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FINITIST AXIOMATIC TRUTH

SATO KENTARO AND JAN WALKER

Abstract. Following the finitist’s rejection of the complete totality of the natural numbers, a finitist
language allows only propositional connectives and bounded quantifiers in the formula-construction but
not unbounded quantifiers. This is opposed to the currently standard framework, a first-order language.
We conduct axiomatic studies on the notion of truth in the framework of finitist arithmetic in which at
least smash function # is available. We propose finitist variants of Tarski ramified truth theories up to rank
�, of Kripke–Feferman truth theory and of Friedman–Sheard truth theory, and show that all of these
have the same strength as the finitist arithmetic of one higher level along Grzegorczyk hierarchy. On the
other hand, we also show that adding Burgess-style groundedness schema, adjusted to the finitist setting,
makes Kripke–Feferman truth theory as strong as primitive recursive arithmetic. Meanwhile, we obtain
some basic results on finitist theories of (full and hat) inductive definitions and on the second order axiom
of hat inductive definitions for Δ0

0 positive operators.

§1. Introduction.

1.1. The project. The axiomatic study on the notion of truth has extensively been
pursued in the framework of first-order arithmetic since the beginning of axiomatic
truth theory by Feferman [5]. Overviews on the axiomatic studies of truth along this
line can be found in the monographs by Halbach [11] and by Horsten [12].

First-order arithmetic is a natural formal theory for the mathematical structure
� of the natural numbers and is favoured because of its simplicity. Nonetheless, it
is not a natural framework for the entire mathematics. In ordinary mathematics,
not only natural numbers but also higher-order objects are commonly used: sets
of natural numbers, functions on natural numbers, sets of or functions on those
objects, and so on. Thus, other frameworks, for example, second-order arithmetic,
higher-order arithmetic, or first-order set theory, seem to be better suited as natural
formal frameworks for ordinary mathematics.

Philosophical motivations to develop (significant parts of) mathematics in the
framework of arithmetic are mainly foundational and minimalistic, namely, to
minimize the ontological commitment. Among them, the best known is what we call
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FINITIST AXIOMATIC TRUTH 23

Hilbert’s Finitism, the finitism in Hilbert’s programme. Differently from Hilbert’s
original intention, Tait [27] describes it as follows.

Rather, the special role of finitism consists in the circumstance
that is a minimal kind of reasoning presupposed by all nontrivial
mathematical reasoning about numbers. And for this reason it is
indubitable in a Cartesian sense that there is no preferred or even
equally preferable ground on which to stand and criticize it. (p. 525)

Although there have been unsettled philosophical and historical discussions on
exactly what is allowed in Hilbert’s Finitism (see, e.g., [28, 31]), it seems to be a
common perception that the finitist rejects any kind of infinite totality, including the
totality of �. Because the quantifiers varying over � are considered to presuppose
the totality of�, the axiomatic systems intended for Hilbert’s Finitism and those for
other variants of finitism should be formulated in the language without unbounded
quantifiers over infinite domains.1 In particular, Primitive Recursive ArithmeticPRA,
also called Skolem Arithmetic, with which Tait [27] identifies Hilbert’s Finitism,
is formulated in the language of arithmetic that does not allow (unbounded)
quantifiers, and hence it is not formulated in the first-order language of arithmetic.2

Therefore, even though first-order arithmetic may be a natural theory of the
structure �, it does not appear more natural nor more philosophically motivated
than other frameworks of mathematics: systems stronger or weaker than first-order
arithmetic. Accordingly, the axiomatic study on the notion of truth in such stronger
and weaker frameworks is as much worthwhile as respective studies in the first-
order arithmetic. As for stronger frameworks, we should mention Fujimoto’s works
[6, 7] in which axiomatic truth theories over Zermelo–Fraenkel set theory have
been investigated. Philosophical discussions of this direction of research can also be
found in [8]. The present paper, on the other hand, initiates a study of axiomatic
truth theories over weaker systems, especially finitist arithmetic without unbounded
quantifiers.

1.2. Summary of this article. Our main result is that the finitist analogues of
theories of Tarski compositional truth, of Tarski ramified truth (up to rank �),
of Kripke–Feferman truth, and of Friedman–Sheard truth are all equivalent, that
is, they prove the same finitist formulae not containing any truth predicates. Thus,
in this regard, finitist truth theories behave significantly differently than those over
first-order arithmetic and over first-order set theory.

Below, we first outline the finitist analogues of well-known axiomatizations of
truth and indicate in which sense they are equivalent.

1The anonymous referee points out a different approach, pursued by Mycielski, Mostowski, and
others, which keeps first-order framework (see [13] for summary). While formulae in our framework
without unbounded quantifiers could be understood verbatim from the perspective of infinitary
mathematics, those in the other approaches require some nontrivial translations.

2We can define the first-order version of Primitive Recursive Arithmetic and, in some references
(e.g., [25]), this first-order version is even acronymed as PRA. To make explicit the distinction among
alternative formulations of Primitive Recursive Arithmetic, we use different letter fonts. In the present
article, however, Primitive Recursive Arithmetic always refers to PRA, namely the system without
unbounded quantifiers, unless otherwise mentioned.
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24 SATO KENTARO AND JAN WALKER

Finitist language and finitist logic. As discussed above, the finitist view is
well formulated in an arithmetical language which does not allow unbounded
quantification. We call languages without unbounded quantifiers finitist languages
and denote them by Fraktur letters (e.g., L(Sn)) in order to distinguish them from
first-order languages which we denote by calligraphic letters (e.g., L1(Sn)). Finitist
languages allow us to express universal quantification (if located at the outer-most
position) implicitly by means of free variables. Similarly to first-order languages,
there are many different finitist languages, depending on the choice of vocabulary:
constant, function, and relation symbols.

Our investigation will be on formal theories of truth formulated in finitist
languages with unary relation symbols Ti(x) with indices i, where Ti(x) is intended
to mean that (the sentence whose Gödel number is) x is true. All the finitist languages
in the present paper are arithmetic, in the sense that they have, at least, constants
0 and 1, binary function symbols + and ·, and a binary relation symbol < as well
as the equality =. The difference of vocabulary is only in whether and how many of
the truth predicates Ti(x) and further function symbols are included.

Similarly to logical axioms and rules for first-order theories, we have logical
axioms and rules for finitist theories. The axioms and rules for propositional
connectives and the equality axioms are the same as for classical first-order logic.
The axioms and rules for quantifiers are replaced in the obvious manner.

It is worth mentioning that almost all variants of intuitionism and constructivism
accept classical reasoning for finitary statements. Thus, even if we want to take
into account these philosophical standpoints, it is natural to consider theories over
classical logic (formulated in the finitist languages).3

Finitist truth theories. One of the significant features of truth in the finitist setting
is that, even in the presence of addition + and multiplication ·, a liar sentence does not
always emerge and hence the notion of naı̈ve truth is not necessarily contradictory.
In order to have a liar sentence (in the sense of some “standard” or reasonable
coding), we need more function symbols: exponentiation exp suffices; even smash
function x#y= 2|x|·|y| (where |x|= min{z :x < 2z}) is enough. While the finitist
theory of naı̈ve truth (in a language not containing exp nor #) is one of the themes
of another article [23] of the authors, in the present article we concentrate on theories
in languages with at least #, where the construction of a liar sentence is possible.

In the presence of a liar sentence, say, liar is a term such that liar = �¬T (liar)�
(where �A� denotes the Gödel number of a formula A), the two axiom schemata for
the truth predicate

(Truth-Negation): T (�¬A�)↔¬T (�A�) for any standard sentence A,
(Truth-Truth): T (�T (t)�)↔T (t) for any term t

cannot consistently coexist, because they imply

T (�¬T (liar)�)↔¬T (�T (liar)�)↔¬T (liar)↔¬T (�¬T (liar)�).

3Notwithstanding, it is technically possible to consider intuitionistic (hence non-classical) finitist
theories. It is also worth noticing that the full induction schema (in the finitist language) implies the law
of excluded middle for all the (finitist) formulae without the truth predicates, and hence also the classical
logical axioms for those formulae.
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FINITIST AXIOMATIC TRUTH 25

Among strategies to formulate consistent truth theories, the four most popular
ones are the following.

Compositional truth: prohibiting the truth predicate from being applied to (Gödel
numbers of) sentences that involve the truth predicate itself (this is a special
case of the next, with only one rank allowed).

Ramified truth: ramifying the truth predicate into several ranks, and considering
only the well-typed applications of truth predicates, namely, ignoring ill-typed
ones, like Ti (�Tj(u)�) for j ≥ i .

Kripke–Feferman truth: replacing the aforementioned (Truth-Negation) by
T (�¬T (�A�)�)↔T (�¬A�) (more precisely, the extension of it to possibly
non-standard formulae A).

Friedman–Sheard truth: replacing the axiom (Truth-Truth) by the following
analogous rules:

A
T (�A�)

(truth-rule)
and

T (�A�)
A

(truth-rule)
.

We take all of these four popular strategies into account. For the second strategy,
the typed truth, we consider only finite ranks. For, in order to formulate truth of
transfinite ranks α, we need to assume the well-foundedness of α, which seems not
expressible without unbounded quantifiers.

In the finitist setting, we face a difficulty in the formulation of the very basic axioms
for the truth predicates. In the standard formulations, almost all truth theories over
first-order arithmetic contain

CTerm(u)∧CTerm(v) → (T (u=. v)↔ val(u) = val(v) ),

where CTerm(u) means that u is (a Gödel number of) a closed term. While, in
the first-order setting, valuation may be expressed by means of the unbounded
existential quantifier, the situation is entirely different in our finitist setting, where no
unbounded quantifiers are available. In our setting, we might rather try to augment
a finitist language by a new symbol val for the valuation function. However, by a
diagonalization argument similar to the one for the liar paradox, we see that val
cannot be used for valuating all terms in the augmented language, including those
terms in which the symbol val itself occurs. Therefore, we have to give up certain
requirements concerning valuation of terms and must conceive alternative ways of
formulating axioms, similarly to the alternative axioms that we consider for truth
predicates. For typed truth, it seems reasonable to have typed valuation functions,
namely val0, val1, ..., (as we will consider in Section 11), but for self-referential
truth, we have to formulate axioms without valuation function. How to do this? We
propose to formulate the axioms without valuation function in the following way:

CTerm(u)∧T (num(x) =. u)∧CTerm(v)∧T (num(y) =. v)

→ (T (u=. v)↔x= y)∧ (T (¬. u=. v)↔¬x= y),

where num(x) is (the Gödel number of) the x-th numeral (and x might be non-
standard). Here T (num(x) =. u) stands for val(u) =x but does not use val. For
uniformity, we follow this strategy also for typed truth.

https://doi.org/10.1017/jsl.2022.65 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.65


26 SATO KENTARO AND JAN WALKER

However, for example, how can we obtain the following in Kripke–Feferman
truth theories?

CTerm(u)∧CTerm(v)→ (T (¬. u=. v)↔¬T (u=. v))

If there are x and y such that T (num(x) =. u) and T (num(y) =. v), then this is easy
via ¬(x= y), but how do we guarantee or even express the existence of such x and
y without (unbounded) existential quantifier?

Our trick is the addition of the following rule, where x must not occur in a formula
A nor in a term t (i.e., x is the eigenvariable).

T (num(x) =. t)→A
CTerm(t)→A (∃-val)

This is analogous to the logical rule for existential quantification in the first-
order setting and, in this sense, expresses the existence of the value val(u) without
unbounded quantifiers and without adding new function symbols. As it avoids
the expansion of the language, this allows us to sustain self-referentiality, namely,
that the language to which the truth predicate applies is the same as the language in
which the theory of truth is formulated. Such self-referentiality seems essential for
Kripke–Feferman and Friedman–Sheard truth.

Our main results. The most standard choice of function symbols for arithmetic is
{+, · }. As mentioned above, however, as we concentrate on finitist settings with liar
sentences, this is not appropriate for our purpose. Another standard is the class PR
of all primitive recursive functions, but by adding (∃-val) for all (codes of) terms
built up from function symbols in PR, we would make the resulting theory stronger
than PRA, with which Tait identified Hilbert’s Finitism. Although there seems to be
no “standard” choice of function symbols in between {+, ·} and PR, the standard
of slicing up PR is Grzegorczyk hierarchy En.

For these reasons, we consider languages L(Sn), whose function symbols are
+, ·,#, �3, ... , �n where

�3(x) = 2x and �n+4(x) = �n+3(... (�n+3︸ ︷︷ ︸
x times

(1)) ...),

because, for n≥ 3, within L(Sn) the use of functions from En can be conceived as
abbreviations.

Let FA(Sn) be the finitist arithmetic generated from the axioms of Robinson
Arithmetic, the basic axioms for the function symbols #, �3, ... , �n, and the induction
schema A(0)∧ (∀y <x)(A(y)→A(y+1))→A(x) for any L(Sn) formula A. Here
we choose blackboard bold letters to denote finitist theories and to distinguish
them from first-order theories denoted by bold ones (e.g., IΔ0(Sn) and WKL∗

0 (Sn)).
Moreover let FCT(Sn), FRTm(Sn), FFS(Sn), and FKF(Sn) be, respectively, the
theories of Tarski compositional truth, Tarski ramified truth, Friedman–Sheard
truth, and Kripke–Feferman truth, all formulated over FA(Sn), where m means that
FRTm(Sn) is formulated in the language L(Sn, T0, ... , Tm–1) with m truth predicates
T0, ... , Tm–1.
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FINITIST AXIOMATIC TRUTH 27

Our main theorem is that, for n≥ 2, FCT(Sn), FRTm+1(Sn), FFS(Sn), and
FKF(Sn) prove the same L(Sn) formulae as FA(Sn+1), independently of m. Here we
need to consider all formulae not only sentences, as all these theories are complete
for L(Sn) sentences (cf. the Σ1 completeness of first-order arithmetic).

