The comma-free codes with words of length two

A.H. Ball and L.J. Cummings

Abstract

A code not requiring a distinct symbol to separate words is called comma-free. Two codes are isomorphic if one can be obtained from the other by a permutation of the underlying alphabet. Since subcodes of comma-free codes are comma-free, we investigate only maximal comma-free codes. All isomorphism classes of maximal comma-free codes with words of length 2 are determined and a natural representative of each class is given.

1. Introduction

Let $\Sigma_{n}=\{0,1, \ldots, n-1\}$ be an alphabet of n symbols. Let F be a block code of word length k over Σ_{n}. The code F is said to be comma-free if whenever

$$
a_{1} \ldots a_{k} \in F \text { and } b_{1} \ldots b_{k} \in F
$$

then the words

$$
\begin{equation*}
a_{2} \ldots a_{k} b_{1}, a_{3} \ldots a_{k} b_{1} b_{2}, \ldots, a_{k} b_{1} \ldots b_{k-1} \tag{1}
\end{equation*}
$$

are not in F. The words (1) are called the overlaps of $a_{1} \ldots a_{k}$ and $b_{1} \ldots b_{k}$. Alternately, a block code is comma-free if a distinct symbol is not required to separate code words in a message. Subcodes of commafree codes are comma-free.

Mathematical study of comma-free codes was initiated in 1958 by

Golomb, Gordon and Welch [2]. These authors gave an upper bound for the size $W_{k}(n)$ of a maximal comma-free code as a function of the alphabet length n and the block length k. They conjectured that the bound was always attained when the k was an odd integer. Eastman [1] found a construction resolving their conjecture 6 years later.

When the block length is even, less is known about $W_{k}(n)$. Golomb, Gordon and Welch [2] proved that for all positive integers n,

$$
\begin{equation*}
W_{2}(n)=\left[\frac{n^{2}}{3}\right] \tag{2}
\end{equation*}
$$

where [•] denotes the greatest integer function. Maximal comma-free codes over a binary alphabet have been constructed for $k=2,4,6,8$, and 10 in [2], [3], and [4]. In this paper we determine all maximal comma-free codes with words of length 2 over arbitrary finite alphabets.

2. Preliminaries

Throughout the remainder of this paper all codes will be assumed to have words of length 2 . Every comma-free code F over an alphabet Σ induces a partition of Σ as follows:

$$
\begin{aligned}
& A(F)=\{a \in \Sigma \mid a \quad \text { only begins words of } F\}, \\
& B(F)=\{b \in \Sigma \mid b \text { both begins and ends words of } F\}, \\
& C(F)=\{c \in \Sigma \mid c \text { only ends words of } F\} .
\end{aligned}
$$

We say that F has parometers $\left(q_{1}, q_{2}, q_{3}\right)$ if

$$
|A(F)|=q_{1},|B(F)|=q_{2},|C(F)|=q_{3},
$$

where $|X|$ always denotes the cardinality of a set X. Maximality of a comma-free code restricts the parameters considerably as the following lemma shows. The authors are indebted to Dr T.K. Sheng for the proof of this lemma.

LEMMA 1. Let n be a positive integer. The only common positive integral solutions of the equations

$$
\begin{equation*}
x y+y z+z x=\left[\frac{n^{2}}{3}\right] \tag{3}
\end{equation*}
$$

and
(4)

$$
x+y+z=n
$$

are

$$
\begin{aligned}
(q, q, q) & n=3 q, \\
(q+1, q, q) & n=3 q+1, \\
(q+1, q+1, q) & n=3 q+2,
\end{aligned}
$$

and their permutations.
Proof. Squaring (4) we obtain

$$
\begin{equation*}
x y+y z+x z=\frac{n^{2}}{3}-\frac{1}{6}\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \tag{5}
\end{equation*}
$$

We have

$$
\left[\frac{n^{2}}{3}\right]= \begin{cases}3 q^{2} & n=3 q \tag{6}\\ 3 q^{2}+2 q & n=3 q+1 \\ 3 q^{2}+4 q+1 & n=3 q+2\end{cases}
$$

