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GENERATORS FOR SUBGROUPS OF WREATH PRODUCTS

by J. A. HULSE
(Received 20th February 1978)

If G is a group, let

m(G)

be the least cardinal such that G may be generated by m(G) elements, and let

m.(G)

be the supremum of all m(H) for subgroups H of G.
We are concerned with finding finite upper bounds for ms(G) for certain wreath

products G and in some cases we calculate ms(G) precisely. For the definition of, and
a general introduction to, wreath products see, for example, (3) p.p. 18-22.

Our first result is in answer to a question of Bowers, who uses it to prove his Tory
Factor Theorem in (1), and I am grateful to him for bringing it to my attention.

Theorem A. // p is a prime number and n is a positive integer, let

denote the wreath product of n copies of a cyclic group of order p, taken in its right
regular representation. Then

For convenience we define Wp.o to be the trivial group. Since each Wpn is a
permutation group of degree p", it follows that, for n 3* 1, the base group of Wpn

considered as WpA wr Wp,n-U is an Abelian group of exponent p and rank p""1 and so

We shall prove the reverse inequality by considering Wp,n as Wpn_i wr Wp_\ and
using induction on n. However, in order to make our induction agrument work we
shall have to prove a little more about Wp_n than mj(WPin)«p""'.

If A is a group with ms(A) = m and C is a cyclic group of order p, then

ms(A wr C)

can be greater than pm. For example if A = (a) is cyclic of order 4 and C = (c) is
cyclic of order 2 and W = A wr C, then ms(A) = 1 but ms( W) = 3. If the base group of
W is taken to be Ax x Ac, where Ax = (fli) and Ac = (ac), consider

H = (a], axac, c) = {aTa", aTa"c \ m + n = 0(mod 2)}.
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Then the derived group, H', of H is

and H/H' has exponent 2 and order 8. Thus

and so m,(W0&3. Since

i , Ac< W

is a cyclic series for W it follows that m,(W) =£3 and hence ms(W) = 3.
If n and m are positive integers, let

denote the class of all groups G with ms(G) =£ m and such that whenever

Hx*3H^-*3Hn^G

then there exists X QHn with |X| < nm, where \X\ denotes the cardinal of X, and

for i = l , 2 , . . . , n .
We note that the second condition for G G 3Enm is almost implied by the first. Since

if ms(G) =£ m and

then there exist X{ C H; such that \Xt\ «s m and <^> = Ht for i = 1, 2 , . . . , n. Thus if
X = X{ U X2 U • • • U Xm then \X\ « nm and <H) C\X) = Ht for i = 1, 2, . . . , n.

We see that if ms(G)< m, then the above argument would show that G £ 3Enm for
any positive integer n. Also it is easy to show that G E 3En-1 if and only if G is a finite
cyclic group of composition length less than n.

Our main result is the following theorem.

Theorem B. Let p be a prime number and m be a positive integer. If AE 3Epm and
C is a cyclic group of order p, then

Since a cyclic group of order p lies in £p,i, the following result may be deduced
immediately by induction on n.

Theorem A*. Let p be a prime number and n be a positive integer. Then

where Wp,n is as in Theorem A.

We note that Theorem A* shows that
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and that we have already established the reverse inequality. Thus Theorem A follows
from Theorem A*.

We remark here that the groups WPJX are of particular importance since WPJl is a
Sylow p-subgroup of the symmetric group of degree p" and Sylow p-subgroups of the
symmetric groups of other finite degrees are formed by taking direct products of groups
of the form WpJI (2) or (5). Also Vol'vacev (4) investigates the Sylow p -subgroups of
linear groups over an arbitrary field and shows that they are direct products of groups of
the form A wr Wp,n, where the group A is specified having degree 1, or, in the case p = 2,
degree 2, over a suitable field. If A G 3£p,m, then Theorem B shows that A wr Wp_n G £,,,,,»„,
for all natural numbers n.

I should also remark that Dr. P. M. Neumann has independently obtained Theorem
A by a different method in unpublished work.

We conclude with the proof of Theorem B and an example to show that the
restriction that C have prime order is essential.

Proof of Theorem B. Let B be the base group of W = A wr C and C = <c>. Then
B is the direct product of p copies of A and we consider B as the group of all maps
from {1,2, . . . , p} to A. For / = 0, 1 , . . . , p, let

fi, = { / E B | / ( j )= 1 for j = i+ 1 p).