Since the valuation function for Sn terms generates Sn+1, any theory closed under
the rule (∃-val) is naturally expected to have, at least, the strength of FA(Sn+1).
The import of our theorem is that the other truth-theoretic axioms and rules do
not strengthen the theories any further. In other words, the strength of the other
truth-theoretic axioms and rules is absorbed by the strength added by the valuation
function.

On the other hand, we will also see that the finitist Kripke–Feferman–Burgess
truth theory FKFB(Sn), which extends FKF(Sn) with the so-called axioms
of grounded truth, proves the same L(Sn) formulae as PRA. Therefore, the
groundedness of truth, in this sense, exceeds the strength added by the valuation
function.

We can compare these results with the other aforementioned contexts, namely
well-known results over Peano Arithmetic (summarized in [11]) and those from [6,
7] over Zermelo–Fraenkel set theory as follows.

FA(Sn) �L(Sn) FFS(Sn) =L(Sn) FRT<�(Sn) =L(Sn) FKF(Sn) �L(Sn) FKFB(Sn)
PA �LPA FS[[PA]] =LPA RT<�[[PA]] �LPA KF[[PA]] �LPA KFB[[PA]]
ZF �L∈ FS[[ZF]] =L∈ RT<�[[ZF]] �L∈ KF[[ZF]] =L∈ KFB[[ZF]]

Remarks on the measurement. In our main result, the strengths of our finitist truth
theories FCT(Sn), FRTm+1(Sn), FFS(Sn), and FKF(Sn) are measured as being
L(Sn) equivalent to FA(Sn+1) and that of FKFB(Sn) as being L(Sn) equivalent
to PRA≡

⋃
k∈� FA(Sk). In the present authors’ next work [23], FA(Sn) 	


Con(FA(Sn)) (i.e., Gödel second incompleteness for FA(Sn)) and FA(Sn+1) 

Con(FA(Sn)) will be shown, which yield the inequivalences �L(Sn) on the first
line of the table above. Here Con(FA(Sn)) is the Gödel formula (rather than Gödel
sentence) asserting the consistency of FA(Sn) with a free variable intended to vary
over (Gödel codes of) proofs. Note that, for n≥ 3, these easily follow from the first-
order Gödel second incompleteness theorem and IΔ0(Sn+1) 
 Con(IΔ0(Sn)) since
partial cut elimination yields both the L(Sn) equivalence and the equiconsistency
between IΔ0(Sn) and FA(Sn).

Traditionally, the strengths of truth theories over Peano Arithmetic PA have also
been measured by the notion of proof-theoretic ordinal. While this notion is usually
defined for theories over PA, it can be extended somehow naturally to weaker ones
but over IΣ1 (see the first author’s recent surveys [18, 20]). Although there seems to
be no standard way to extend the notion further below, one of plausible approaches
is by provable total functions (e.g., |T|prt and |T|Har in the notation of [18]), by which
the proof-theoretic ordinal (in the accordingly extended sense) of FA(Sn) would be
�n+m or �n–m for large enough n (cf. [18, Section 10]), for some uniform constant
m depending on the precise formulation.
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28 SATO KENTARO AND JAN WALKER

1.3. Side results on finitist inductive definitions. As technical intermediate steps
toward our main results, we will obtain several results on variants of inductive
definition of finitist or Δ0

0 positive operators, in a manner comparable with
those of arithmetical positive operators, on which characterizations of the proof-
theoretic strengths of KF[[PA]] and KFB[[PA]] rely, and with those of set-theoretic
positive operators from [16, 17], on which the analysis by Fujimoto [6, 7] relies.
Correspondingly to the previous table, we can compare them as in the next table,
where n≥ 3. Moreover, full finitist inductive definition ID1(Sn) will turn out to be
L(Sn) equivalent to PRA and hence to IΣ1.

finitist FA(Sn) =L(Sn) ÎD1(Sn) �L(Sn) ID1(Sn)
arithmetical PA �LPA ÎD1[[PA]] �LPA ID1[[PA]]

set-theoretic ZF �L∈ ÎD1[[ZF]] =L∈ ID1[[ZF]]

In view of WKL∗
0 (Sn) =L(Sn)FA(Sn), a variant of famous Parson’s theorem,

FA(Sn) =L(Sn) ÎD1(Sn) will follow from

RCA∗
0 (Sn) + (Δ0

0(Sn)-FP) =L2 WKL∗
0 (Sn).

Here (Δ0
0(Sn)-FP) asserts the existence of (not necessarily least) fixed point

for any Δ0
0 positive operator, and so the latter equivalence is the superscript-0

analogue of RCA0 + (Δ1
0-FP) =L2 ATR0 due to Avigad [2]. In the first author’s

recent paper [19], he has introduced the schema of strengthened inductive
dichotomy (C-SIDic), another weak variant of inductive definition, and he
proved RCA + (Δ1

0-SIDic) =L2 ATR0. The superscript-0 analogues of this equiva-
lence and famous RCA0 + (Δ1

0(Sn)-LFP) =L2 RCA0 + (Δ1
0(Sn)-SLFP) =L2 Π1

1-CA0,
where (C-SLFP) asserts the existence of stage comparison (cf. [17, 19]), are proved
in [21]. These reverse-mathematical results can be summarized as in the following
table, where we omit “RCA∗

0 (Sn) +” as usual.

superscript-0
WKL∗

0(Sn) ↔ (Δ0
0(Sn)-SIDic)

↔ (Δ0
0(Sn)-FP)

ACA0 ↔ (Δ0
0(Sn)-SLFP)

↔ (Δ0
0(Sn)-LFP)

superscript-1
ATR0 ↔ (Δ1

0-SIDic)
↔ (Δ1

0-FP)
Π1

1-CA0 ↔ (Δ1
0-SLFP)

↔ (Δ1
0-LFP)

1.4. Outline and prerequisites. Section 2 introduces finitist theories of arithmetic
over which we will formulate truth theories and shows some fundamental results.
Section 3 presents our way of coding syntax, and core truth theories FET(Sn) with
lower bounds. Section 4 introduces our target theories, i.e., various finitist theories
of truth, and shows basic results on them. Section 5 shows the interrelations among
these finitist truth theories. Section 6 gives upper bounds, by finitist fixed-point
theories ÎD(Sn+1), whose upper bounds are given in Section 7 by known techniques
from second-order arithmetic. Section 8 investigates briefly the groundedness of
truth. The proof of FFS(Sn)≤L(Sn) FRT<�(Sn)≤L(Sn) FKF(Sn)≤L(Sn) ÎD(Sn+1)
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FINITIST AXIOMATIC TRUTH 29

in Sections 5 and 6 should be familiar to axiomatic-truth-theorists, who may proceed
directly to the reduction of ÎD(Sn+1) in Section 7, but even for whom Sections 5 and
6 may shed light on the new aspects of the results.

Readers are supposed to be familiar with truth theories over first-order arithmetic
(studied, e.g., in [11, 12]) and with coding of syntax in weak arithmetic (explained,
e.g., in [4, 9]). Moreover, familiarity with second-order arithmetic (studied in, e.g.,
[25]) and with (partial) cut elimination simplifies the reading of Sections 7 and 7.3
respectively. It is also essential to know the difference between admissibility and
derivability of inference rules.

§2. Finitist arithmetic. While the main topic of this paper is truth theory, we
devote one section to the explanation of finitist arithmetic, the reason being that the
study of arithmetic in finitist languages is not standard in the field.

2.1. Definitions. A finitist language is determined by its vocabulary. Besides sets
of constant, function, and relation symbols, we also specify a set of designated
binary (or n-ary, for n≥ 2) relation symbols with distinct relata. For all the examples
treated in the present article, the vocabulary contains, at least, two constants 0 and 1,
two binary function symbols + and ·, and two binary relation symbols = and <,
where only < is designated with the first relatum being distinct. The well formed
formulae of a finitist language are defined in the same way as those of a first-order
language, except that the clauses for (unbounded) quantifiers are replaced by those
for quantifiers bounded by designated relation symbols. In our case, the clauses
are:

• ifA(x) is a well formed formula and t is a term in which x does not occur, then
both (∀x < t)A(x) and (∃x < t)A(x) are well formed formulae.

The term “formula” often refers to “well formed formula”. As we consider only
theories over classical logic, the negation symbol ¬ applies only to atomic formulae,
and we define the negation∼ of arbitrary formulae as the usual syntactical operation
according to De Morgan’s law. Accordingly, A→B stands for ∼A∨B .

The logical axioms and rules are the same as those of first-order logic, except
that the axioms and rules for bounded quantifiers are as follows, where x is an
eigenvariable, namely, x must not occur in B.

B → (x < t→A(x))
B → (∀x < t)A(x)

(B∀-Intr)
(∀x < t)A(x) → (s < t→A(s))

(B∀-Eli)

Because of our treatment of →, these rules are equivalent to the following.

(x < t ∧A(x)) → B
(∃x < t)A(x) → B (B∃-Eli)

(s < t ∧A(s)) → (∃x < t)A(x)
(B∃-Intr)

Furthermore, though in many cases it is admissible, we consider the following
instantiating rule as a logical rule, namely, we assume that all finitist theories are
closed under the following rule, where x is an eigenvariable.

A(x)
A(t)

(Inst)

https://doi.org/10.1017/jsl.2022.65 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.65


30 SATO KENTARO AND JAN WALKER

It is particularly important to keep this rule in mind when we define theories not
only with non-logical axioms but also with non-logical rules.

As we cannot form universal closure, we define partial conservation in terms of
provable formulae, not only provable sentences.

Definition 2.1 (Partial conservation, ≤C). For theories T1 and T2 and a class
C of formulae from the intersection of the languages of T1 and T2, we say that T1

is C conservative over T2 (in symbols, T1 ≤C T2) if T1 
 A implies T2 
 A for any C

formula A. Moreover, T1 =C T2 stands for T1 ≤C T2 and T2 ≤C T1.

All the finitist theories in this article are formulated in extensions of the finitist
language of arithmetic. As already discussed in the Introduction, it is important
which function symbols are included.

Definition 2.2 (L(Sn), FA(Sn)). Let L(Sn) be the finitist language determined
by the following vocabulary: two constants 0 and 1; three binary function symbols +,
·, and #; unary function symbols �3, ... , �n if n≥ 3; and two binary relation symbols
= and <. By an Sn term, we mean an L(Sn) term.

Let FA(Sn) be the L(Sn) theory generated by (the equality axioms and) the
following non-logical axioms.

Axioms of discrete order: ¬(x <x); (x <y ∧ y <z)→x <z; x <x+1; and
x <y→ (x+1 = y ∨x+1<y).

Axioms of addition and multiplication: x+0 =x; x+(y+1) = (x+y)+1; x·0 = 0;
and x·(y+1) = (x·y)+x.

Axioms of smash function #: x # 0 = 1; x <x # 1; x # 1< 2·(x+1);
x # (2·y+2) =x # (2·y+3) = (x # (y+1)) · (x # 1); and Pow2(x # y),
where Pow2(z)≡¬(z = 0)∧ (∀u, v < z)(1<u ∧ u·v= z→ (∃w <u)(u= 2·w))
and 2 :≡ 1+1.

Axioms of �k+1: �k+1(0) = 1; and �k+1(x+1) = �k(�k+1(x)), if n≥ k+1≥ 3,
where �2(x) = 2 · x.

Axiom schema of induction: A(0)∧ (∀y <x)(A(y)→A(y+1))→A(x) for any
L(Sn) formula A.

Remark 2.3. In the cases ofFA(Sn) and extensions, we can restrict the rule (Inst)
only to x <x+1: from A(x) we can infer x < t+1→A(x) and so (∀x < t+1)A(x),
which yields t < t+1→A(t).

Remark 2.4. Any L(Sn) term t is monotone in the sense of x≤ y→ t(x)≤ t(y).
Thus, for any L(Sn) formula A, we can define an L(Sn) term bdA, whose variables
all occur freely in A, that bounds the bounding terms of all quantifiers hereditarily
in A: if A is atomic, bdA is the summation of all the terms occurring in A;
bdA∧B ≡ bdA∨B :≡ bdA+ bdB ; and bd(∀x<t)A(x) ≡ bd(∃x<t)A(x) :≡ bdA(x)(t).

One significant feature of arithmetic with + and · is that it allows us to encode any
finite sequence of numbers by a single number. While various ways to achieve this
are known, we take the one from [9, Chapter V], because it seems to be one of the
most efficient ways in the literature. It starts with encoding finite sets of numbers.
The following lemma is proved in [9, Chapter V.3.b] or [29, Section 3.2] and shows
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that 1 encodes the empty set and that any finite set can be extended with one new
element.

Lemma 2.5. There are L(S2) formulae Seq and ∈ such that

FA(S2) 
 Seq(u)→ (∃v < 9·u·(x+1)2+1)
(

u≤ v ∧ Seq(v)∧
(∀y <v)(y ∈ v↔ y ∈ u ∨ y=x))

)
with FA(S2) 
 (x ∈ u→x <u)∧ Seq(1)∧¬(z ∈ 1).

2.2. Extension by definition and bounded � algebra. In the language L(Sn) of
the finitist arithmetic FA(Sn), we only have function symbols 0, 1,+, ·,#, �3, ... , �n.
However, similarly as in first-order arithmetic, we may also use additional function
symbols in L(Sn) formulae and treat them as mere abbreviations. What we have to
keep in mind is that we need a term (in the official language) which bounds the value
of such an additional function symbol.

