̄m〈f, μm〉,

where Ff (μ) = 〈f, μm〉, μ ∈ P (E), and f ∈ B(Em). Let �
(m)
ij be the sampling operator,

which replaces the j th variable of f by the ith variable. Let B be the mutation operator,
generating a Feller semigroup {Tt , t ≥ 0} defined by a family of transition probabilities
P(t, x, dy)(t > 0, x ∈ E), and B(m) is the generator of the semigroup

Tm(t)f =
∫

E

. . .

∫
E

f (y1, . . . , ym)P (t, x1, dy1) · · · P(t, xm, dym).

Let K
(m)
i be the selection operator and

K
(m)
i f = σ̄ + σ(xi, xm+1) − σ(xm+1, xm+2)

2σ̄
f (x1, . . . , xm).
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Ergodic inequality of a two-parameter diffusion model 239

Let σ(x, y) be a symmetric function called the relative fitness of genotype {x, y}. Define σ̄ to
be supx,y,z |σ(x, y) − σ(y, z)|. For a more comprehensive introduction to the Fleming–Viot
process; see [5].

If the mutation operator B of Fleming–Viot process Zt is of the form

Bf (x) = θ

2

∫
E

(f (y) − f (x))ν0(dx), θ > 0, ν0 ∈ P (E),

then, for all t > 0, Zt is almost surely of purely atomic measure. Denote the totality of purely
atomic measures by Pa. For μ ∈ Pa, if we consider the decreasing arrangement of the atomic
mass of μ, then we will end up with (x1, x2, . . .), which consists of a set

�̄∞ =
{
(x1, x2, . . .)

∣∣∣∣ x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

xi ≤ 1

}
.

We can define an atomic mapping ρ : P (E) → �̄∞ by mapping μ to its decreasingly ordered
atomic vector (x1, x2, . . .). Therefore, ρ(Zt ) is a �̄∞-valued process. The Fleming–Viot
process is usually called a labeled model and its atomic process ρ(Zt ) is called an unlabeled
model.

If there are only random sampling and mutations involved, then ρ(Zt ) is the infinitely-many-
neutral-alleles model [4], denoted by Xt . The generator of Xt is

G = 1

2

∞∑
i,j=1

xi(δi,j − xj )
∂2

∂xi∂xj

− θ

2

∞∑
i=1

xi

∂

∂xi

, x ∈ �̄∞.

If we include selection as well, then the unlabeled model is usually non-Markovian. But if
we consider selection of symmetric dominance introduced in [13], then the unlabeled model is
a Markov process. We denote this unlabeled model by Xσ

t and call it infinitely-many-alleles
diffusion with symmetric dominance; see [6]. The generator of Xσ

t is

Gσ = G + σ

∞∑
i=1

xi(xi − ϕ2(x))
∂

∂xi

, x ∈ �̄∞,

where ϕ2(x) = ∑∞
i=1 x2

i , and is called homozygosity in population genetics.
Both Xt and Xσ

t are reversible diffusions and have unique stationary distributions.
The stationary distribution of Xt is the Poisson–Dirichlet distribution PD(θ ), and the stationary
distribution of Xσ

t is
πσ (dx) = Cσ Exp{σϕ2(x)}PD(θ)(dx),

where Cσ is a normalized constant.
Moreover, there is a two-parameter generalization of the PD(θ ). We call it a two-parameter

Poisson–Dirichlet distribution (see [7]) PD(θ, α), θ + α > 0, 0 < α < 1. Correspond-
ingly, there is a two-parameter generalization [8], [11] of Xt , denoted by X

θ,α
t and called a

two-parameter infinitely-many-alleles diffusion model. The two-parameter Poisson–Dirichlet
distribution PD(θ, α) is the associated stationary distribution. The generator of X

θ,α
t is

Gθ,α = 1

2

∞∑
i,j=1

xi(δi,j − xj )
∂2

∂xi∂xj

− 1

2

∞∑
i=1

(θxi + α)
∂

∂xi

, x ∈ �̄∞.

