A remark about canonical forms

By Hazel Perfect.

A comparison of the rational and classical canonical forms of a square matrix reveals that for a nilpotent matrix the two are identical. In this note I describe how we may utilise this fact in solving the problem of reducing a given matrix to classical canonical form. I believe that the point which I try to make in what follows is one which is not always explicitly remarked upon in the literature, and it has therefore seemed to me to be worth while to stress it here.

Suppose A is an $n \times n$ matrix with p distinct characteristic roots a_{1}, \ldots, a_{p}, and with minimum function $f(\lambda)=\left(\lambda-a_{1}\right)^{\gamma_{1}} . .\left(\lambda-a_{p}\right)^{\gamma} p$. We interpret column matrices as vectors of the n-dimensional vector space V_{n}, and A as the matrix of a linear transformation in V_{n}. Denote by E_{1}, \ldots, E_{p} the null-manifolds of $\left(\alpha_{1} I-A\right)^{r_{1}}, \ldots,\left(\alpha_{p} I-A\right)^{r} p$ respectively. It may be shown that $E_{1}, \ldots, E_{p} \operatorname{span} V_{n}$ and that E_{i} meets the join of $E_{1}, \ldots, E_{i-1}, E_{i+1}, \ldots, E_{p}$ only in the zero vector. Write dimension $E_{i}=d_{i}$. If $P=\left(P_{1} \ldots P_{p}\right)$, where P_{i} is an $n \times d_{i}$ matrix of rank d_{i} whose columns are linearly independent vectors spanning E_{i}, then

$$
P^{-1} A P=\left(\begin{array}{cccc}
\Gamma_{1} & 0 & \cdots & 0 \tag{1}\\
0 & \Gamma_{2} & \cdots & 0 \\
. & - & \cdots & . \\
0 & 0 & \cdots & \Gamma_{p}
\end{array}\right)
$$

where Γ_{i} is a $d_{i} \times d_{i}$ matrix with the single characteristic root a_{i}. When non-singular matrices Q_{i} (say) have been found reducing Γ_{i} to classical canonical form then the problem of reducing A to classical canonical form is solved.

In practice, when A is of small order and its minimum function is known in factorised form, it is not difficult to find a matrix P reducing A to the form (1) above. The method of reduction of a matrix to rational canonical form (by the construction of a complete principal sequense) is well known and is practicable when the matrix is small. ${ }^{1}$ If this method is applied to the nilpotent matrix $\alpha_{i} I-\Gamma_{i}$, it evidently leads to the construction of a matrix Q_{i} reducing $\alpha_{i} I-\Gamma_{i}$ to classical canonical form and therefore reducing Γ_{i} to classical cenonical form.

REFERENCE.
${ }^{1}$ Todd, J. A., Projective and Analytical Geometry (London, 1947), pp. 163-4.
University College,