Definition 2.6 (Bounded definable functions). Let T expand FA(Sn). A pair of
an Sn term t(x0, ... , xk–1) and an L(Sn) formula A(x0, ... , xk–1, y), both without
free variables other than displayed, is said to define a total k-ary function in T if

T 
 (∃! y < t(x0, ... , xk–1))A(x0, ... , xk–1, y),

where (∃! y < t)A(y) is short for (∃y < t)(A(y)∧ (∀z < t)(A(z)→ z = y)).
We loosely say that a k-ary function f (with the implicitly intended formula

Grf(x0, ... , xk–1, y) for its graph) is bounded definable in T if there is a term t (called
the bounding term) such that the pair of t and Grf defines a total k-ary function
in T.

The first-order analogue of this notion is called bounded Δ0
0 definability in [15,

Notation 2.9(1)].

Proposition 2.7. The following functions (with the obvious intended formulae for
their graphs) are bounded definable in any extension T of FA(S2), so that the attached
formulae are provable in T:

• subtraction x–y with y≤x→ (x–y)+y=x and y >x→x–y= 0;
• division x/y with 0<y→ (∃z <y)(x= (x/y)·y+z);
• pairing function pair(x, y) with 2·pair(x, y) = (x+y)·(x+y+1)+2·x;
• depairing functions dep0 and dep1 with depi (pair(x0, x1)) =xi for i < 2.

If a function is bounded definable in T with a bounding term t, then the use of an
additional function symbol f for that function can be justified as follows: a formula
of form B(f(s0, ... , sk–1)) can be rewritten as

(∃y < t(s0, ... , sk–1)(Grf(s0, ... , sk–1, y)∧B(y)),

and by iterating this process (backward along the construction of the subterms si ’s)
we can eventually obtain a formula without occurrences of f.

Lemma 2.8. Let T expand FA(S2). The class of all bounded definable functions in
T is closed under composition and under bounded minimization, where the latter means
that if f is k+1-ary and bounded definable in T then so is the k+1-ary function g with
g(x0, ... , xk–1, y) = min{z : z = y ∨f(x0, ... , xk–1, z) = 0}.
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Definition 2.9 (Bounded � algebra, Sn). A class of numerical functions is called
a bounded � algebra if it contains constant functions, projection functions, + and ·,
and it is closed under composition and under bounded minimization. The bounded
� algebra generated by a class F of numerical functions is the smallest bounded
� algebra that includes F . Let Sn denote the bounded � algebra generated by
{+, ·,#, �3, ... , �n}.

Thus, for the concern of justified use of function symbols, what is important is
not the class of function symbols but the bounded � algebra generated by it. In
combination with Lemma 2.8, the next lemma justifies us to call FA(Sn) the finitist
arithmetic for Sn. In what follows, however, we do not add symbols for all the
functions in Sn to L(Sn) as full-fledged symbols, but just as abbreviations (but see
also Remark 3.6). For a term s in the expanded language we can define a term t
in the original such that s ≤ t, by replacing bounded definable functions with their
bounding terms. We call this t the bounding term of s.

Lemma 2.10. Any function that is bounded definable in an L(Sn) theory T is
contained in Sn.

Proof. First, by meta-induction on an L(Sn) formula A, we can show that the
characteristic function charA of A is in Sn. The non-trivial case is as follows. Let
A(x0, ... , xk–1) be (∃y < t(x0, ... , xk–1))B(y, x0, ... , xk–1). Then

charA(x0, ... , xk–1) = char<

(
min

{
z :
z = t(x0, ... , xk–1)∨
charB(z, x0, ... , xk–1)

}
, t(x0, ... , xk–1)

)
.

Thus, if the pair of t and A defines f, then

f(x0, ... , xk–1) = min{z : z = t(x0, ... , xk–1)∨ charA(z, x0, ... , xk–1) = 0}. �

Now we are in a position to see the background of our somewhat strange
choice of function symbols in L(Sn). On the one hand, as discussed in the
Introduction, the most standard way to slice the class PR of primitive recursive
functions is Grzegorczyk hierarchy En, and En is the bounded � algebra generated
by {+, ·, �3, ... , �n} for n≥ 2. Here · is the iteration of +, �3 is that of ·, and so
on, where �3, ... , �n could also be replaced by their binary counterparts xy, ... as
they generate the same bounded � algebras. On the other hand, in our truth-
theoretic study we use arithmetic primarily for the coding of syntax, and in most
efficient codings the required recursions and inductions are not along sequence codes
(numbers denoting strings), but rather along the length of sequences (the lengths
of strings). And, indeed, Sn was defined in accordance with the requirements for
such length-recursions and -inductions. It can alternatively be conceived as the
bounded � algebra generated by {(x0, ... , xk–1) �→ 2f(|x0|,...,|xk–1|) :f ∈En}, which
we call smashed Grzegorczyk hierarchy. From this perspective, we naturally let S1 be
generated by {+, · }, i.e., E2.

A careful reader might consider that, from this perspective, it would be more
natural to replace the number-induction A(0)∧ (∀y <x)(A(y)→A(y+1))→A(x)
by the length-induction

B(0)∧ (∀y <x)(B(y)→B(2·y)∧B(2·y+1))→B(x).
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This is right, but, as far as we accept the schemata unrestrictedly for all formulae,
they are equivalent. For the direction from length-induction to number-induction,
take B(y) :≡ (∀z <x–y)(A(z)→A(z+y)) and it suffices to see

(∀y <x)(B(y)→B(2·y)∧B(2·y+1)),

assuming (∀y <x)(A(y)→A(y+1)). Let y <x and B(y). For z <x–2·y, since
z + y <x–y, by B(y) we have A(z)→A(z+y) and A(z+y)→A(z+2·y), which
imply A(z)→A(z+2·y). For z <x–2·y–1 we have A(z+2·y)→A(z+2·y+1) and
similarly A(z)→A(z+2·y+1). Let us mention that this proof requires an increase
of the complexity of formula: known as the implications from Σbn+1-PIND to Σbn-IND,
and from Σbn-IND to Σbn-PIND for n≥ 1 in the notation of [4].

2.3. Bounded recursion. So far, the smash function # played no particular role.
The significance of # is that, if it is included among the generators of a bounded �
algebra, then the algebra is closed under some form of recursion.

Theorem 2.11 (Bounded binary recursion). Let T expand FA(S2), let h, g, p be
bounded definable functions in T whose arities are k, k+2, and k+1 respectively, and
let t(y, x0, ... , xk–1) be a T term.

If T proves h(x0, ... , xk–1)<t(0, x0, ... , xk–1) ∧ p(y, x0, ... , xk–1)≤ y/2 and

z<t(p(y+1,x0, ... , xk–1), x0, ... ,xk–1) → g(y,x0, ... , xk–1, z)<t(y+1,x0, ... , xk–1),

then there is a (k+1)-ary function f that is bounded definable in T such that T proves
both f(0, x0, ... , xk–1) = h(x0, ... , xk–1) and

f(y+1, x0, ... , xk–1) = g(y, x0, ... , xk–1, f(p(y+1, x0, ... , xk–1), x0, ... , xk–1)).

Proof. For the graph, define max(x, y) := (x – y) + y and let

Grf(x0, ... , xk–1, y, z) :≡
(∃u < s(y, x0, ... , xk–1) # max(2·y, 1))A(u, x0, ... , xk–1, y, z),

where s(y, x0, ... , xk–1)≡ 34·(y+ t(y, x0, ... , xk–1))4 and A(u, x0, ... , xk–1, y, z) is

Seq(u)∧ (∀a, j <u)(pair(j, a)∈ u→ j ≤ y)∧ pair(y, z)∈ u

∧ (∀j ≤ y)(∀b <u)(∃c <u)
(
j > 0∧

pair(j, b)∈ u →
pair(p(j, x0, ... , xk–1), c)∈ u
∧ b= g(j–1, x0, ... , xk–1, c)

)
∧ (∀a <u)(pair(0, a)∈ u→ a= h(x0, ... , xk–1)).

For the uniqueness of z, if A(u, x0, ... , xk–1, y, z)∧A(v, x0, ... , xk–1, y, z
′) then we

have (∀a <u)(∀b <v)(pair(j, a)∈ u ∧ pair(j, b)∈ v→ a= b) by induction on j with
0<j ≤ y and hence z = z ′.

We show B(p(y, x0, ... , xk–1))→B(y) for y > 0, where

B(y) :≡ (∃z < t(y, x0, ... , xk–1))Grf(x0, ... , xk–1, y, z).

Here and below, for better readability, we omit x0, ... , xk–1.
Let z < t(p(y)) and u < s(p(y)) # max(2·p(y), 1) witness B(p(y)). Lemma 2.5

yields v with:
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(a) v < 9·u·(pair(y, g(y–1, z))+1)2+1, and
(b) (∀w <v)(w ∈ v↔w ∈ u ∨w = pair(y, g(y–1, z))).

Obviously A(v, y, g(y–1, z)). It remains to bound v. By z < t(p(y)) and the
premise of the theorem, we have pair(y, g(y–1, z))< 3·(y+t(y))2 and, by (a), also
v≤ 9·32·u·(y+t(y))4 = u·s(y). Now u < s(p(y)) # max(2·p(y), 1)≤ s(y) # y as
s is monotone. Then v≤ u·s(y)< (s(y)#y) · (s(y)#1) = s(y) #(2·y) by the axioms
for #.

Since B(0) is obvious, we can show (∀y≤x)B(y) by induction on x. �

Corollary 2.12. The following functions (with the obvious intended formulae
expressing the graphs) are bounded definable in the respectively mentioned theories, so
that the attached formulae are provable:

• in FA(S2), (modified ) logarithm |x| with |0|= 0 and x > 0→|x|= |x/2|+1;
• in FA(Sn) for n≥ 3, cut-off �n+1, denoted by cgn+1(x, y),

with �n(cgn+1(x, y))>y→ cgn+1(x+1, y) = y+1,
�n(cgn+1(x, y))≤ y→ cgn+1(x+1, y) = �n(cgn+1(x, y)) and cgn+1(0, y) = 1.

In more intuitive terms, |x| is �log2(x+1)�, the length of the shortest binary
expression of x, and cgn+1(x, y) = min{�n+1(x), y+1}. Thus, for n≥ 2, we can
express the graph Gr�n+1 of �n+1 in L(Sn) as follows. (Actually, Gr�3(y, z) is known
to be expressible only with + and ·, without #. Furthermore, as will be shown in
[22], we do not need + and · as functions but only their graphs.)

Definition 2.13. Define Gr�n (x, y) for n≥ 3 as follows:

Gr�3 (x, y) :≡Pow2(y)∧ |y|=x+1, Gr�n+4(x, y) :≡ cgn+4(x, y) = y.

Corollary 2.14 (Bounded recursion). Let T expand FA(S3), let h, g be
bounded definable functions in T whose arities are k and k+2 respectively, and let
t(y, x0, ... , xk–1) be a T term.

If T proves h(x0, ... , xk–1)<t(0, x0, ... , xk–1) and

z < t(y, x0, ... , xk–1)→ g(y, x0, ... , xk–1, z)<t(y+1, x0, ... , xk–1),

then there is a (k+1)-ary function f that is bounded definable in T such that T proves
f(0, x0, ... , xk–1) = h(x0, ... , xk–1) and

f(y+1, x0, ... , xk–1) = g(y, x0, ... , xk–1, f(y, x0, ... , xk–1)).

Proof. Let g ′(y, z) := g(|y+1|–1, x0, ... , xk–1, z) and t′(y) := t(|y|, x0, ... , xk–1).
The last theorem applied to h, -/2, g ′, and t′ yields a bounded definable

f′ such that f′(y, x0, ... , xk–1) = g(|y+1|–1, x0, ... , xk–1, f
′(y/2, x0, ... , xk–1)) for

y > 0 starting with f′(0, x0, ... , xk–1) = h(x0, ... , xk–1).
Define f by f(y, x0, ... , xk–1) =f′(�3(y)–1, x0, ... , xk–1). �

With bounded binary recursion (Theorem 2.11), we can introduce fundamental
operations on (codes of) finite sequences and, hence, on syntactical objects. The
following is proved in [9, Chapter V] or [29, Chapter 4].
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Lemma 2.15. There are bounded definable functions lh, ev, slo, and conc in FA(S2)
such that it proves

lh(1) = 0 ∧ Seq(slo(x)) ∧ lh(slo(x)) = 1 ∧ ev(slo(x), 0) =x
∧ (Seq(u)∧ Seq(v)→ Seq(conc(u, v)) ∧ lh(conc(u, v)) = lh(u)+lh(u))

∧ (∀y < lh(u))(ev(u, y) = ev(conc(u, v), y))
∧ (∀y < lh(v))(ev(v, y) = ev(conc(u, v), lh(u)+y))

∧ conc(u, slo(x))≤ 9·u·(x+1)2

∧ (lh(v)> 0→ conc(v, u)≥ 2·u) ∧ (lh(v)> 0∧ ev(v, 0)> 1→ conc(u, v)> 2·u).

Definition 2.16. We write 〈 〉, u(x), 〈x〉, and u∗v for 1, ev(u, x), slo(x), and
conc(u, v), respectively, where conc, ev, and slo are from the last lemma.

2.4. Totality rule and the use of function symbols. It is known that, in first-order
arithmetic IΔ0, the totality of exponentiation ∀y∃zGr�3(y, z) justifies the use of the
function symbol �3 even in the Δ0 induction schema. However, the straightforward
rewriting of A(�3(t)) by ∃z(Gr�3 (t, z)∧A(z)) or by ∀z(Gr�3(t, z)→A(z)) does not
justify the use of induction forA(�3(t)). What we need to show is, for any Δ0 formula
A with occurrences of �3, the existence of a finite fragment u= �3�k (a finite sequence
coded by a number) that is long enough to contain all the values of �3 referred to
in subformulae of A. A similar idea was used to prove the formalized version of
Kleene’s Normal Form Theorem in the function-based second-order arithmetic in
[15, Lemma 2.13].

In this subsection, we prove the same result in our finitist setting. As we cannot
form totality assertions in the language L(Sn), we express the totality by a non-
logical rule, similarly to the non-logical rule (∃-val) discussed in the Introduction.