Combining (5) and (6) with (3) we obtain

$$
(x-y)^{2}+(y-z)^{2}+(z-x)^{2}= \begin{cases}0 & n=3 q \tag{7}\\ 2 & \text { otherwise }\end{cases}
$$

If $n=3 q$ then (7) implies $x=y=z=q$. Otherwise, exactly two of the differences $|x-y|,|y-z|$, and $|z-x|$ are 1 . Without loss of generality assume $x-y=1$ and further suppose $n=3 q+1$. If either $y-z=1$ or $z-y=1$ we obtain contradictions of (7) and (4)
respectively. Similarly, if $z-x=1$ we contradict (7). Therefore $x-z=1$ so that (4) yields $z=q$, implying $x=q+1, y=q$, and $z=q$. The argument is similar in case $n=3 q+2$.

If π is a permutation of the alphabet Σ_{n} then π induces the natural mapping $f(\pi): \Sigma_{n} \times \Sigma_{n} \rightarrow \Sigma_{n} \times \Sigma_{n}$ defined by

$$
f(\pi)(x y)=\pi(x) \pi(y),
$$

where the ordered pairs (x, y) of the Cartesian product $\Sigma_{n} \times \Sigma_{n}$ are
written as simply $x y$ for notational convenience. For any permutation π, the image of a comma-free code under $f(\pi)$ is comma-free. Two codes F and F^{\prime} over the same alphabet Σ_{n} are isomorphic if there is a permutation π of Σ_{n} such that $f(\pi)$ is a one-to-one mapping of F onto F^{\prime}. Isomorphic codes have the same parameters.

The mapping $x y \mapsto y x$ also preserves the comma-free property of codes with words of length 2 . The image of a code under this mapping is called its transpose. If F has parameters $\left(q_{1}, q_{2}, q_{3}\right)$ then the transpose of F has parameters $\left(q_{3}, q_{2}, q_{1}\right)$. An obvious necessary condition that a code with parameters $\left(q_{1}, q_{2}, q_{3}\right)$ be isomorphic to its transpose is $q_{1}=q_{3}$. For maximal comma-free codes this condition is also sufficient and in Corollary 6 we determine precisely which of these codes are isomorphic to their transposes.

LEMMA 2. Let F be a comma-free code over Σ_{n} with parameters $\left(q_{1}, q_{2}, q_{3}\right)$ where $q_{i}>1, i=1,2,3$. Choose

$$
\begin{equation*}
a \in A(F), \quad b \in B(F), \quad c \in C(F) \tag{8}
\end{equation*}
$$

If all words of F containing at least one of a, b, or c are deleted then the remaining words form a comma-free code F_{1} and

$$
\begin{equation*}
\left|F_{1}\right| \geq|F|-2 n+3 \tag{9}
\end{equation*}
$$

Proof. There are at most $q_{1}+q_{2}$ words of the form $x c$ in F since x can be chosen only from $A(F)$ or $B(F)$. There are at most $q_{2}+q_{3}$ words of the form ay in F since y can be chosen only from $B(F)$ or $C(F)$. There are at most q_{3} words of the form by since words $b_{1} b_{2}$ with $b_{1}, b_{2} \in B(F)$ cannot appear in comma-free codes. Similarly there are at most q_{l} words of the form $x b$ in F. Thus, at most

$$
\left(q_{1}+q_{2}\right)+\left(q_{2}+q_{3}-1\right)+\left(q_{1}-1\right)+\left(q_{3}-1\right)=2\left(q_{1}+q_{2}+q_{3}\right)-3=2 n-3
$$

words of F are deleted. Therefore, $\left|F_{1}\right| \geq|F|-2 n+3$.

3. Results

For notational convenience we write for integers x, y, a, b,

$$
x y \equiv a b(\bmod 3)
$$

if $x \equiv a(\bmod 3)$ and $y \equiv b(\bmod 3)$
THEOREM 3. If $n \equiv 0(\bmod 3)$ then every maximal comma-free code with words of length 2 over Σ_{n} is isomorphic to

$$
C_{n}=\left\{x y \mid x y \equiv 01,02, \text { or } 12(\bmod 3) \text { where } x, y \in \Sigma_{n}\right\}
$$

or c_{n} transposed.
Proof. Let F be a maximal comma-free code over $\Sigma_{3 q}$. The proof is by induction on q.