Then 1 = Bo =3 B, «3 • • • =a Bp = B and Bj/B,--, = A for i = 1 , . . . , p. If i = 1 , . . . , p, let
ir,:B^>A be given by

for all / G B; that is, let IT, be the projection of B onto its i-th coordinate.
Suppose now that H =£ W. If H =£ B, then H n Bo = 1, H n Bp = H and

(H D B,)KH n B,-,) = B^iH D B,)/B(-, « BjB,-t = A

for i = 1 , . . . , p. Since A G 3£pm, ms(A) =s m and so

m[(H n Bi)l(H f~l Bi-t)] =£ m.

Hence m(H) =spm. On the other hand if H^B, then, since W/B has prime order, it
follows that BH = W and so there exists d 6 B such that be G H. Then

H = (H D B, be).

Now

{H D BX)TTX ^ ( H f i B2)T7, S3 • • • sa (H D Bp)7r, « A G £p,m

and so there exists X C H DBP such that |X| < pm and

(X n B,)ir, = ( / / D B,)

for i = 1 , . . . , p. We show by induction on / that

H n Bt, *s (X n B,,

for i = 0 , . . . , p. Since H D Bo = 1, the result is true for / = 0. Suppose now that i > 0
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and

if nB,_,=£ (ATI B,_,,fcc>.

If h G H D Bh then, since (H D B.V, = (X D Bj)ir,,

(ft/-')ir, = 1

for some / G (X PI Bi). But also hf'1 G H D B, and so

/!/-' 6(f ln B,.,)* §(Xn B,_,, be).

Thus /i e <X n B,, be) and so

to complete the induction. Hence

H = (HCiB, be) = ( f fn Bp, fee)«<X D Bp, be) = (X, be)« H.

Since |X| <pm, it follows that m(H) *£pm. Thus we have

Suppose now that

Then for each i = I,..., p,

(if, fl B,)7r, S3(if2 D B.Oir,- ̂  • • • *3

and so there exists Y; C Hp D B, such that | Y;| <pm and

(Hi n y,)7r; = (Hi n

for / = 1,. . . , p. Let Y = Y, U Y2 U •• • U Yp, then

and Y Q Hp C\ B. We show by induction on i that

<//; n Y n B,) = ify n B;

for i = 0 , . . . , p and / = 1 , . . . , p. If / = 0, the result follows since Bo = 1. Suppose i > 0
and

for / = 1 , . . . , p. Let g E.Hj (1B, for some /. Since

(H,nBl)irl = (H,nY,)nh

there exists fGiHjD Y() such that

(g/-V. = 1.

But also gf~l G if> D B,, since Y-, C B,, and so

gf~l G if, n B,_, = (Hj n Y n B,.,).
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However, / G (Hj D Y;> =£ (Hj n Y D B,> and so

g e <tf, n Y n B,>.

Thus

<n, n y n B(> = #, n B,

for y = 1, . . . , p and so the induction on i is complete. In particular, taking i = p we
have

(Hj n y> = <Hj, n Y n B> = H, n B

for/ = l , . . . , p .

If Wp =£ B, then we would have Y C Hp, \ Y| =s p2m - p < p.pm and (Hj HY) = Hj for
j = 1 , . . . ,p. On the other hand, if i/p ^ B, then let r be the least integer r such that HM B.
Since W/B has prime order, there exists b£B such that be G Hr. Then //, = HjDB for
; < r and //; = (H, D B, fee) for / ^ r. If now X = Y U {ftc}, then ^ C f/p,

\X\ « p2m - p + 1< p.pm

and (Hj H X) = Hj for j = I,..., p. Hence it follows that W e £p,pm to complete the proof
of Theorem B.

Finally we note an example to show that the restriction that p be prime in
Theorem B cannot be omitted. If A and C = (c) are both cyclic of order 4 and the
base group of A wr C is taken to be Ax x A2 x A3 x A4 with A, = <a,> for i = 1 , . . . , 4
and

H = (a2,, a\, a,a3, ^a-i, c2),

then H' = (ala2, ala}) and W/if' has exponent 2 and rank 5 and so m(H) = 5. Thus
A wr C£ 3£4,4, whereas A G £4,i.
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