GENERATORS FOR SUBGROUPS OF WREATH PRODUCTS

by J. A. HULSE
(Received 20th February 1978)

If G is a group, let

$$
m(G)
$$

be the least cardinal such that G may be generated by $m(G)$ elements, and let

$$
m_{s}(G)
$$

be the supremum of all $m(H)$ for subgroups H of G.
We are concerned with finding finite upper bounds for $m_{s}(G)$ for certain wreath products G and in some cases we calculate $m_{s}(G)$ precisely. For the definition of, and a general introduction to, wreath products see, for example, (3) p.p. 18-22.

Our first result is in answer to a question of Bowers, who uses it to prove his Tory Factor Theorem in (1), and I am grateful to him for bringing it to my attention.

Theorem A. If p is a prime number and n is a positive integer, let

$$
W_{p, n}
$$

denote the wreath product of n copies of a cyclic group of order p, taken in its right regular representation. Then

$$
m_{s}\left(W_{p, n}\right)=p^{n-1} .
$$

For convenience we define $W_{p .0}$ to be the trivial group. Since each $W_{p . n}$ is a permutation group of degree p^{n}, it follows that, for $n \geqslant 1$, the base group of $W_{p, n}$ considered as $W_{p, 1}$ wr $W_{p, n-1}$, is an Abelian group of exponent p and rank p^{n-1} and so

$$
m_{s}\left(W_{p, n}\right) \geqslant p^{n-1} .
$$

We shall prove the reverse inequality by considering $W_{p, n}$ as $W_{p, n-1}$ wr $W_{p, 1}$ and using induction on n. However, in order to make our induction agrument work we shall have to prove a little more about $W_{p, n}$ than $m_{s}\left(W_{p, n}\right) \leqslant p^{n-1}$.

If A is a group with $m_{s}(A)=m$ and C is a cyclic group of order p, then

$$
m_{s}(A \mathrm{wr} C)
$$

can be greater than $p m$. For example if $A=\langle a\rangle$ is cyclic of order 4 and $C=\langle c\rangle$ is cyclic of order 2 and $W=A$ wr C, then $m_{s}(A)=1$ but $m_{s}(W)=3$. If the base group of W is taken to be $A_{1} \times A_{c}$, where $A_{1}=\left\langle a_{1}\right\rangle$ and $A_{c}=\left\langle a_{c}\right\rangle$, consider

$$
H=\left\langle a_{1}^{2}, a_{1} a_{c}, c\right\rangle=\left\{a_{1}^{m} a_{c}^{n}, a_{1}^{m} a_{c}^{n} c \mid m+n \equiv 0(\bmod 2)\right\} .
$$

Then the derived group, H^{\prime}, of H is

$$
\left\langle a_{1}^{2} a_{c}^{2}\right\rangle
$$

and H / H^{\prime} has exponent 2 and order 8 . Thus

$$
m(H) \geqslant m\left(H / H^{\prime}\right)=3
$$

and so $m_{s}(W) \geqslant 3$. Since

$$
1 \triangleleft A_{1} \triangleleft A_{1} \times A_{c} \triangleleft W
$$

is a cyclic series for W it follows that $m_{s}(W) \leqslant 3$ and hence $m_{s}(W)=3$.
If n and m are positive integers, let

$$
\mathfrak{X}_{n, m}
$$

denote the class of all groups G with $m_{s}(G) \leqslant m$ and such that whenever

$$
H_{1} \leqslant H_{2} \leqslant \cdots \leqslant H_{n} \leqslant G
$$

then there exists $X \subseteq H_{n}$ with $|X|<n m$, where $|X|$ denotes the cardinal of X, and

$$
\left\langle H_{i} \cap X\right\rangle=H_{i}
$$

for $i=1,2, \ldots, n$.
We note that the second condition for $G \in \mathfrak{X}_{n, m}$ is almost implied by the first. Since if $m_{s}(G) \leqslant m$ and

$$
H_{1} \leqslant H_{2} \leqslant \cdots \leqslant H_{n} \leqslant G,
$$

then there exist $X_{i} \subseteq H_{i}$ such that $\left|X_{i}\right| \leqslant m$ and $\left\langle X_{i}\right\rangle=H_{i}$ for $i=1,2, \ldots, n$. Thus if $X=X_{1} \cup X_{2} \cup \cdots \cup X_{n}$, then $|X| \leqslant n m$ and $\left\langle H_{i} \cap X\right\rangle=H_{i}$ for $i=1,2, \ldots, n$.