However, X
θ,α
t has no biological interpretation at all. Whether its labeled model exists is

still open.
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In [3], the transition probability of the neutral Fleming–Viot process Zt is obtained. In [2],
the transition density function of the unlabeled neutral process Xt is also obtained. Therefore,
its explicit transition probability is available as well. We can actually obtain the transition
probabilities of Xt through the transition probabilities of Zt ; see [7]. In [9], the transition
density function of X

θ,α
t is obtained as well. In this paper we reorganize the transition density

functions of X
θ,α
t and obtain a new representation of the transition density functions of X

θ,α
t .

Interestingly, the associated transition probabilities resemble the structure of the transition
probabilities for the neutral Fleming–Viot process. This can actually shed some light on the
construction of the labeled model of X

θ,α
t .

Furthermore, the ergodic inequalities of Zt and Xt are both available, but similar ergodic
inequalities of X

θ,α
t and Xσ

t are still missing. In this paper we will obtain the ergodic inequalities
of X

θ,α
t and Xσ

t . It turns out that X
θ,α
t and Xt share the same ergodic inequality. Lastly, the

ergodic inequality of Xσ
t is stronger than the ergodic theorem stated in [6].

The remainder of this paper is organized as follows. In Section 2 we will consider the
transition density functions of X

θ,α
t . In Section 3 we will discuss the ergodic inequalities of

X
θ,α
t and Xσ

t .

2. The transition density functions of X
θ,α
t

In [2] and [9], the explicit transition densities of Xt and X
θ,α
t are obtained, respectively,

through eigen expansion. By making use of these known transition densities, we obtain a new
representation.

Theorem 2.1. It holds that X
θ,α
t has the following transition density:

pθ,α(t, x, y) = dθ
0 (t) + dθ

1 (t) +
∞∑

n=2

dθ
n (t)pθ,α

n (x, y),

where

dθ
n (t) =

∞∑
m=n

2m + θ − 1

m! (−1)m−n

(
m

n

)
(n + θ)(m−1)e

−λmt , n ≥ 1,

dθ
0 (t) = 1 −

∞∑
m=1

2m + θ − 1

m! (−1)m−1θ(m−1)e
−λmt ,

λ1 = 0, λm = m(m − 1 + θ)

2
, m ≥ 2.

Moreover,

pθ,α
n (x, y) =

∑
|η|=n

pη(x)pη(y)∫
pηdPD(θ, α)

,

η = (η1, . . . , ηl) is a partition of n and |η| = ∑l
i=1 ηi .

Define ai(η) = #{j | ηj = i, 1 ≤ j ≤ l}. Then pη(x) is the continuous extension of

n!
η1! . . . ηl ! a1(η)! . . . an(η)!

∑
i1,...,il distinct

x
η1
i1

. . . x
ηl

il
.
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Proof. Due to [9], the transition density of X
θ,α
t is

pθ,α(t, x, y) = 1 +
∞∑

m=2

e−λmtQθ,α
m (x, y).

Moreover, for θ > −α, 0 < α < 1, there exist constants c and d, such that

Qθ,α
m (x, y) ≤ (cmd)m.

Therefore, for t0 > 0, and for all t ∈ [t0, ∞), we have
∞∑

m=2

Exp{−λmt}Qθ,α
m (x, y) ≤

∞∑
m=2

Exp{−λmt}(cmd)m

=
∞∑

m=2

(
cmd

exp (t (m + θ − 1)/2)

)m

≤
∞∑

m=2

(
cmd

exp (t0(m + θ − 1)/2)

)m

.

Since limm→+∞ cmd/ exp (t0(m + θ − 1)/2) = 0, the exists M > 0 such that, for all m > M ,

cmd

exp (t0(m + θ − 1)/2)
<

1

2
.

Because
∑

m≥1 1/2m is convergent; then, by Weierstrass’s M-test, pθ,α(t, x, y) is uniformly
convergent on [t0, +∞) × �̄∞ × �̄∞, and, thus, is continuous. Next, by Fubini’s theorem, we
can rearrange pθ,α(t, x, y) by switching the order of summation. Then

pθ,α(t, x, y) = 1 +
∞∑

m=2

e−λmt
( m∑

n=2

2m + θ − 1

m! (−1)m−n

(
m

n

)
(n + θ)(m−1)p

θ,α
n (x, y)

+ 2m + θ − 1

m! (−1)m−1(θ + 1)(m−1)mp
θ,α
1 (x, y)

+ 2m + θ − 1

m! (−1)mθ(m−1)p
θ,α
0 (x, y)

)
.