Definition 2.17. The rule (Tot-�n+1) is as follows, where x must not occur in A
(i.e., x is an eigenvariable) nor in t.

Gr�n+1(t, x)→A
A

(Tot-�n+1)

In this subsection we locally interpret FA(Sn+1) in FA(Sn) + (Tot-�n+1). We first
define the formulae FLEn,t(u) and FLEn,A(u) meaning that u is a long enough
fragment of �n+1 for all references in a term t or a formula A, respectively.

Definition 2.18. Define Frag�n+1
(u) :≡ Seq(u)∧ (∀x < lh(u))Gr�n+1(x, u(x)).

For any Sn+1 term t (without added symbols for bounded definable func-
tions) whose variables are among x0, ... , xk–1, we define the L(Sn) formula
FLEn,t(u, x0, ... , xk–1) by meta-recursion on t as follows.

FLEn,t(u, x0, ... , xk–1) :≡⎧⎪⎨⎪⎩
Frag�n+1

(u), if t is a variable or constant,∧
i<�FLEn,ti (u, x0, ... , xk–1), if t≡ f(t0, ... , t�–1) for some f from Sn,

FLEn,s(u, x0, ... , xk–1)∧ su(x0, ... , xk–1)< lh(u), if t≡ �n+1(s),

where su is the result of replacing all the subterms of the form �n+1(t) by u(tu) in s.

https://doi.org/10.1017/jsl.2022.65 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.65


36 SATO KENTARO AND JAN WALKER

Next, for any L(Sn+1) formula A whose free variables are among x0, ... , xk–1, we
define the L(Sn) formula FLEn,A(u, x0, ... , xk–1) by meta-recursion on A as follows.

FLEn,A(u, x0, ... , xk–1) :≡⎧⎪⎪⎪⎨⎪⎪⎪⎩
∧
i<2FLEn,ti (u, x0, ... , xk–1), if A is t0 = t1, t0<t1, ¬ t0 = t1, ¬ t0<t1.∧
i<2FLEn,Bi (u, x0, ... , xk–1), if A is B0 ∧B1 or B0 ∨B1,

(∃v≤ u)(FLEn,B(u, tv, x0, ... , xk–1)∧FLEn,t(v, x0, ... , xk–1)),
if A is (∀y < t)B(y, x0, ... , xk–1) or (∃y < t)B(y, x0, ... , xk–1).

For the last clause, it might help to remind that, according to the standard
abbreviation in first-order setting, both y < t and B(y, x0, ... , xk–1) are subformulae
of (Qy < t)B(y, x0, ... , xk–1).

Lemma 2.19. For any Sn+1 term t and L(Sn+1) formula A whose free variables are
among x0, ... , xk–1, the following are provable in FA(Sn):

(i)
FLEn,t(v, x0, ... , xk–1)∧ v≤ u ∧Frag�n+1

(u)
→ tv(x0, ... , xk–1) = tu(x0, ... , xk–1)

;

(ii)
FLEn,t(v, x0, ... , xk–1)∧ v≤ u ∧

∧
i<kyi ≤xi ∧Frag�n+1

(u)
→FLEn,t(u, y0, ... , yk–1)

;

(iii)
FLEn,A(v, x0, ... , xk–1)∧ v≤ u ∧

∧
i<kyi ≤xi ∧Frag�n+1

(u)
→FLEn,A(u, y0, ... , yk–1)

.

Lemma 2.20. The following are provable in FA(Sn):
(1) cgn+1(x+y, z)≤ z → cgn+1(x, z)·cgn+1(y, z)≤ cgn+1(x+y, z) for n≥ 3;
(2) Gr�n+1(6·y2+4, z)→ (∃u <z)(y≤ lh(u)∧Frag�n+1

(u)) for n≥ 2.

Proof. (1) We prove this by meta-induction on n≥ 3 and internal induction
on y in FA(Sn). If x · y= 0 or y= 1, this can be seen easily by cgn(0, z) = 1 and
cgn(x, z) ≥ min(x · 2, z). So, assume cgn+1(x+y+1, z)≤ z with x, y ≥ 1. Then
cgn+1(x+y, z)≤ z and so

cgn+1(x, z)·cgn+1(y+1, z)<�n(cgn+1(x, z))·�n(cgn+1(y, z))

≤ �n(cgn+1(x, z)+cgn+1(y, z))

≤ �n(cgn+1(x, z)·cgn+1(y, z))

≤ �n(cgn+1(x+y, z)) = cgn+1(x+y+1, z),

where the second inequality is obvious for n= 3 and by the meta-induction
hypothesis otherwise since �n(x) = cgn(x, �n(x)), and where the fourth inequality
is by the induction hypothesis.

(2) For uniformity, let �2(x) = 2·x. We prove A(x) by induction on x, where

A(x) :≡ (∀y <x)(∀z <x)(Gr�n+1(6·y2+4, z)→ (∃u <z)(y≤ lh(u)∧Frag�n+1
(u))).

Again A(0) is obvious. Assume A(x). To show A(x+1), fix y, z <x+1 and
assume Gr�n+1(6·y2+4, z). If y= 0, then the statement is obvious. Thus we
may assume y 	= 0. By cgn+1(6·(y–1)2+4, z)<z ≤x, the induction hypothesis
yields w < cgn+1(6·(y–1)2+4, z) with y–1≤ lh(w)∧Frag�n+1

(w). We may assume
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lh(w) = y–1. Let u :=w∗〈cgn+1(y–1, z)〉. As 9< 24 ≤ cgn+1(4, z), we have

u≤ 9·w·(cgn+1(y–1, z)+1)2< cgn+1(4, z)·cgn+1(6·(y–1)2+4, z)·(cgn+1(y, z))2

and, by (1), u < cgn+1(4+6·(y–1)2+4+2·y, z)≤ cgn+1(6·y2+4, z) = z. �

Lemma 2.21. For n≥ 2, any Sn+1 term t, and any L(Sn+1) formula A, the following
rules are derivable in FA(Sn) + (Tot-�n+1), where u is a variable that does not appear
in terms t, t0, ... , tk–1 nor in a formula D (but t, t0, ... , tk–1 may occur in D).

t≤ u ∧FLEn,t(u, t0, ... , tk–1)→D
D

t≤ u ∧FLEn,A(u, t0, ... , tk–1)→D
D

Proof. We prove the derivability by meta-induction on t and A respectively.
The only non-trivial case for the former rule is where t≡ �n+1(s).

t≤ u ∧FLEn,s(u, t0, ..., tk–1)∧ su(t0, ..., tk–1)< lh(u) → D
t+v+sv(t0, ..., tk–1)< lh(u)∧Frag�n+1

(u)
→ (FLEn,s(v, t0, ..., tk–1)→D)

Lem.2.19(ii)

(∃u <z)(t+v+sv(t0, ..., tk–1)< lh(u)∧Frag�n+1
(u)))

→ (FLEn,s(v, t0, ..., tk–1)→D)

(B∀-Intr)

Gr�n+1(6·(t+v+sv(t0, ..., tk–1)+1)2+4, z)
→ (FLEn,s(v, t0, ..., tk–1)→D)

Lem.2.20(2)

FLEn,s(v, t0, ..., tk–1)→D (Tot-�n+1)

D
I.H.

The other cases for the former rule are similar to the cases where A≡B ∧C
and A≡B ∨C for the latter rule. The cases of bounded quantifiers can be treated
similarly.

t≤ u ∧FLEn,B(u, x0, ... , xk–1)∧FLEn,C (u, x0, ... , xk–1)→D
v+t≤ u ∧FLEn,B(u, x0, ... , xk–1) → (FLEn,C (v, x0, ... , xk–1)→D)

Lem.2.19(iii)

FLEn,C (v, x0, ... , xk–1)→D I.H.

D
I.H.

�

Definition 2.22 (Au). For any L(Sn+1) formula A, define Au as the result of
replacing all the subformulae of the forms s = t and s < t by su = tu and su < tu ,
respectively, in A.

Lemma 2.23. For n≥ 2,

FA(Sn) 
 FLEn,A(v, x0, ... , xk–1)∧ v≤ u ∧Frag�n+1
(u)

→ (Av(x0, ... , xk–1)↔Au(x0, ... , xk–1))
.

Theorem 2.24. For n≥ 2 and any L(Sn+1) formula A whose free variables are
among x0, ... , xk–1, if FA(Sn+1) 
 A(x0, ... , xk–1) then

FA(Sn) + (Tot-�n+1) 
 FLEn,A(u, x0, ... , xk–1)→Au(x0, ... , xk–1).
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Proof. We can prove this by meta-induction on the derivation of A(x0, ... , xk–1)
in FA(Sn+1). For better readability, we omit the parameters x0, ... , xk–1. The non-
trivial case is modus ponens (MP): A is inferred from B and B→A. By the
meta-induction hypothesis, FA(Sn) + (Tot-�n+1) proves both FLEn,B(v)→Bv and
FLEn,B→A(w)→ (Bw→Aw). By Lemma 2.23, FA(Sn) + (Tot-�n+1) also proves
v≤w ∧FLEn,B→A(w)→ (FLEn,B(v)→ (Bv→Aw)). We finally obtain

FA(Sn) + (Tot-�n+1) 
 v≤w ∧FLEn,B→A(w)
→ (u≤ v ∧FLEn,B(v)→ (FLEn,A(u)→Au))

to which we can apply Lemma 2.21 twice. �

Corollary 2.25. FA(Sn+1)≤L(Sn) FA(Sn) + (Tot-�n+1) for n≥ 2.

Proof. For an L(Sn) formula A, because Au ≡A, if FA(Sn+1) 
 A then
FA(Sn) + (Tot-�n+1) 
 FLEn,A(u)→A by the last lemma, and so, by (Inst),
FA(Sn) + (Tot-�n+1) 
 FLEn,A(〈 〉)→A where FA(Sn) 
 FLEn,A(〈 〉). �

§3. Towards truth theory.

3.1. Syntax coding. We now show how to encode syntax. Our theories will be
formulated in the following finitist languages.

Definition 3.1. Let L(Sn, T0, ... , Tm–1) denote the finitist language that expands
L(Sn) by unary relation symbolsT0, ... , Tm–1. In the case ofm= 1, we write T forT0.

We first assign different numbers to primitive symbols (including parenthesis),
for example,

�(� := 1; �)� := 3; �0� := 5; �1� := 7; �+� := 9; �·� := 11; �#� := 13;

�=� := 15; �<� := 17; �¬� := 19; �∧� := 21; �∨� := 23; �∀� := 25; �∃� := 27;

�xj� := 29+6j; ��j+3� := 31+6j; �Tj� := 33+6j,

and even numbers to the bounded definable functions, which we loosely consider to
be in the languages.

Definition 3.2 (Dot notation). For a function symbol f of arity � (which might
be 0, i.e., f might be constant), let

f.(t0, ... , t�–1) :≡〈�(�〉 ∗ 〈�f�〉 ∗ t0 ∗ ... ∗ t�–1 ∗ 〈�)�〉.

For any L(Sn) term t(x0, ... , xk–1), define the L(S2) term t.(x0, ... , xk–1) whose
variables are those of t(x0, ... , xk–1) by meta-recursion on t as follows.

t.(x0, ... , xk–1) :≡
{
xj, if t≡xj,
f.(t0. (x0, ... , xk–1), ... , t�–1. (x0, ... , xk–1)), if t≡ f(t0, ... , t�–1).

Let �t(x0, ... , xk–1)� :≡ t.(〈�x0�〉, ... , 〈�xk–1�〉). In particular, �xj�= 〈�xj�〉 and
�c�= 〈�c�〉= c. for any constant c.

For any L(Sn) formula A(x0, ... , xk–1), define an L(S2) term A. (x0, ... , xk–1)
(in the expanded language) whose variables are the same as the free variables of
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A(x0, ... , xk–1) by meta-recursion on A as follows.

A. (x0, ... , xk–1) :≡⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈�(�〉 ∗ t0. (x0, ... , xk–1) ∗ 〈�R�〉 ∗ t1. (x0, ... , xk–1) ∗ 〈�)�〉, if A≡ t0 R t1 for R≡=, <,
〈�(�〉 ∗ 〈�Tj�〉 ∗ t0. (x0, ... , xk–1) ∗ 〈�)�〉, if A≡Tj(t0),
¬. B. (x0, ... , xk–1), if A≡¬B,
B. (x0, ... , xk–1)�. C. (x0, ... , xk–1), if A≡B �C for �≡∧,∨,
(Q. �y�<. t.(x0, ... , xk–1))B. (�y�, x0, ... , xk–1),

if A≡ (Qy < t)B(y, x0, ... , xk–1) for Q≡∀,∃.

Here ¬. t stands for 〈�(�〉 ∗ 〈�¬�〉 ∗ t ∗ 〈�)�〉, and s �. t for 〈�(�〉 ∗ s ∗ 〈���〉 ∗ t ∗ 〈�)�〉
for �≡∧,∨, and (Q. x <. s)t for 〈�(�〉 ∗ 〈�Q�〉 ∗x ∗ s ∗ t ∗ 〈�)�〉 for Q≡∀,∃. Let
�A(x0, ... , xk–1)� denote A. (〈�x0�〉, ... , 〈�xk–1�〉).

To avoid ambiguity, we apply the dot notation only to minimum units (which
might consist of several letters, e.g., num or CTermn). Thus, if we apply dot to
�x.A(t(x)), we must first introduce B(x)≡A(t(x)).

We define L(S2) formulae for syntactical notions, e.g., Var(u), Termn(u),
CTermn(u), AtFormn,T<m (u), and Formn,T<m (u) which mean that u is a code of
variable, term, closed term, atomic formula, and formula, respectively, all in the
sense of L(Sn, T0, ... , Tm–1). Formkn,T<m (u, �x0�, ... , �xk–1�) means additionally that
free variables are among x0, ... , xk–1. Let Sentn,T<m (u) :≡Form0

n,T<m (u). We omit
“k” and “<m” if k,m= 1.