We see that if $m_{s}(G)<m$, then the above argument would show that $G \in \mathfrak{X}_{n, m}$ for any positive integer n. Also it is easy to show that $G \in \mathfrak{X}_{n, 1}$ if and only if G is a finite cyclic group of composition length less than n.

Our main result is the following theorem.
Theorem B. Let p be a prime number and m be a positive integer. If $A \in \mathfrak{X}_{p, m}$ and C is a cyclic group of order p, then

$$
A \mathrm{wr} C \in \mathfrak{X}_{p, \mathrm{pm}}
$$

Since a cyclic group of order p lies in $\mathfrak{X}_{p, 1}$, the following result may be deduced immediately by induction on n.

Theorem A^{*}. Let p be a prime number and n be a positive integer. Then

$$
W_{p, n} \in \mathfrak{X}_{p, p^{n-1}}
$$

where $W_{p, n}$ is as in Theorem A.
We note that Theorem A^{*} shows that

$$
m_{s}\left(W_{p, n}\right) \leqslant p^{n-1}
$$

and that we have already established the reverse inequality. Thus Theorem A follows from Theorem A^{*}.

We remark here that the groups $W_{p, n}$ are of particular importance since $W_{p, n}$ is a Sylow p-subgroup of the symmetric group of degree p^{n} and Sylow p-subgroups of the symmetric groups of other finite degrees are formed by taking direct products of groups of the form $W_{p, n}$ (2) or (5). Also Vol'vačev (4) investigates the Sylow p-subgroups of linear groups over an arbitrary field and shows that they are direct products of groups of the form A wr $W_{p, n}$, where the group A is specified having degree 1 , or, in the case $p=2$, degree 2 , over a suitable field. If $A \in \mathfrak{X}_{p, m}$, then Theorem B shows that A wr $W_{p, n} \in \mathfrak{X}_{p, p^{n} m}$ for all natural numbers n.

I should also remark that Dr. P. M. Neumann has independently obtained Theorem A by a different method in unpublished work.

We conclude with the proof of Theorem B and an example to show that the restriction that C have prime order is essential.

Proof of Theorem B. Let B be the base group of $W=A$ wr C and $C=\langle c\rangle$. Then B is the direct product of p copies of A and we consider B as the group of all maps from $\{1,2, \ldots, p\}$ to A. For $i=0,1, \ldots, p$, let

$$
B_{i}=\{f \in B \mid f(j)=1 \text { for } j=i+1, \ldots, p\}
$$

Then $1=B_{0} \triangleq B_{1} \triangleq \cdots \triangleq B_{p}=B$ and $B_{i} / B_{i-1} \cong A$ for $i=1, \ldots, p$. If $i=1, \ldots, p$, let $\pi_{i}: B \rightarrow A$ be given by

$$
\pi_{i}: f \mapsto f(i)
$$

for all $f \in B$; that is, let π_{i} be the projection of B onto its i-th coordinate.
Suppose now that $H \leqslant W$. If $H \leqslant B$, then $H \cap B_{0}=1, H \cap B_{p}=H$ and

$$
\left(H \cap B_{i}\right) /\left(H \cap B_{i-1}\right) \cong B_{i-1}\left(H \cap B_{i}\right) / B_{i-1} \leqslant B_{i} / B_{i-1} \cong A
$$

for $i=1, \ldots, p$. Since $A \in \mathfrak{X}_{p, m}, m_{s}(A) \leqslant m$ and so

$$
m\left[\left(H \cap B_{i}\right) /\left(H \cap B_{i-1}\right)\right] \leqslant m
$$