Since p
θ,α
1 (x, y), p

θ,α
0 (x, y) = 1, we have

pθ,α(t, x, y) = 1 +
∞∑

m=2

e−λmt
m∑

n=2

2m + θ − 1

m! (−1)m−n

(
m

n

)
(n + θ)(m−1)p

θ,α
n (x, y)

+
∞∑

m=2

e−λmt
(2m + θ − 1

m! (−1)m−1(θ + 1)(m−1)m

+ 2m + θ − 1

m! (−1)mθ(m−1)

)

= 1 +
∞∑

m=2

e−λmt
m∑

n=2

2m + θ − 1

m! (−1)m−n

(
m

n

)
(n + θ)(m−1)p

θ,α
n (x, y)

+
∞∑

m=2

e−λmt 2m + θ − 1

m! (−1)m−1
[
m(θ + 1)(m−1) − θ(m−1)

]
.
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When m = 1, m(θ + 1)(m−1) − θ(m−1) = 0. Then we have

pθ,α(t, x, y) = 1 −
∞∑

m=1

e−λmt 2m + θ − 1

m! (−1)m−1θ(m−1)

+
∞∑

m=1

e−λmt 2m + θ − 1

m! (−1)m−1m(θ + 1)(m−1)

+
∞∑

m=2

e−λmt
m∑

n=2

2m + θ − 1

m! (−1)m−n

(
m

n

)
(n + θ)(m−1)pn(x, y)

= dθ
0 (t) + dθ

1 (t)

+
∞∑

m=2

e−λmt
m∑

n=2

2m + θ − 1

m! (−1)m−n

(
m

n

)
(n + θ)(m−1)p

θ,α
n (x, y).

Let us switch the order of summation. Then we have

pθ,α(t, x, y) = dθ
0 (t) + dθ

1 (t) +
+∞∑
n=2

dθ
n (t)pθ,α

n (x, y).

Define ν
θ,α
n (x, dy) = p

θ,α
n (x, y)PD(θ, α)(dy), then the transition probability of X

θ,α
t is

P θ,α(t, x, dy) = (dθ
0 (t) + dθ

1 (t))PD(θ, α)(dy) +
∞∑

n=2

dθ
n (t)νθ,α

n (x, dy). (2.1)

Remark 2.1. The transition probability of Xt also has the same structure as (2.1). Moreover,
since Xt has an entrance boundary �̄∞ − �∞, i.e. Xt immediately moves into �∞ and never
exits regardless of its starting point. S.N. Ethier informed the author that a similar result can
also be obtained for X

θ,α
t .

For both Xt and X
θ,α
t , the coefficients dθ

n (t), n ≥ 0, are the same. When θ ≥ 0, they are the
distributions of the ancestral process discussed by Tavaré [12]. However, for X

θ,α
t , θ could be

negative and dθ
n (t) is not a probability distribution anymore. However, if we collapse the states

0 and 1, and relabel it as 1, then dθ
1 (t) + dθ

0 (t), dθ
n (t), n ≥ 2, define a probability distribution.

We can generalize this structure to the case where θ > −1. The estimation of the tail probability
obtained in [12] is still true when θ > −1.

Proposition 2.1. For θ > −1, we have

e−λnt ≤
∞∑

k=n

dθ
k (t) ≤ (n + θ)(n)

n[n]
e−λnt .