If $q=1$ then F has size 3 by (2). The maximality of F implies every element of Σ_{3} appears in some word of F. If 0 does not begin a word of F then consider the transpose of F instead. We may suppose F contains a word $x y$ with $x=0$. Since F is comma-free, y cannot be 0 ; so y is either 1 or 2 . Therefore F contains either 01 or 02 .

If F contains both 01 and 02 then F contains either 12 or 21 . This follows because then F cannot contain either 10 or 20 and remain comma-free, leaving only 12 or 21 as possibilities. If F contains 21 then the permutation (12) of Σ_{3} induces an isomorphism of F and C_{3}. Otherwise, F is identically C_{3}.

Now suppose F contains only 01 . The remaining words of F are among 20,12 , and 21 . Since the pair 12 and 21 cannot appear in a comma-free code, F must contain 20 . But $\{01,20,12\}$ is not commafree because 12 is an overlap of 01 and 20 . Therefore, $F=\{01,20,21\}$. The permutation (012) of Σ_{3} induces an isomorphism of F and C_{3}.

The argument is similar if F contains only 02 .
Now suppose $q>1$. By Lemma $1, F$ has parameters (q, q, q). Choosing a, b, c as in (8) and deleting words of F containing them, we
obtain a corma-free subcode F_{1} of $F \cdot F_{1}$ has parameters $(q-1, q-1, q-1)$. Since $|F|=3 q^{2}$, (9) implies $\left|F_{1}\right| \geq 3(q-1)^{2}$. But the number of words in any maximal comma-free code over $\Sigma_{3 q-3}$ is $3(q-1)^{2}$ by (2). Therefore F_{1} is a maximal comma-free code. By induction, there is an isomorphism $f\left(\pi_{1}\right)$ of F_{1} and $C_{3 q-3}$ or $C_{3 q-3}$ transposed. The permutation π_{1} of $\Sigma_{3 q-3}$ may be extended to a permutation π of $\Sigma_{3 q}$ by defining

$$
\pi(a)=3 q-3, \pi(b)=3 q-2, \pi(c)=3 q-1 .
$$

We verify that $f(\pi)$ is an isomorphism of F and $C_{3 q}$ as follows.
For words containing a, b or c we have

$$
\begin{array}{ll}
f(\pi)(a y)=(3 q-3) \pi(y), & f(\pi)(x b)=\pi(x)(3 q-2), \\
f(\pi)(b y)=(3 q-2) \pi(y), & f(\pi)(x c)=\pi(x)(3 q-1) .
\end{array}
$$

If, for example,

$$
\pi(x)(3 q-1)=\dot{\pi}\left(x^{\prime}\right)(3 q-1)
$$

obviously $x=x^{\prime}$. If, say,

$$
\pi(x)(3 q-1)=(3 q-3) \pi(y),
$$

then $x=a$ and $y=c$. The other cases are similar. Therefore $f(\pi)$ is one-to-one.

THEOREM 4. If $n \equiv 1(\bmod 3)$ then every maximal comma-free code with words of length 2 over Σ_{n} is isomorphic to C_{n},

$$
D_{n}=\left\{x y \mid x y \equiv 10,02, \text { or } 12(\bmod 3) \text { where } x, y \in \Sigma_{n}\right\} \text {, }
$$

or one of their transposes.
Proof. Let F be a maximal comma-free code over $\Sigma_{3 q+1}$. The proof is by induction on q.

If $q=1$ then F has size 5 by (2). By Lemma 1 we may suppose F has parameters $(2,1,1),(1,2,1)$ or $(1,1,2)$. If F has parameters (1, 1, 2) then the transpose of F would have parameters (2, 1, 1) .