Hence $m(H) \leqslant p m$. On the other hand if $H \neq B$, then, since W / B has prime order, it follows that $B H=W$ and so there exists $b \in B$ such that $b c \in H$. Then

$$
H=\langle H \cap B, b c\rangle
$$

Now

$$
\left(H \cap B_{1}\right) \pi_{1} \leqslant\left(H \cap B_{2}\right) \pi_{1} \leqslant \cdots \leqslant\left(H \cap B_{p}\right) \pi_{1} \leqslant A \in \mathfrak{X}_{p, m}
$$

and so there exists $X \subseteq H \cap B_{p}$ such that $|X|<p m$ and

$$
\left\langle X \cap B_{i}\right\rangle \pi_{1}=\left(H \cap B_{i}\right) \pi_{1}
$$

for $i=1, \ldots, p$. We show by induction on i that

$$
H \cap B_{i} \leqslant\left\langle X \cap B_{i}, b c\right\rangle
$$

for $i=0, \ldots, p$. Since $H \cap B_{0}=1$, the result is true for $i=0$. Suppose now that $i>0$
and

$$
H \cap B_{i-1} \leqslant\left\langle X \cap B_{i-1}, b c\right\rangle
$$

If $h \in H \cap B_{i}$, then, since $\left(H \cap B_{i}\right) \pi_{1}=\left\langle X \cap B_{i}\right\rangle \pi_{1}$,

$$
\left(h f^{-1}\right) \pi_{1}=1
$$

for some $f \in\left\langle X \cap B_{i}\right\rangle$. But also $h f^{-1} \in H \cap B_{i}$ and so

$$
h f^{-1} \in\left(H \cap B_{i-1}\right)^{b c} \leqslant\left\langle X \cap B_{i-1}, b c\right\rangle
$$

Thus $h \in\left\langle X \cap B_{i}, b c\right\rangle$ and so

$$
H \cap B_{i} \leqslant\left\langle X \cap B_{i}, b c\right\rangle
$$

to complete the induction. Hence

$$
H=\langle H \cap B, b c\rangle=\left\langle H \cap B_{p}, b c\right\rangle \leqslant\left\langle X \cap B_{p}, b c\right\rangle=\langle X, b c\rangle \leqslant H
$$

Since $|X|<p m$, it follows that $m(H) \leqslant p m$. Thus we have

$$
m_{s}(W) \leqslant p m
$$

Suppose now that

$$
H_{1} \triangleq H_{2} \leqslant \cdots \leqslant H_{p} \leqslant W .
$$

Then for each $i=1, \ldots, p$,

$$
\left(H_{1} \cap B_{i}\right) \pi_{i} \forall\left(H_{2} \cap B_{i}\right) \pi_{i} \leqslant \cdots \leqslant\left(H_{p} \cap B_{i}\right) \pi_{i} \leqslant A \in \mathfrak{X}_{p, m}
$$

and so there exists $Y_{i} \subseteq H_{p} \cap B_{i}$ such that $\left|Y_{i}\right|<p m$ and

$$
\left\langle H_{j} \cap Y_{i}\right\rangle \pi_{i}=\left(H_{i} \cap B_{i}\right) \pi_{i}
$$

for $j=1, \ldots, p$. Let $Y=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{p}$, then

$$
|Y| \leqslant p(p m-1)=p^{2} m-p
$$

and $Y \subseteq H_{p} \cap B$. We show by induction on i that

$$
\left\langle H_{j} \cap Y \cap B_{i}\right\rangle=H_{j} \cap B_{i}
$$

for $i=0, \ldots, p$ and $j=1, \ldots, p$. If $i=0$, the result follows since $B_{0}=1$. Suppose $i>0$ and

$$
\left\langle H_{j} \cap Y \cap B_{i-1}\right\rangle=H_{i} \cap B_{i-1}
$$

for $j=1, \ldots, p$. Let $g \in H_{j} \cap B_{i}$ for some j. Since

$$
\left(H_{j} \cap B_{i}\right) \pi_{i}=\left\langle H_{j} \cap Y_{i}\right\rangle \pi_{i}
$$