In particular, when n = 2, we have

∞∑
k=2

dθ
k (t) ≤ (2 + θ)(3 + θ)

2
e−(θ+1)t . (2.2)
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Proof. Consider a pure-death Markov chain Bt in {1, 2, . . . , m} with Q matrix,

Q =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
λ2 −λ2 0 · · · 0 0
0 λ3 −λ3 · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · λm −λm

⎞
⎟⎟⎟⎟⎟⎠ ,

where λk = 1
2k(k + θ − 1), k ≥ 2. Following the similar arguments in Theorem 4.3 of [7],

we will be able to find all the left eigenvectors and right eigenvectors of Q. Denote the matrix
consisting of left eigenvectors by U = (uij ) and the matrix consisting of right eigenvectors by
V = (vij ), where

uij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ1j , i = 1,

0, j > i > 1,

(−1)i−j

(
i

j

)
(j + θ)(i−1)

(i + θ)(i−1)

, j ≤ i, i > 1,

and

vij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, j = 1,

0, j > i,(
i

j

)
(j + θ)(j)

(i + θ)(j)

, 1 < j ≤ i.

Note that the row vectors of U are the left eigenvectors of Q and the column vectors of V are
the right eigenvectors of Q. Similarly, we can also show that UV = I and Q is diagonlized as
V �U , where � = diag{0, −λ2, . . . ,−λm}. Therefore, the transition matrix Pt is

Pt = etQ = V e�tU.

By direct computation, we know that, for 2 ≤ n ≤ m,

Pmn(t) =
m∑

k=n

(−1)k−n

(
m

k

)(
k

n

)
(θ + k)(k)

(θ + m)(k)

(θ + n)(k−1)

(θ + k)(k−1)

e−λkt .

Letting m → +∞, we have dθ
n (t) = limm→∞ Pmn(t).

The remaining arguments are essentially due to Tavaré.
By the martingale argument in Chapter 6 of [10], we know that

Zn(t) = eλnt (Bt )[n]
(Bt + θ)(n)

,

because e−λnt is one eigenvalue of Pt and(
0, 0, . . . , 0,

n[n]
(n + θ)(n)

, . . . ,
k[n]

(k + θ)(n)

, . . . ,
m[n]

(m + θ)(n)

)


is the corresponding eigenvector. So,

EZn(t) = Zn(0) = m[n]
(m + θ)(n)

.
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Since, for n ≤ k ≤ m,

n[n]
(n + θ)(n)

≤ k[n]
(k + θ)(n)

≤ m[n]
(m + θ)(n)

,

and
e−λntm[n]
(m + θ)(n)

= e−λntEZn(t) =
m∑

k=n

k[n]
(k + θ)(n)

Pmk(t),

we have

n[n]
(n + θ)(n)

P (Bt ≥ n | B0 = m) ≤ e−λntm[n]
(m + θ)(n)

≤ m[n]
(m + θ)(n)

P (Bt ≥ n | B0 = m).

Thus, we have

e−λnt ≤ P(Bt ≥ n | B0 = m) ≤ (n + θ)(n)

n[n]
e−λnt .

Letting m → ∞, we have

e−λnt ≤
∞∑

k=n

dθ
k (t) ≤ (n + θ)(n)

n[n]
e−λnt .

3. Ergodic inequalities

By making use of the transition probability (2.1) and the estimation of the tail proba-
bility (2.2), we can easily obtain the following ergodic inequality of X

θ,α
t .

Theorem 3.1. For X
θ,α
t , we have the ergodic inequality

sup
x∈�̄∞

||P θ,α(t, x, ·) − PD(θ, α)(·)||var ≤ (2 + θ)(3 + θ)

2
Exp{−(θ + 1)t}, t ≥ 0.

Proof. Denote B to be the totality of Borel subsets of �̄∞. Then

||P θ,α(t, x, ·) − PD(θ, α)(·)||var = sup
A∈B

|P θ,α(t, x, A) − PD(θ, α)(A)|

= sup
A∈B

|(dθ
0 (t) + dθ

1 (t))PD(θ, α)(A)

+
∞∑

n=2

dθ
n (t)νθ,α

n (A) − PD(θ, α)(A)|

= sup
A∈B

∣∣∣∣
∞∑

n=2

dθ
n (t)(νθ,α

n (A) − PD(θ, α)(A))

∣∣∣∣
≤

∞∑
n=2

dθ
n (t) sup

A∈B
|νθ,α

n (A) − PD(θ, α)(A)|

≤
∞∑

n=2

dθ
n (t) ≤ (θ + 2)(θ + 3)

2
e−(θ+1)t .
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Remark 3.1. As can be seen, the ergodic inequality of X
θ,α
t is the same as the ergodic inequality

of Xt obtained in [2]. But for X
θ,α
t , θ could be negative.