If F has parameters $(2,1,1)$ and $a \in A(F)$ then there are at most 2 words in F containing a. When the words containing a are deleted from F the resulting comma-free code F_{1} has at least 3 words. Therefore (2) implies that F_{1} contains exactly 3 words and so is a maximal comma-free code. By Theorem 3 there is an isomorphism $f\left(\pi_{1}\right)$ of F_{1} and C_{3} or C_{3} transposed. The permutation π_{1} of Σ_{3} can be extended to a permutation π of Σ_{4} by setting $\pi(a)=3$. For the two words of the form $a x$ in F we obtain

$$
f(\pi)(a x)=3 \pi(x)
$$

so that $f(\pi)$ is one-to-one.
If F has parameters $(1,2,1)$ and $b \in B(F)$ then deletion of words containing b leads again to an isomorphism of the remaining subcode with C_{3} or its tranpose. The permutation (Ol) induces an isomorphism of C_{3} and the subcode $\{10,02,12\}$ of D_{4}. The permutation (02) induces an isomorphism of C_{3} and its transpose. Extending the appropriate permutation to a permutation π of Σ_{4} by assigning $\pi(b)=3$, we obtain an isomorphism of F and D_{4}.

Now suppose $q>1$. By Lemma $1, F$ has parameters $(q+1, q, q)$, $(q, q+1, q)$, or $(q, q, q+1)$. If F has parameters $(q, q, q+1)$ then F transposed has parameters $(q+1, q, q)$.

Assume F has parameters $(q+1, q, q)$. Choosing a, b, and c as in (8) and deleting the words containing them, we obtain a comma-free subcode F_{1} of F. The code F_{1} has parameters $(q, q-1, q-1)$. Since F has $3 q^{2}+2 q$ words by (2), the inequality (9) implies $\left|F_{1}\right| \geq 3 q^{2}-4 q+1$. But the size of a maximal comma-free code over $\Sigma_{3 q-2}$ is $3 q^{2}-4 q+1$ by (2) and (6). Therefore F_{1} is a maximal comma-free code over $\Sigma_{3 q-2}$

By induction, there is a permutation π_{1} of $\Sigma_{3 q-2}$ inducing an
isomorphism of F_{1} with $C_{3 q-2}, D_{3 q-2}$, or one of their transposes. But $D_{3 q-2}$ and its transpose have parameters $(q-1, q, q-1)$ and F_{1} has parameters $(q, q-1, q-1)$. Therefore F_{1} is isomorphic with $C_{3 q-2}$. We extend π_{1} to a permutation π of $\Sigma_{3 q+1}$ by defining

$$
\pi(a)=3 q, \pi(b)=3 q-2, \pi(c)=3 q-1
$$

It is readily verified that $f(\pi)$ is an isomorphism of F and $C_{3 q+1}$.
Now assume F has parameters $(q, q+1, q)$. As above we obtain a subcode F_{1} of F which is maximal and comma-free over $\Sigma_{3 q-2}$ but with parameters ($q-1, q, q-1$) in this case. This time induction implies F_{1} is isomorphic to $D_{3 q-2}$ or its transpose via a permutation π_{1} of $\Sigma_{3 q-2}$. The assignments

$$
\pi(a)=3 q-1, \pi(b)=3 q, \pi(c)=3 q-2,
$$

extend π_{1} to a permutation π of $\Sigma_{3 q+1}$ which induces an isomorphism of F and $D_{3 q+1}$.

THEOREM 5. If $n \equiv 2(\bmod 3)$ then every maximal comma-free code with words of length 2 over Σ_{n} is isomorphic to C_{n},

$$
E_{n}=\left\{x y \mid x y \equiv 01,02, \text { or } 21(\bmod 3) \text { where } x, y \in \Sigma_{n}\right\} \text {, }
$$

or one of their transposes.
Proof. Let F be a maximal comma-free code over $\Sigma_{3 q+2}$. The proof is by induction on q.

If $q=1$ then F has size 8 by (2). By Lemma 1 , we may suppose F has parameters $(2,2,1),(2,1,2)$, or $(1,2,2)$. If F has parameters (1,2,2) then the transpose of F would have parameters $(2,2,1)$.