there exists $f \in\left\langle H_{j} \cap Y_{i}\right\rangle$ such that

$$
\left(g f^{-1}\right) \pi_{i}=1
$$

But also $g f^{-1} \in H_{i} \cap B_{i}$, since $Y_{i} \subseteq B_{i}$, and so

$$
g f^{-1} \in H_{j} \cap B_{i-1}=\left\langle H_{j} \cap Y \cap B_{i-1}\right\rangle .
$$

However, $f \in\left\langle H_{i} \cap Y_{i}\right\rangle \leqslant\left\langle H_{j} \cap Y \cap B_{i}\right\rangle$ and so

$$
g \in\left\langle H_{i} \cap Y \cap B_{i}\right\rangle .
$$

Thus

$$
\left\langle H_{j} \cap Y \cap B_{i}\right\rangle=H_{j} \cap B_{i}
$$

for $j=1, \ldots, p$ and so the induction on i is complete. In particular, taking $i=p$ we have

$$
\left\langle H_{j} \cap Y\right\rangle=\left\langle H_{j} \cap Y \cap B\right\rangle=H_{i} \cap B
$$

for $j=1, \ldots, p$.
If $H_{p} \leqslant B$, then we would have $Y \subseteq H_{p},|Y| \leqslant p^{2} m-p<p . p m$ and $\left\langle H_{j} \cap Y\right\rangle=H_{j}$ for $j=1, \ldots, p$. On the other hand, if $H_{p} \neq B$, then let r be the least integer r such that $H_{r} \neq B$. Since W / B has prime order, there exists $b \in B$ such that $b c \in H_{r}$. Then $H_{j}=H_{j} \cap B$ for $j<r$ and $H_{j}=\left\langle H_{j} \cap B, b c\right\rangle$ for $j \geqslant r$. If now $X=Y \cup\{b c\}$, then $X \subseteq H_{p}$,

$$
|X| \leqslant p^{2} m-p+1<p . p m
$$

and $\left\langle H_{j} \cap X\right\rangle=H_{j}$ for $j=1, \ldots, p$. Hence it follows that $W \in \mathfrak{X}_{p, p m}$ to complete the proof of Theorem B.

Finally we note an example to show that the restriction that p be prime in Theorem B cannot be omitted. If A and $C=\langle c\rangle$ are both cyclic of order 4 and the base group of A wr C is taken to be $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $A_{i}=\left\langle a_{i}\right\rangle$ for $i=1, \ldots, 4$ and

$$
H=\left\langle a_{1}^{2}, a_{2}^{2}, a_{1} a_{3}, a_{2} a_{4}, c^{2}\right\rangle
$$

then $H^{\prime}=\left\langle a_{1}^{2} a_{3}^{2}, a_{2}^{2} a_{4}^{2}\right\rangle$ and H / H^{\prime} has exponent 2 and rank 5 and so $m(H)=5$. Thus A wr $C \notin \mathfrak{X}_{4,4}$, whereas $A \in \mathfrak{X}_{4,1}$.

REFERENCES

(1) J. F. Bowers, Normal series of soluble groups of finite rank (Preprint).
(2) L. A. Kaloujnine, La structure des p-groupes de Sylow des groupes symétriques finis, Ann. Sci. École Norm. Sup. 65 (1948), 239-276.
(3) D. J. S. Robinson, Finiteness conditions and generalized soluble groups, part 2 (Springer-Verlag, Berlin, 1972).
(4) R. T. Vol’vačev, Sylow p-subgroups of the general linear group, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 1031-1054 = Amer. Math. Soc. Transl. (2) 64 (1967), 216-243.
(5) A. J. Weir. The Sylow subgroups of the symmetric groups, Proc. Amer. Math. Soc. 6 (1955), 534-541.

Department of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Edinburgh, EH9 3JZ.