Definition 3.3 (Dyadic numeral num(x)). By bounded binary recursion, we
define a bounded definable function num as follows, where × denotes · for better
readability: num(0) = �0�; num(1) = �1�; num(2) = num(1) +. num(1);

num(2·x+2) = num(2)×. num(x+1);

num(2·x+3) = (num(2)×. num(x+1)) +. num(1).

Definition 3.4. By bounded binary recursion, we have bounded definable
functions sbst and ∼. in FA(S2) for the syntactical operations of substitution and
negation, respectively, with the following defining axioms.

Var(x)→ sbst(x, x, u) = u;

(lh(y) = 1∧ (¬Var(y)∨x 	= y))→ sbst(y, x, u) = y;

sbst(v+. w, x, u) = sbst(v, x, u) +. sbst(w, x, u); similar for ·,#, �j ,=, <,¬,∧,∨;

x 	= y ∧Var(y)→ sbst((Q. y <. v)w, x, u) = (Q. y <. sbst(v, x, u))sbst(w, x, u);

sbst((Q. x <. v)w, x, u) = (Q. x <. v)w;

AtFormn,T<m (u)→∼. u=¬. u,
∼. (u ∧. v) = (∼. u ∨. ∼. v), ∼. ((∀. x <. u)v) = (∃. x <. u)(∼. v) and their duals.

Our sbst does not prevent variable collisions. Moreover, Termn(u) does not
necessarily imply Formn,T<m (w)∧Var(x)→Formn,T<m (sbst(w, x, u)): if a term u
contains a variable y then (Q. y <. sbst(v, x, u))sbst(w, x, u) is not a well formed
formula (as far as x occurs in v). However, in what follows, these do not matter for
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us, as we basically substitute closed terms only. Note also that the bound for sbst
essentially requires # while sbst is crucial for a liar sentence.

We can also introduce a uniform version of sbst. For an assignment a of terms to
variables, let the substitution by a applied to w result in usbs(w, a). The following
definition is by bounded binary recursion on u∗〈a〉, since ovw(a, x, 0)≤ a implies
w∗〈ovw(a, x, 0)〉≤ ((Q. x <. v)w ∗ 〈a〉)/2. Note ¬Termn(0).

Definition 3.5. Define ovw(a, x, u) by the defining axioms

ovw(a, x, u)(x) = u, lh(ovw(a, x, u)) = lh(a),

and (∀y < lh(a))(y 	=x→ ovw(a, x, u)(y) = a(y)).

We introduce usbs with the same defining axioms as sbst except:

usbs(x, a) =

{
a(x), if Var(x)∧x < lh(a)∧Termn(a(x)),
x, otherwise,

usbs((Q. x <. v)w, a) = (Q. x <. usbs(v, a))usbs(w, ovw(a, x, 0)).

Remark 3.6. We apply the dot notation t. not only to terms generated by the
official symbols +, ·,#, �3, ... , �n but also to those generated by “unofficial” ones
for bounded definable functions (whence the arity of f is not restricted to 1 or 2
in Definition 3.2). More precisely, fixing a sufficiently large standard number k and
k many “unofficial” function symbols, we expand the language L(Sn, T0, ... , Tm–1)
with terms (or formulae) comprising less than k occurrences of such symbols. A
translation of the expanded language into the original is formalizable in FA(S2),
by which we identify codes of formulae in the expanded language with those in
the original. We do not add such symbols as full-fledged function symbols, as
FA(S2) cannot always handle non-standardly many occurrences. For example, while
�1(x) :=x#x is bounded definable in FA(S2), the y-th iterate �1(... (�1(x)) ...) is
translated into a term that has exp(y) many occurrences of x. Note that this problem
is specific to the syntax-coding by linear strings, but does not emerge for coding by
binary trees employed in the authors’ next work [23].

3.2. Finitist equational truth, lower bounds, and sentence induction.

Definition 3.7. FET(Sn) with n≥ 2 is the L(Sn, T ) theory generated by the
following non-logical axioms:

(FA(Sn)): all the axioms of FA(Sn) with the schema of induction extended to
L(Sn, T ) formulae;

(T term): T (num(x0) =. u0)∧ ··· ∧T (num(xk–1) =. uk–1)
→ T (num(f(x0, ... , xk–1)) =. f.(u0, ... , uk–1))

for any k-ary Sn function symbol f (including k= 0, i.e., constant symbols);
(T=): T (num(x) =. u)∧T (num(y) =. v)→ (T (u=. v)↔x= y)

and the following non-logical rule, where x must not appear in A nor in t.

T (num(x) =. t)→A
CTermn(t)→A

(∃-val)
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The preparatory truth theory FET(Sn) only has the axioms and a rule which
govern the behaviour of the truth predicate on equations. The motivation behind
the rule (∃-val) was explained already in the Introduction.

Lemma 3.8. For any Sn term t whose variables are among x0, ... , xk–1, the theory
FET(Sn) proves:

(i) CTermn(u)→T (u=. u),
(ii)

(∧
i<k T (num(xi) =. ui)

)
→ T (num(t(x0, ... , xk–1)) =. t.(u0, ... , uk–1)),

(iii)
(∧
i<k

(
T (ui =. vi)∧CTermn(ui)∧CTermn(vi))

)
→T (t.(u0, ... , uk–1) =. t.(v0, ... , vk–1)).

Proof. (i) By the rule (∃-val), it suffices to show T (num(x) =. u)→T (u=. u),
which follows from (T=).

(ii) We prove this by meta-induction on t. If t is a variable, this is trivial.
If t≡ f(t0, ... , t�–1) (possibly � = 0), by (Inst) we substitute ti(x0, ... , xk–1) and
ti. (u0, ... , uk–1) to xi and ui in (T term), i.e.,∧

i<�
T (num(ti(x0, ... , xk–1)) =. ti. (u0, ... , uk–1))

→ T (num(f(t0, ... , t�–1)) =. f.(t0. (u0, ... , uk–1), ... , t�–1. (u0, ... , uk–1))),

in which we can replace the premises with
∧
i<kT (num(xi) =. ui) by the meta-

induction hypothesis.
(iii) We prove this again by meta-induction on t. If t is a constant or variable, this

is by (i). Otherwise, it suffices to see∧
i<k
T (wi =. wk+i)→T (f.(w0, ... , wk–1) =. f.(wk, ... , w2k–1))

for a function symbol f, provided
∧
i<2kCTermn(wi). By (∃-val) we may assume∧

i<2kT (num(zi) =. wi) for fresh zi . Use (ii) and (T=). �
We may extend (iii) for non-standard terms with non-standardly many variables:

by induction on w,

(∀x < lh(a))(Var(x)→T (a(x) =. b(x)))∧CTermn(a(x))∧CTermn(b(x))

→T (usbs(w, a) =. usbs(w, b)).

We next show FA(Sn+1)≤L(Sn) FET(Sn). This yields the lower bounds of all our
truth theories, since they all include FET(Sn). By Corollary 2.25 it suffices to show
FA(Sn) + (Tot-�n+1)≤L(Sn) FET(Sn).

Lemma 3.9. FET(S2) proves (i) T (num(z) =. cgr2(y))↔Gr�3((1#y)·2–2, z) and
(ii) T (num(z) =. cgrn(y))↔Gr�n+1(|y|, z) for n≥ 3, where S2 functions cgrn are
introduced with the following defining axioms.

cgrn(0) = num(1); cgrn(x+1) =

{
cgr2((x+1)/2) #. num(2), if n= 2,
�n. (cgrn((x+1)/2)), if n≥ 3.

Proof. We first prove (ii). As A(0) is obvious, by induction, it suffices to show
A(x)→A(x+1), where

A(x) :≡ (∀y <x)(∀z <x)(T (num(z) =. cgrn(y))↔Gr�n+1(|y|, z)).
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Assume A(x). To show A(x+1), take y, z <x+1. Since the claim is obvious for
y= 0, we assume y > 0. What we have to show is

T (num(z) =. �n. (cgrn(y/2))↔Gr�n+1(|y|, z).

By (∃-val), for fresh v we may assume

T (num(v) =. cgrn(y/2)), (∗)

which implies T (num(�n(v)) =. �n. (cgrn(y/2))) by (T term). Hence, by (T=), what
we have to show now is

z = �n(v)↔Gr�n+1(|y|, z).

If z = �n(v), then v < z ≤x, and so the induction hypothesis and (∗) yield
Gr�n+1(|y|–1, v) which implies (∃v < z)(Gr�n+1(|y|–1, v)∧ z = �n(v)), namely,
Gr�n+1(|y|, z).

Conversely, assume Gr�n+1(|y|, z), say Gr�n+1 (|y|–1, w)∧ z = �n(w). It suffices to
showw = v. The induction hypothesis yields T (num(w) =. cgrn(y/2)) byw <z ≤x.
By Lemma 3.8(i) and the assumption (∗), w = v follows from (T=).

We can show (i) similarly. Notice

Gr�3((1#(y/2))·2–2, v)∧ z = v # 2→Gr�3((1#y)·2–2, z),

since (1#y) = (1#(y/2))·2 for y > 0 and Gr�3(x, v)∧ z = v # 2→Gr�3(x·2+2, z).
�

Corollary 3.10. (Tot-�n+1) is a derivable rule in FET(Sn).
Therefore, FA(Sn+1)≤L(Sn) FET(Sn).

Proof. By FA(S2) 
 Gr�3((1#y)·2–2, z)→ (∃v≤ z)Gr�3(y, v) and the last
lemma, (∃-val) implies (Tot-�3).

Similarly FA(S2) 
 Gr�3(y, x)∧Gr�n+1(|x|, z)→ (∃v < z)Gr�n+1(y, v) yields
(Tot-�n+1) for n≥ 3. �

We can now justify sentence induction. In first-order truth theories, induction
on the complexity of sentence is a fundamental tool, but it involves a Π1

induction formula. Note that Sentn,T ((Q. x <. u)v) does not imply Sentn,T (v) but
only Sentn,T (sbst(v, x, num(z))), whereas sbst(v, x, num(z))< (Q. x <. u)v is not
guaranteed.

Theorem 3.11 (Sentence induction). The following rule, with eigenvariablesu, v, y,
is derivable in FET(Sn).

AtFormn,T (u)
∧ Sentn,T (u)

→A(u)∧A(¬. u)
A(u)∧A(v)→
A(u ∧. v)∧A(u ∨. v)

T (num(z) =. u)∧
(∀y <z)A(sbst(v, x, num(y)))
→A((∀. x <. u)v)∧A((∃. x <. u)v)

Sentn,T (t)→A(t)

Proof. Define AssBd(a, p) as follows, meaning that a substitutes variables by
either themselves or numerals for numbers <p:

AssBd(a, p) :≡ (∀x < lh(a))(a(x) =x ∨ (∃z ≤p)(a(x) = num(z))).
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We have an S3 term boa(p, q) which bounds all such a’s of length q, i.e.,

FA(S3) 
 AssBd(a, p)→ (∃b < boa(p, q))(∀x <q)(b(x) = a(x)),

where a is free. Moreover, we bound the value of usbs(v, a) by �n+1 together with
ht, defined as follows, where �≡+, ·,# and �≡∧,∨ and Q≡∀,∃.

ht(0. ) = ht(1. ) = 1, Var(u)→ ht(u) = 1,

ht(�j. (u)) = ht(Ti. (u)) = ht(¬. u) = ht(u)+1,

ht(u �. v) = ht(u=. v) = ht(u <. v) = ht(u�. v) = ht((Q. x <. u)v) = ht(u)+ht(v).

Fix possibly non-standard p and q. Since we may assume to have w′ with
Frag�n+1

(w′)∧ lh(w′)≥p by Lemma 2.21, induction on v shows

y+ht(v)<p∧AssBd(a, �n+1(y))∧CTermn(usbs(v, a))

→ (∃z ≤ �n+1(y+ht(v)))(T (usbs(v, a) =. num(z))). (†)

By (Tot-�3) we may assume the existence of r= boa(�n+1(p), q). By definition, this
implies AssBd(a, �n+1(p))→ (∃b < r)(∀x <q)(b(x) = a(x)). By induction onw, we
now prove

(∀a < r)
((

lh(a)≤ q ∧Formn,T (w)∧ lh(w)≤p
∧w ≤ q ∧AssBd(a, �n+1(p–ht(w)))

)
→A(usbs(w, a))

)
.

For example, consider w = (Q. x <. u)v. (†) yields T (usbs(u, a) =. num(z)) for some
z ≤ �n+1(p–ht(w)+ht(u)) = �n+1(p–ht(v)). Let b := ovw(a, x, num(y))<r for any
y <z. Then we have AssBd(b, �n+1(p–ht(v))) and A(usbs(v, b)) by induction
hypothesis. By usbs(v, b) = sbst(usbs(v, ovw(a, x, 0)), x, num(y)), since y <z is
arbitrary, the third premise of the rule yields A(usbs(w, a)).

Since p and q are arbitrary, setting p := lh(u), q := u and a := 〈 〉, we have
Sentn,T (u)→A(u). �

§4. Finitist truth theories of our main interest.

4.1. Finitist typed truth. The finitist theory of compositional truth FCT(Sn)
extends FET(Sn) by the axioms which govern the behaviour of the truth predicate
on compound formulae generated by propositional connectives and bounded
quantifiers. However, in the scope of the truth predicate, only (codes of) those
formulae without truth predicate can occur. In other words, the truth predicate
cannot occur in the scope of itself. (More precisely, although we have such self-
applied formulae in the language, we exclude their codes from the scope of our truth
axioms.)