If F has parameters $(2,2,1)$ and $b \in B(F)$ we delete the words of F containing b to obtain a subcode F_{1} with parameters ($2,1,1$). There can be at most 2 words of the form $x b$ in F and only one of the form by. Therefore, F_{1} contains at least 5 words. But F_{1} contains
at most 5 words by (2). By Theorem 4, F_{1} is isomorphic to C_{4} since C_{4} transposed has parameters (1, 1, 2) and both D_{4} and its transpose have parameters (1, 2, 1).

The permutation inducing this isomorphism may be extended to a permutation π of Σ_{5} by the assignment $\pi(b)=4$. This induces an isomorphism of F and C_{5}.

On the other hand, if F has parameters (2, 1,2) and $c \in C(F)$ then deletion of words containing c leaves a subcode F_{1} also having parameters (2,1,1) and isomorphic to C_{4}. This time, nowever, F cannot be isomorphic to C_{5} because the assignment $\pi(c)=4$ could not induce correspondences with the words 04,42 , and 34 in C_{5}. Since C_{4} and E_{4} are isomorphic via the permutation $\pi=(12)$, defining $\pi(c)=4$ will induce an isomorphism of E and E_{5}.

Now suppose $q>1$. By Lemma $1, F$ has parameters $(q+1, q+1, q)$, $(q+1, q, q+1)$ or $(q, q+1, q+1)$. If F has parameters $(q, q+1, q+1)$ then F transposed has parameters $(q+1, q+1, q)$.

Assume F has parameters $(q+1, q+1, q)$. Choosing a, b, and c as in (8) and deleting the words containing them, we obtain a comma-free subcode F_{1} of F. The code F_{1} has parameters ($q, q, q-1$). By (9), $\left|F_{1}\right| \geq 3 q^{2}-2 q$. But the size of a maximal comma-free code over $\Sigma_{3 q-1}$ is $3 q^{2}-2 q$ by (2). Therefore F_{1} is isomorphic to $C_{3 q-1}, E_{3 q-1}$, or one of their transposes.

But $E_{3 q-1}$ and its transpose have parameters $(q, q-1, q)$ while $C_{3 q-1}$ has parameters $(q, q, q-1)$. Therefore F_{1} is isomorphic to $C_{3 q-1}$, via a permutation π_{1} of $\Sigma_{3 q-1}$. Extending π_{1} to a permutation π of $\Sigma_{3 q+2}$ by defining

$$
\pi(a)=3 q, \pi(b)=3 q+1, \pi(c)=3 q-1,
$$

we obtain an isomorphism of $\quad F$ and $C_{3 q+2}$.

On the other hand, if F has parameters ($q+1, q, q+1$) similar arguments lead to a subcode F_{1} isomorphic to either $E_{3 q-1}$ or its transpose. Extending the permutation π_{1} of $\Sigma_{3 q-1}$ involved to $\Sigma_{3 q+2}$ by defining

$$
\pi(a)=3 q, \quad \pi(b)=3 q-1, \pi(c)=3 q+1
$$

we obtain an isomorphism of F with either $E_{3 q+2}$ or its transpose.
COROLLARY 6. The maximal comma-free codes with words of length 2 which are isomorphic to their transposes are $C_{3 q}, D_{3 q+1}$, and $E_{3 q+2}$ for each positive integer q.

Proof. The necessary condition that $q_{1}=q_{3}$ if the code has parameters $\left(q_{1}, q_{2}, q_{3}\right)$ is also sufficient. This follows because each of the q_{1} elements of the set A appear with equal frequency in the code and similarly for the set C.

References

[1] Willard L. Eastman, "On the construction of comma-free codes", IEEE Trans. Information Theory IT-11 (1965), 263-267.
[2] S.W. Golomb, Basil Gordon and L.R. Welch, "Comma-free codes", Canad. J. Math. 10 (1958), 202-209.
[3] B.H. Jiggs, "Recent results in comma-free codes", Canad. J. Math. 15 (1963), 178-187.
[4] Yoji Niho, "On maximal comma-free codes", IEEE Trans. Information Theory IT-19 (1973), 580-581.

Department of Mathematics, University of Newcastle, Newcastle, New South Wales;

Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada.