Since Xσ
t is absolutely continuous with respect to Xt , �̄∞ − �∞ should also serve as an

entrance boundary of Xσ
t . Hence, we can change the value of the density function pσ (t, x, y)

when x or y is in �̄∞ − �∞. Therefore, pσ (t, x, y) can be chosen to be the continuous extension
of pσ (t, x, y)

∣∣
�∞×�∞ . Moreover, pσ (t, x, y) is symmetric because Xσ

t is reversible. As stated
in [9], the Poincaré inequality of Xσ

t also holds. Therefore, it guarantees the L2-exponential
convergence of Xσ

t . By running the argument in Theorem 8.8 of [1], we can also obtain the
following ergodic inequality.

Theorem 3.2. For Xσ
t , there exists K(θ, σ ), such that

sup
x∈�̄∞

‖P σ (t, x, ·) − πσ (·)‖var ≤ K(θ, σ )Exp{−gap(Gσ )t}, t ≥ 0.

Proof. We will follow the argument in Theorem 8.8 of [1]. Define μx(·) = Px(X
σ
s ∈ ·).

Since

P σ (t, x, ·) =
∫

�̄∞
P σ (t − s, z, ·)P σ (s, x, dz),

we have
P σ (t, x, ·) = μxP σ

t−s(·).
Therefore,

‖P σ (t, x, ·) − π(·)‖var = ‖μxP σ
t−s(·) − π(·)‖var.

By part (1) in Theorem 8.8 of [1], we have, for all t ≥ s,

‖P σ (t, x, ·) − π(·)‖var ≤
∥∥∥∥dμx

dπσ

− 1

∥∥∥∥
2

e−(t−s)gap(Gσ )

=
√∫

pσ (s, x, y)2πσ (dy) − 1e−(t−s)gap(Gσ ).

Therefore, for t ≥ s, we have

‖P σ (t, x, ·) − π(·)‖var ≤
√∫

pσ (s, x, y)2πσ (dy) − 1es·gap(Gσ )Exp{−gap(Gσ )t}.

Due to (4.17) of [6] and Theorem 3.3 of [9], we can conclude that there exists a constant
D(σ, t) > 0, such that

pσ (t, x, y) ≤ D(σ, t).

If we choose s = 1
2 , the constant

K
′
(θ, σ ) =

√
D2(σ, t) + 1egap(Gσ )/2 ≥

√∫
pσ (s, x, y)2πσ (dy) − 1egap(Gσ )/2.

Then we have

sup
x∈�̄∞

∥∥∥P σ (t, x, ·) − πσ (·)
∥∥∥

var
≤ K

′
(θ, σ )Exp{−gap(Gσ )t}, for all t ≥ 1

2 .
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Moreover,
sup

x∈�̄∞

∥∥∥P σ (t, x, ·) − πσ (·)
∥∥∥

var
≤ 1, for all t ≥ 0.

Thus, for all t ∈ [0, 1
2 ], if we choose K

′′
(θ, σ ) such that

K
′′
(θ, σ )e−gap(Gσ )/2 ≥ 1,

then, for all t ∈ [0, 1
2 ],

sup
x∈�̄∞

∥∥∥P σ (t, x, ·) − πσ (·)
∥∥∥

var
≤1 ≤ K

′′
(θ, σ )e−gap(Gσ )/2 ≤ K

′′
(θ, σ )Exp{−gap(Gσ )t}.

Therefore, choosing K(θ, σ ) = max{K ′
(θ, σ ), K

′′
(θ, σ )}, we have

sup
x∈�̄∞

∥∥∥P σ (t, x, ·) − πσ (·)
∥∥∥

var
≤ K(θ, σ )Exp{−gap(Gσ )t}.

Remark 3.2. Presumably, we could have an ergodic inequality of Xσ
t if we apply Theorem 8.8

of [1]. But due to the special property of Xσ
t , this theorem is actually a refinement of the ergodic

inequality deduced from Theorem 8.8 of [1]. Furthermore, this theorem is stronger than the
ergodic theorem of [6].
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