Definition 4.1 (Finitist compositional truth). For n≥ 2, let FCT(Sn) extend
FET(Sn) by the following non-logical axioms, where Sentn and Formn stand for
Sentn,T<0 and Formn,T<0 respectively:

(T<): T (num(x) =. u)∧T (num(y) =. v)→ (T (u <. v)↔x <y);
(T¬Atom): T (num(x) =. u)∧T (num(y) =. v)

→ (T (¬. (u=. v))↔¬x= y)∧ (T (¬. (u <. v))↔¬x <y);
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(T∧tp): Sentn(u)∧ Sentn(v)→ (T (u ∧. v)↔T (u)∧T (v));

(T∨tp): Sentn(u)∧ Sentn(v)→ (T (u ∨. v)↔T (u)∨T (v));

(T∀tp): Var(x)∧CTermn(u)∧Formn(v, x)∧T (num(y) =. u)
→ (T ((∀. x <. u)v)↔ (∀z <y)T (sbst(v, x,num(z))));

(T∃tp): Var(x)∧CTermn(u)∧Formn(v, x)∧T (num(y) =. u)
→ (T ((∃. x <. u)v)↔ (∃z <y)T (sbst(v, x,num(z)))).

The last four axioms are for (possibly) non-standard sentences, while the schemata
(Truth-Negation) and (Truth-Truth) in the Introduction were only for standard ones.
The subscript “tp” stands for “typed” truth.

Remark 4.2. In the first-order setting, it is also common to formulate the truth
axiom for ∀ as follows:

Var(x)∧ Sentn(sbst(v, x, num(0)))→
(

T ((∀. x) v)↔
∀w(CTermn(w)→T (sbst(v, x, w)))

)
.

A discussion on the difference between the two alternative formulations can be found
in [30, Section 1]. However, since there seems to be no way to bound w in truth
axioms for bounded quantifiers, we consider only substitutions by numerals.

Within FCT(Sn), we can prove the uniform Tarski biconditional in our setting.

Theorem 4.3. For any L(Sn) formula A(x0, ... , xk–1) whose free variables are
among x0, ... , xk–1,

FCT(Sn) 

∧
i<k
T (num(xi) =. ui) → (T (A. (u0, ... , uk–1))↔A(x0, ... , xk–1)).

Proof. We prove the statement by meta-induction on A. We make a case
distinction based on the outer-most connective of A. In all the cases, we work
in FCT(Sn), and assume T (num(xi) =. ui) for i < k. Then, by Lemma 3.8(ii),
T (num(ti(x0, ... , xk–1)) =. ti. (u0, ... , uk–1)) for any term ti .

First consider the cases where A is an atomic formula or the negation of an
atomic formula. Take the case of A≡¬(t0<t1). Now (T¬Atom) implies that
T (¬. (t0. (u0, ... , uk–1)<. t1. (u0, ... , uk–1))) and ¬(t0(x0, ... , xk–1)<t1(x0, ... , xk–1)) are
equivalent.

The cases of conjunction and disjunction are easy by (T∧tp) and (T∨tp).
Finally, in the case of bounded quantifiers, let

A(x0, ... , xk–1)≡ (∀y < t(x0, ... , xk–1))B(x0, ... , xk–1, y).

Then T (A. (u0, ... , uk–1))≡T ((∀. �y�<. t0. (u0, ... , uk–1))B. (u0, ... , uk–1, �y�))) is
equivalent to (∀y < t0(x0, ... , xk–1))B(x0, ... , xk–1, y)) by (T∀tp) and by the meta-
induction hypothesis. �

We now show the formula version of Lemma 3.8(iii) (but without T).

Lemma 4.4. For any L(Sn) formula A whose free variables are among x0, ... , xk–1,

FCT(Sn) 

∧
i<kCTermn(ui)∧CTermn(vi)∧T (ui =. vi)

→ (T (A. (u0, ... , uk–1))↔T (A. (v0, ... , vk–1)))
.
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Proof. By (∃-val), it suffices to show∧
i<k
T (num(xi) =. ui)∧T (num(yi) =. vi)∧T (ui =. vi)

→
(
T (A. (u0, ... , uk–1))↔T (A. (v0, ... , vk–1))

)
.

By (T=) the premise implies
∧
i<kxi = yi , and so A(x0, ... , xk–1)↔A(y0, ... , yk–1).

Apply Theorem 4.3. �

This lemma may also be proved by meta-induction on the formula A. As opposed
to the proof above, the proof by meta-induction can be extended to (the codes of)
non-standard formulae A similarly to Lemma 3.8(iii) by sentence induction, where
the number k of arguments can also be non-standard.

In FCT(Sn), we ignored those formulae in which the truth predicate T has itself
(or, more precisely, its code �T�) in its scope. One way to consider such formulae
consistently is to ramify T into several different ones T0, T1,.... This leads us to the
next kind of truth theory, the finitist theories of ramified truth.

Definition 4.5 (Finitist ramified truth). For n≥ 2, theL(Sn, T0, ... , Tm–1) theory
FRTm(Sn) is generated by the following non-logical axioms:

(FA(Sn)): all the axioms of FA(Sn) with the schema of induction extended to
L(Sn, T0, ... , Tm–1) formulae;

(T term): Tj(num(x0) =. u0)∧ ··· ∧Tj(num(xk–1) =. uk–1)
→ Tj(num(f(x0, ... , xk–1)) =. f.(u0, ... , uk–1))

for any k-ary Sn function symbol f (including k= 0, i.e., constant symbols);
(TAtom): Tj(num(x) =. u)∧Tj(num(y) =. v)

→ (Tj(u=. v)↔x= y)∧ (Tj(u <. v)↔x <y);
(T¬Atom): Tj(num(x) =. u)∧Tj(num(y) =. v)

→ (Tj(¬. (u=. v))↔¬x= y)∧ (Tj(¬. (u <. v))↔¬x <y);
(TTtp): Sentn,T<i (x)∧Tj(num(x) =. u)→ (Tj(Ti. (u))↔Ti (x)) for i < j;

(T¬Ttp): Sentn,T<i (x)∧Tj(num(x) =. u)→ (Tj(¬. Ti. (u))↔¬Ti (x)) for i < j;

(T∧tp): Sentn,T<j (u)∧ Sentn,T<j (v)→ (Tj(u ∧. v)↔Tj(u)∧Tj(v));

(T∨tp): Sentn,T<j (u)∧ Sentn,T<j (v)→ (Tj(u ∨. v)↔Tj(u)∨Tj(v));

(T∀tp): Var(x)∧CTermn(u)∧Formn,T<j (v, x)∧Tj(num(y) =. u)
→ (Tj((∀. x <. u)v)↔ (∀z <y)Tj(sbst(v, x,num(z))));

(T∃tp): Var(x)∧CTermn(u)∧Formn,T<j (v, x)∧Tj(num(y) =. u)
→ (Tj((∃. x <. u)v)↔ (∃z <y)Tj(sbst(v, x,num(z)))),

and the following non-logical rules: for any L(Sn, T0, ... , Tm–1) formula A and Sn
term t in both of which x does not occur.

Tj(num(x) =. t)→A
CTermn(t)→A

(∃-val)

Lemma 4.6. For any i, j <m,

FRTm 
 CTermn(u)→ (Ti(num(x) =. u)↔Tj(num(x) =. u)).

https://doi.org/10.1017/jsl.2022.65 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.65


46 SATO KENTARO AND JAN WALKER

Proof. Let SubTerm(v, u) express that v is a subterm of u. For any fixed p, by
induction on u we can prove

CTermn(u)∧ (∀v <u)(SubTerm(v, u)→ (∃y≤p)Ti(num(y) =. v))

→ (∀y≤p)(Ti(num(y) =. u)→Tj(num(y) =. u)).

Let w be the bounding term of u (in the sense defined before Lemma 2.10).
By (∃-val) we have p with Ti(num(p) =. w), which implies the second premise. If
Ti(num(x) =. u) then x≤p and so Tj(num(x) =. u). �

Lemma 4.7. For j ≤ i ≤m,

FRTm+1(Sn) 
 Sentn,T<j (u)→ (Tj(∼. u)↔¬Tj(u))∧ (Ti(u)↔Tj(u)).

Proof. We can show this by sentence induction (Theorem 3.11). Use Lemma 4.6
for the latter conjunct at the base case. �

In FRTm+1(Sn), we can extend the uniform Tarski biconditional (Theorem 4.3)
and internal reflection of equality (Lemma 4.4) to L(Sn, T0, ... , Tm–1).

Theorem 4.8. For any L(Sn, T0, ... , Tm–1) formula A(x0, ... , xk–1) whose free
variables are among x0, ... , xk–1,

FRTm+1(Sn) 

∧
i<kTm(num(xi) =. ui)

→ (Tm(A. (u0, ... , uk–1))↔A(x0, ... , xk–1))
.

Proof. We can prove this by replacing T with Tm in the proof of Theorem 4.3
and by adding two more cases which are covered by (TTtp) and (T¬Ttp). �

Theorem 4.8 implies the following lemma, the internal reflection of equality. This
can, as Lemma 4.4, be extended to non-standard formulae A with non-standardly
many arguments.

Lemma 4.9. For any L(Sn, T0, ... , Tm–1) formula A whose free variables are among
x0, ... , xk–1,

FRTm+1(Sn) 

∧
i<k

(
CTermn(ui)∧CTermn(vi)∧Tm(ui =. vi)

)
→

(
Tm(A. (u0, ... , uk–1))↔Tm(A. (v0, ... , vk–1))

).
Note that FRT0(Sn) is identical with FA(Sn) and that FRT1(Sn) is identical with

FCT(Sn). Also, FRTm(Sn) is included in FRTm+1(Sn) along the obvious inclusion.
Let us also consider the “limit” of these inclusions.

Definition 4.10. Let FRT<�(Sn) be the union of FRTm(Sn) for m ∈�,
formulated in

⋃
m∈� L(Sn, T0, ... , Tm–1).

We may go even further. For any ordinal α in some standard ordinal notation
system, we may define FRTα(Sn). Nonetheless, we do not consider these theories
for the following reasons. First, we cannot even state the well-foundedness of α. For
example, even if we try to formulate it by a transfinite induction rule, there is no
way to express the induction hypothesis without unbounded quantifiers. Second,
FRT<�(Sn) suffices for the following comparison to finitist analogues of two other
famous truth theories.

https://doi.org/10.1017/jsl.2022.65 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.65


FINITIST AXIOMATIC TRUTH 47

4.2. Finitist self-referential truth. To obtain consistent theories of untyped or self-
referential truth, certain naı̈ve truth axioms have to be dropped. Two theories are
particularly well known from the first-order setting: Kripke–Feferman truth and
Friedman–Sheard truth, as discussed in the Introduction.

Let us start with the finitist theory of Kripke–Feferman truth.

Definition 4.11 (Finitist Kripke–Feferman truth). For n≥ 2, the L(Sn, T )
theory FKF(Sn) is generated by the following non-logical axioms:

(FCT(Sn)): all the axioms of FCT(Sn);
(TTsr): Sentn,T (x)∧T (num(x) =. u)→ (T (T. (u))↔T (x));
(T¬Tkf): Sentn,T (x)∧T (num(x) =. u)→ (T (¬. T. (u))↔T (∼. x));
(T∧sr): Sentn,T (u)∧ Sentn,T (v)→ (T (u ∧. v)↔T (u)∧T (v));
(T∨sr): Sentn,T (u)∧ Sentn,T (v)→ (T (u ∨. v)↔T (u)∨T (v));
(T∀sr): Var(x)∧CTermn(u)∧Formn,T (v, x)∧T (num(y) =. u)

→ (T ((∀. x <. u)v)↔ (∀z <y)T (sbst(v, x,num(z))));
(T∃sr): Var(x)∧CTermn(u)∧Formn,T (v, x)∧T (num(y) =. u)

→ (T ((∃. x <. u)v)↔ (∃z <y)T (sbst(v, x,num(z)))),
and the non-logical rule (∃-val) as in FET(Sn).

In other words, we define FKF(Sn) from FCT(Sn) by strengthening the truth
axioms for ∧, ∨, ∀, ∃ to codes of non-typed formulae and by adding (TTsr) and
(T¬Tkf). Since the axiom (T¬Tkf) is specific to Kripke–Feferman truth, we write
“kf” for its subscript, while “sr” of the others stands for “self-referential”.

Now the uniform Tarski biconditional schema (Theorem 4.8) can be extended to
formulae with the truth predicate T, but with a restriction: T appears only positively,
i.e., not in the scope of ¬. (Recall that ¬ applies only to atomic formulae.)

Lemma 4.12 (Uniform Tarski biconditional for T-positive formulae). For any
L(Sn, T ) formula A(x0, ... , xk–1) whose free variables are among x0, ... , xk–1 and in
which the relation symbol T occurs only positively,

FKF(Sn) 

∧
i<k
T (num(xi) =. ui)→ (T (A. (u0, ... , uk–1))↔A(x0, ... , xk–1)).

Before moving to the next truth theory, we explain the �-soundness of our
finitist theories due to the linguistic restriction. Any finitist formula is absolute
between the standard model � and any non-standard model. Let us explain
this more precisely. First, for any L(Sn, T ) structure (M,TM ), we know that
(M,TM ) |= A(k0, ... , k�–1)↔ (�,TM∩�) |= A(k0, ... , k�–1) for any L(Sn, T ) for-
mula A and k0, ... , k�–1 ∈�. Hence, if an L(Sn, T ) theory T has a model, then it has
a standard model, i.e., a model whose elements are only standard natural numbers.
This means that the consistency of T implies the �-soundness of T.

Hence, the finitist theory of Friedman–Sheard truth, which we introduce next, is
�-sound (if consistent), contrastingly to the well known fact that the first-order
Friedman–Sheard truth theory is �-inconsistent.

Definition 4.13 (Finitist Friedman–Sheard truth). For n≥ 2, the L(Sn, T )
theory FFS(Sn) is generated by the following non-logical axioms:
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(FCT(Sn)): all the axioms of FCT(Sn);
(TT=): CTermn(u)∧CTermn(v)∧CTermn(x)∧CTermn(y)

→ (T (num(x) =. u)∧T (num(y) =. v)→ (T (T. (u=.. v))↔T (x=. y)));

(T∧sr): Sentn,T (u)∧ Sentn,T (v)→ (T (u ∧. v)↔T (u)∧T (v));
(T∨sr): Sentn,T (u)∧ Sentn,T (v)→ (T (u ∨. v)↔T (u)∨T (v));
(T¬sr): Sentn,T (u)→ (T (∼. u)↔¬T (u));
(T∀sr): Var(x)∧CTermn(u)∧Formn,T (v, x)∧T (num(y) =. u)

→ (T ((∀. x <. u)v)↔ (∀z <y)T (sbst(v, x,num(z))));
(T∃sr): Var(x)∧CTermn(u)∧Formn,T (v, x)∧T (num(y) =. u)

→ (T ((∃. x <. u)v)↔ (∃z <y)T (sbst(v, x,num(z)))),
with (∃-val) and the following, where B is any L(Sn, T ) formula whose free variables
are among y0, ... , yk–1.

B(y0, ... , yk–1)

CTermn(u0)∧ ... ∧CTermn(uk–1)→T (B. (u0, ... , uk–1))
(T -Intr)

T (B. (num(y0), ... , num(yk–1))

B(y0, ... , yk–1)
(T -Elim)

We write FFSm(Sn) 
 A if there is an FFS(Sn) proof of A in any path through
which the rule (T -Intr) is used at most m times and (T -Elim) is not used at all.

(TT=) is a special case of (TTsr) in FKF(Sn), with x being a code of equality.
Here to = we apply the dot notation iteratedly: =. is an S2 term with two arguments,
to which we apply Definition 3.2 again. Recall Remark 3.6 for the use of dot notation
on the “unofficial” function symbols =. .

In FFSm(Sn) 
 A, we count the number of applications of rules only along
paths. Thus, FFSm(Sn) is closed under modus ponens (MP): if FFSm(Sn) 
 A and
FFSm(Sn) 
 A→B thenFFSm(Sn) 
 B . Not only by this but also by the prohibition
of (T -Elim), our way of restricting FFSm(Sn) differs from Halbach’s FSm in [11].

We define FFS(Sn) from FCT(Sn) by strengthening the truth axioms for ∧, ∨, ∀,
∃ to codes of non-typed formulae and by adding (TT=) and the truth axiom for ∼
as well as the rules (T-Intr) and (T-Elim). The asymmetry between the two rules is
not essential because of (∃-val), but has some practical convenience.

Our rules differ from (truth-rule) in the Introduction, restricted to sentences,
which was employed in Halbach’s [11] formulation of first-order Friedman–Sheard
truth theory and derives our strengthened versions as follows.

B(y0, ... , yk–1)

∀y0, ... , yk–1B(y0, ... , yk–1)

T (�∀y0, ... , yk–1B(y0, ... , yk–1)�)

∀v0, ... , vk–1(CTerm(v0)∧ ··· ∧CTerm(vk–1)→T (B. (v0, ... , vk–1)))

CTerm(v0)∧ ··· ∧CTerm(vk–1)→T (B. (v0, ... , vk–1))
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T (B. (num(y0), ... , num(yk–1))

∀y0, ... , yk–1T (B. (num(y0), ... , num(yk–1))

T (�∀y0, ... , yk–1B(y0, ... , yk–1)�)

∀y0, ... , yk–1B(y0, ... , yk–1)

B(y0, ... , yk–1)

However, in our finitist setting, we cannot form ∀y0, ... , yk–1B(y0, ... , yk–1) nor
these derivations. Recall also the weakness of our truth axioms for quantifiers, as
mentioned in Remark 4.2.

Another difference from Halbach’s axiomatization of first-order Friedman–
Sheard truth theory is that (TT=) is explicitly included. In the first-order setting, or
more precisely, in the presence (or with the justification) of a term for valuation
function, (TT=) and (TT<), the latter being similarly defined, are provable
from the other axioms and rules as follows, where we omit the antecedent
“CTermn(u)∧CTermn(v)→”.

T (u <. v)↔ val(u)< val(v)

T (T. (num(u)<.. num(v)))↔
T (val. (num(u))<. val. (num(v)))

(T -Intr)

T (val. (num(u))<. val. (num(v)))
↔ val(u)< val(v)

val(u)< val(v)
↔T (u <. v)

T (val. (num(u))<. val. (num(v)))
↔T (u <. v)

T (T. (num(u)<.. num(v)))↔T (u <. v)

One can see the essential use of val. in this proof. Since we do not officially have nor
justify val as a bounded definable function in our setting, we have to simulate the
use of val. by a further rule as follows.

Proposition 4.14. For n≥ 2, the following rule is derivable in FFS0(Sn), where x
does not occur in A.

CTermn(x)∧T (T. (num. (x) =.. u))→A
CTermn(u)∧T (CTermn. (u))→A (T∃-val)

We postpone the proof until the end of this section. As we do not know if we
can derive this rule without (TT=), we added (TT=) as an axiom, and it suffices
to derive the respective assertions for <, 	=, and 	<. These are necessary for the
interpretability in Section 5.2, whose first-order analogue is due to Halbach [10] and
which is, we think, inevitable for any formulation of Friedman–Sheard truth to be
called appropriate.

Lemma 4.15. (1)FFS0(Sn)
CTermn(x)∧T (num(x) =. u)→T (T. (num. (x) =.. u)).
Thus (2) FFS0(Sn) 
 CTermn(x)→T (T. (num. (x) =.. num(x))).

Proof. T (num(a) =. x) implies T (num. (num(a)) =. num. (x)) by Lemma 3.8(iii).
Since Lemma 3.8(ii) yields T (num(num(a)) =. num. (num(a))), again by
Lemma 3.8(iii), T (num(a) =. x) implies T (num(num(a)) =. num. (x)). Thus, (TT=)
yieldsT (num(a) =. x)∧T (num(x) =. u)→ (T (T. (num. (x) =.. u))↔T (num(a) =. x))
which is equivalent to T (num(a) =. x)∧T (num(x) =. u)→T (T. (num. (x) =.. u)), to
which we apply (∃-val). �
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(1) below allows us to exchange num. (x) and num(x) in the scope of T (T. (A.. ))
under CTerm(x). By (∃-val), we may assume T (num(z) =. x) for fresh z, and
replace num. (x) by num. (num(z)) and by num(num(z)) by Lemmata 4.4 and 3.8(ii).
However, to replace num(num(z)) by num(x), we need the argument here.

Lemma 4.16. For n≥ 2 and any L(Sn) formula A whose free variables are
x0, ... , xk–1, FFS1(Sn) proves

(1)
∧
i<kCTermn(xi)→

(
T (T. (A.. (num. (x0), x1, ... , xk–1)))

↔T (T. (A.. (num(x0), x1, ... , xk–1)))

)
,

(2)

⎛⎝ CTermn(x)∧CTermn(y)∧
CTermn(u)∧CTermn(v)∧

T (num(x) =. u)∧T (num(x) =. u)

⎞⎠→

⎛⎝ (T (T. (u <.. v))↔T (x <. y))∧
(T (T. (¬.. u=.. v))↔T (¬. x=. y))∧
(T (T. (¬.. u <.. v))↔T (¬. x <. y))

⎞⎠.

Proof. (1) We can derive this as follows.

T (num(x0) =. y)→T (A. (num(x0), x1, ... , xk–1))↔T (A. (y, x1, ... , xk–1))
Lem.4.4∧

i<kCTermn(xi)∧
T (T. (num. (x0) =.. num(x0)))→

(
T (T. (A.. (num. (x0), x1, ... , xk–1)))

↔T (T. (A.. (num(x0), x1, ... , xk–1)))

) (T -Intr)

∧
i<kCTermn(xi)→

(
T (T. (A.. (num. (x0), x1, ... , xk–1)))

↔T (T. (A.. (num(x0), x1, ... , xk–1)))

) Lem.4.15(2)

(2) By Lemma 4.15(1), the following derivation suffices for the third conjunct.

T (num(x) =. u)∧T (num(y) =. v)→ (T (¬. u <. v)↔¬x <y)
(T¬Atom)

CTermn(x)∧CTermn(y)∧
CTermn(u)∧CTermn(v)∧

T (T. (num. (x) =.. u))∧T (T. (num. (y) =.. v))
→ (T (T. (¬.. u <.. v))↔T (¬. x <. y))

(T -Intr)

�

At this point, one can see the reason why we do not employ the standard upper-dot
notation to denote num(x) by ẋ, with which it is not easy to distinct num. (num(z))
and num(num(z)). On the other hand, we need extensive use of the other standard
notation of lower-dot. For example, we have to be able to denote num. (x) and the
iterated applications in =.. , A.. , ¬.. , and so on.

Proof. of Proposition 4.14. We can consider the following derivation.

CTermn(x)∧T (T. (num. (x) =.. u))→A
T (num(x) =. u)∧CTermn(x)→A Lem.4.15(1)

T (num(x) =. u)∧T (CTermn. (u))→A Thm.4.3

CTermn(u)∧T (CTermn. (u))→A (∃-val)
�

We will also consider one more self-referential truth theory, the finitist Kripke–
Feferman–Burgess truth theory FKFB(Sn). We do not give the definition of
FKFB(Sn) here but postpone it to Section 8.
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§5. Interrelation between finitist truth theories. We now clarify the interrelation-
ship among our finitist truth theories. Obviously FET(Sn) is included in FCT(Sn),
i.e.,FRT1(Sn), andFCT(Sn) is inFRTm(Sn) form> 1, inFFS(Sn), and inFKF(Sn).
We will show FFS(Sn)≤L(Sn) FRT<�(Sn) and FRT<�(Sn)≤L(Sn) FFS(Sn) and
FRT<�(Sn)≤L(Sn) FKF(Sn). The first two are analogous to the known results on
the corresponding first-order truth theories from [10].

5.1. Ramifying interpretation. To “embed” FFS(Sn) in FRT<�(Sn), we ramify
the truth predicate T into different truth predicates Tj ’s. For this, we introduce the
ramifying interpretation r(m) of rank m, which replaces the truth predicate T with
Tm–1 and any coded occurrence of T, at the depth j in the (iterated) scope of T,
with Tm–j–1. Since T may apply to codes of non-standard formulae, we also need
the coded version ramm of the interpretation.

Definition 5.1 (Ar(m), ramm). For any natural number m, we define an
interpretation r(m) of L(Sn, T ) in L(Sn, T0, ... , Tm–1) by meta-recursion on m as
follows. Let Ar(m) :≡A for any atomic L(Sn) formula A;

(T (t))r(m) :≡
{

0 = 0, for m= 0,
Tm–1(ramm–1(t)), for m> 0;

and let r(m) commute with ¬ (applied to atomic formulae), ∧, ∨, and bounded
quantifiers; where by meta-recursion on m and Theorem 2.11 we introduce an S2

function ramm with the following defining axioms.

ramm(u=. v) := u=. v; ramm(¬. u=. v) := ¬. u=. v;

ramm(u <. v) := u <. v; ramm(¬. u <. v) := ¬. u <. v;

ramm(T. (u)) :=

{
�0 = 0�, for m= 0,
Tm–1. (ramm–1

. (u)), for m> 0;

ramm(¬. T. (u)) :=

{
�¬ 0 = 0�, for m= 0,
¬. Tm–1. (ramm–1

. (u)), for m> 0;

ramm(u ∧. v) := ramm(u)∧. ramm(v); ramm(u ∨. v) := ramm(u)∨. ramm(v);

ramm((∀. x <. u)v) := (∀. x <. u)ramm(v); ramm((∃. x <. u)v) := (∃. x <. u)ramm(v).

We easily see FA(S2) 
 �Ar(m)�= ramm(�A�) for any L(Sn, T ) formula A, and
generalize it as follows.

Lemma 5.2. For any L(Sn, T ) formula B,

FA(S2) 
 Br(m). (u0, ... , uk–1) = ramm(B. (u0, ... , uk–1)).

Theorem 5.3. For n≥ 2 and any L(Sn, T ) formula A, (1) if FFSm(Sn) 
 A then
FRTm(Sn) 
 Ar(m); and (2) if FFS(Sn) 
 A then there are k and � such that, for any
m≥ �, we have FRTm+k(Sn) 
 Ar(m).
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Proof. We prove (2) by meta-induction on the proof of FFS(Sn) 
 A, because
(1) is easier. We focus only on the two non-obvious cases where the last inference is
either (T -Intr) or (T -Elim).

First consider the case of (T -Intr), say the last inference is the upper below.
The induction hypothesis yields k, � such that FRTm+k(Sn) 
 Br(m)(x0, ... , xk–1) for
m≥ �. For such m, we can construct the lower derivation below, which is a proof in
FRTm+1+k(Sn). Thus we can take k and �+1.

B(x0, ... , xk–1)∧
i<kCTermn(ui)→T (B. (u0, ... , uk–1))

(Lem.5.2)

(Thm.4.8) Br(m)(x0, ... , xk–1)∧
i<kTm(num(xi) =. ui)→Tm(Br(m). (u0, ... , uk–1))∧
i<kCTermn(ui)→Tm(Br(m). (u0, ... , uk–1))

(∃-val)∧
i<kCTermn(ui)→Tm(ramm(B. (u0, ... , uk–1)))

Next consider the case of (T -Elim), say the last inference is (T -Elim) as
in Definition 4.13. Then the induction hypothesis yields k and � such that
FRTm+k(Sn) 
 Tm–1(ramm–1(B. (num(x0), ... , num(xk–1)))) for m≥ �, where we
may assume � > 0. Then FRTm+k(Sn) 
 Br(m–1)(x0, ... , xk–1) by Lemma 5.2 and
Theorem 4.8, and we can take k+1 and �–1. �

Corollary 5.4. For n≥ 2, we have FFS(Sn)≤L(Sn) FRT<�(Sn).

Proof. Let A be an L(Sn) formula. Assume FFS(Sn) 
 A. By the last theorem,
there is m such that FRT<�(Sn) 
 Ar(m). Since A is an L(Sn) formula, we have
Ar(m) ≡A. �

5.2. Ignoring interpretation. To interpret FRT<�(Sn) in FKF(Sn) and in
FFS(Sn), we can just forget the ramification. As in the definition of r(m), we
have to consider that T may apply to codes of non-standard formulae. This is why
we need also the coded version of the interpretation.

Definition 5.5. For any natural number m, we define an interpretation i(m) of
L(Sn, T0, ... , Tm–1) in L(Sn, T ) by meta-recursion on m as follows.

Let Ai(m) :≡A for any atomic L(Sn) formula A;

(Tj(u))i(m) :≡ T (ignj(u)) for j <m; (Tj(u))i(m) :≡ 0 = 0 for j ≥m;

and let i(m) commute with ¬ (applied to atomic formulae), ∧, ∨, and bounded
quantifiers; where by meta-recursion on m and Theorem 2.11, we introduce ignm so
that ¬Sentn,T0,...,Tm–1(w)→ ignm(w) = �0 = 0� and else

ignm(u=. v) = u=. v; ignm(¬. u=. v) = ¬. u=. v;

ignm(u <. v) = u <. v; ignm(¬. u <. v) = ¬. u <. v;
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ignm(Tj. (u)) =

{
T. (ign.

j(u)), for j <m,
�0 = 0�, for j ≥m;

ignm(¬. Tj. (u)) =

{
¬. T. (ign.

j(u)), for j <m,
�¬ 0 = 0�, for j ≥m;

ignm(u ∧. v) = ignm(u)∧. ignm(v); ignm(u ∨. v) = ignm(u)∨. ignm(v);

ignm((∀. x <. u)v) = (∀. x <. u)ignm(v); ignm((∃. x <. u)v) = (∃. x <. u)ignm(v).

Let us start with interpreting in FKF(Sn). The only axiom of FRTm(Sn) whose
ignoring version is missed in FKF(Sn) is (T¬Ttp). Therefore, the next lemma is the
key for the interpretability.

Lemma 5.6. FKF(Sn) 
 T (∼. ignm(w))↔¬T (ignm(w)).

Proof. We proceed by meta-induction on m. We reason in FKF(Sn) by sentence
induction on w (cf. Theorem 3.11). We may assume Sentn,T0,...,Tm–1(w).

Consider the case where w = (u=. v). Then ignm(w) = (u=. v). Thus by (T=)
and (T¬Atom), we have

T (num(x) =. u) ∧ T (num(y) =. v) → (T (∼. ignm(w)) ↔ ¬(x= y))
∧ (T (ign.

m(w)) ↔ (x= y))

and so T (num(x) =. u)∧T (num(y) =. v) → (T (∼. ignm(w)) ↔ ¬T (ign.
m(w))), to

which we apply (∃-val).
In the cases where w = (u <. v), w = ¬. (u=. v) or w = ¬. (u <. v), we reason

similarly.
Next consider the case of w = Tj. (u) with j <m. Then ignm(w) = T. (ign.

j(u)).
Since T (num(x) =. u)→T (num(ignj(x)) =. ign.

j(u)), by (T¬Tkf) and (TTtp), we
obtain

T (num(x) =. u) → (T (∼. ignm(w)) ↔ T (∼. ignj(x)))
∧ (T (ignm(w)) ↔ T (ignj(x)))

.

By meta-induction hypothesis,T (num(x) =. u)→ (T (∼. ignm(w))↔¬T (ign.
m(w))),

to which we apply (∃-val).
In the case where w = ¬. Tj. (u) with j <m, we reason similarly.
The other cases are immediate by induction hypothesis. �

Theorem 5.7. Forn≥ 2 and anyL(Sn, T0, ... , Tm–1) formula A whose free variables
are among x0, ... , xk–1, if FRTm(Sn) 
 A(x0, ... , xk–1) then

FKF(Sn) 
 Ai(m)(x0, ... , xk–1).

Proof. This is by meta-induction on a proof of FRTm(Sn) 
 A(x0, ... , xk–1),
applying the last lemma. �

Next let us interpret FRTm(Sn) in FFSm(Sn) by i(m). Although this is not
necessary for the final result on the L(Sn) conservations (except for the claim we
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will make in connection with [24]), we claimed that the axiom (TT=) should be
included in FFS(Sn) because we think this interpretability should be feasible. The
only axiom of FRTm(Sn) whose ignoring version is missed in FFS(Sn) is (TTtp).
Therefore the next lemma is the key for the interpretability.

Lemma 5.8. FFSm+1(Sn) 
 T (num(w) =. u)→ (T (T. (ignm. (u)))↔T (ignm(w))).

Proof. We prove this statement by meta-induction on m. By applying (T -Intr)
to the equality axiom, we can extend Lemma 4.4 to L(Sn, T0, ... , Tm–1) formulae A.
Hence, we have to show T (T. (ignm. (num(w))))↔T (ignm(w)). By Lemma 3.8(ii),
this is equivalent to

T (T. (num(ignm(w))))↔T (ignm(w)),

which we now prove by sentence induction on w.
If w does not code any L(Sn, T0, ... , Tm–1) formula or if it codes an atomic L(Sn)

formula, this follows from (TT=) and Lemma 4.16(2) by Lemma 3.8(i). Below we
assume Sentn,T0,...,Tm–1(w).

If w =Tj. (v) with j <m, then CTermn(v) and so we can derive the following.

(Lem.3.8(ii))

T

(
T.. (num(ignj. (v)))

=. num(T. (ignj. (v)))

) (Lem.4.16(1))

meta-I.H.
T (T. (num(ignj(v))))↔T (ignj(v))

T (T. (T.. (num. (ignj. (v)))))
↔T (T. (ignj. (v))))

(T -Intr)

CTermn(ignj. (v))→
(
T (T. (T.. (num(ignj. (v)))))

↔T (T. (ignj. (v))))

)
CTermn(ignj. (v))→ (T (T. (num(T. (ignj. (v)))))↔T (T. (ignj. (v))))

Ifw =¬. v with v being a code of atomic formula, we have the following derivation,
where we omit “AtSentn,T0,...,Tm–1(v)→”.

AtSentn,T (x)→ (T (¬. x)↔¬T (x))
(T¬)

T (T. (¬.. num(ignm(v))))↔T (¬. T. (num(ignm(v))))
(T -Intr)

T (T. (num(¬. ignm(v))))↔¬T (T. (num(ignm(v))))
Lem.3.8(ii), T¬(

T (T. (num(ignm(v))))
↔T (ignm(v))

)
→

(
T (T. (num(¬. ignm(v))))

↔¬T (ignm(v))

)
(
T (T. (num(ignm(v))))

↔T (ignm(v))

)
→

(
T (T. (num(¬. ignm(v))))

↔T (¬. ignm(v))

) T¬
If w = u ∧. v or w = u ∨. v, we proceed similarly.
Finally assume w = (∀. x <. u)v or w = (∃. x <. u)v. For the former, consider the

following derivation, where (IH) is the induction hypothesis for v and where
we omit “Var(x)∧CTermn(u)∧ Sentn,T0,...,Tm–1(w)→”. Note that another sentence
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induction shows sbst(ignm. (v), x, num(y)) = ignm. (sbst(v, x, num(y)).

T ((∀. x <. num(u))v)↔ (∀y <u)T (sbst(v, x, num(y))
(T∀)

T (T. ((∀.. num(x)<.. num. (u))num(ignm. (v))))
↔ (T ((∀. �y�<. u)T. (sbst. (num(ignm. (v)), num(x), num. (�y�)))

(T -Intr)

T (T. ((∀.. num(x)<.. num(u))num(ignm. (v))))
↔ (T ((∀. �y�<. u)T. (sbst. (num(ignm. (v)), num(x), num. (�y�)))

Lem.4.16(1)

T (num(z) =. u)→
(

T (T. (num((∀. x <. u)ignm. (v))))
↔ (∀y <z)T (T. (num(sbst(ignm. (v), x, num(y)))))

) 3.8, T∀

T (num(z) =. u)∧ (IH) →
(

T (T. (num((∀. x <. u)ignm. (v))))
↔ (∀y <z)T (sbst(ignm. (v), x, num(y)))

)
T (num(z) =. u)∧ (IH) → T (T. (num((∀. x <. u)ignm. (v))))

↔T ((∀. x <. u)ignm. (v))

T∀

(IH) →
(
T (T. (num((∀. x <. u)ignm. (v))))↔T ((∀. x <. u)ignm. (v))

) (∃-val)

�
Theorem 5.9. For n≥ 2 and for any L(Sn, T0, ... , Tm–1) formula A whose

free variables are among x0, ... , xk–1, if FRTm(Sn) 
 A(x0, ... , xk–1) then we have
FFSm(Sn) 
 Ai(m)(x0, ... , xk–1).

Lemma 5.10. For n≥ 2 and for any L(Sn) formula A whose free variables are
among x0, ... , xk–1, the equivalence Ai(m)(x0, ... , xk–1)↔A(x0, ... , xk–1) is provable
in both FKF(Sn) and FFS(Sn).

What we have obtained can be summarized as follows.
(1) FRTm(Sn)≤L(Sn) FKF(Sn) and FRTm(Sn)≤L(Sn) FFSm(Sn) for any m≥ 0

and n≥ 2.
(2) Thus FRT<�(Sn)≤L(Sn) FKF(Sn) and FRT<�(Sn)≤L(Sn) FFS(Sn) for
n≥ 2.

5.3. Summary of this section. We close this section by summarizing the L(Sn)
conservations that we have shown.

FA(Sn+1) ≤L(Sn) FET(Sn)
≤L(Sn) FCT(Sn)≡FRT1(Sn) ≤L(Sn) FRT2(Sn) ≤L(Sn) ...

≤L(Sn) FRT<�(Sn) =L(Sn) FFS(Sn) ≤L(Sn) FKF(Sn)
These are familiar for experts of axiomatic truth theories, except the first
conservation FA(Sn+1)≤L(Sn) FET(Sn).

Our next goal is to show that all these theories are L(Sn) equivalent to FA(Sn+1).
What remains to be shown is FKF(Sn)≤L(Sn) FA(Sn+1), which we will establish in
the next two sections.

§6. Upper bound by fixed point theory. For our goal, it remains to show
FKF(Sn)≤L(Sn) FA(Sn+1). In the first-order setting, the upper bound of the theory
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KF of Kripke–Feferman truth can be given by interpreting the truth predicate as a
fixed point of a positive operator in the fixed point theory ÎD1. Similarly, we consider
the finitist analogue ÎD1(Sn+1). As opposed to the first-order case, the shift along
the smashed Grzegorczyk hierarchy is inevitable. The reduction of ÎD1(Sn+1) to
FA(Sn+1) will be given via some first-order theories in the next section.

Definition 6.1. Let U be a unary relation symbol and L(Sn, U ) the expansion
of the arithmetical language L(Sn) with U. An L(Sn) operator form is an L(Sn, U )
formula with at most one free variable, and it is called positive if U occurs only
positively in the formula.

For any L(Sn) operator form O(x,U ) and formula A(y), let O(x, {y :A(y)})
denote the result of replacing all the subformulae of the forms U (t) and ¬U (t) by
A(t) and ∼A(t), respectively, in the formula O(x,U ).

Note that, if A is free from U, then so is O(x, {y :A(y)}): the relation symbol U
is just a place holder.

We now define the finitist analogue of the first-order theory ÎD1 of non-iterated hat
inductive definition. The characteristic axiom asserts that the new predicate defines
a fixed point of a positive operator.

Definition 6.2 (ÎD1(Sn)). Let Lfix(Sn) be the expansion of the language L(Sn)
with a new unary relation symbol FO for any positive L(Sn) operator formO(x,U ).
ÎD1(Sn) is the Lfix(Sn) theory generated by the following:

(FA(Sn)): all axioms of FA(Sn) with the schema of induction extended to
Lfix(Sn) formulae;

(FP): FO(x)↔O(x, {y :FO(y)}) for any positive L(Sn) operator formO(x,U ).

The theories ÎDm(Sn) of m-th iterated hat inductive definition are defined by
iterating this procedure: operator forms O for ÎDm+1(Sn) can contain the fixed
point predicates introduced in ÎDm(Sn).

Another tool for our upper bound is the valuation function. As mentioned already
in the Introduction, to define it, we need to ascend one level up along (smashed)
Grzegorczyk hierarchy.

Lemma 6.3 (valn). The function valn with the following defining axioms is bounded
definable in FA(Sn+1).

valn(�0�) = 0; valn(�1�) = 1;

CTermn(u)∧CTermn(v)→ valn(u �. v) = valn(u) � valn(v) for � ≡+, ·,#;

CTermn(u)→ valn(�j. v) = �j(valn(u)) for j ≤ n.

Proof. We apply bounded recursion. The bounding term is �3(�3(z)) = 22z for
n= 2 and �n+1(z) for n≥ 3.

If x, y < 22z then x � y≤ 22z ·2z = 222·z
< �3(�3(2·z+1)), and if x, y < �n+1(z) then

x � y < �n+1(2·z+1) for n≥ 3, where u �. v≥ 2·max(u, v)+1. If x <�n+1(z) then
�n(x)<�n+1(z+1)≤ �n+1(2·z+1). �
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Definition 6.4. Let Kn(u,U ) be the following positive operator form.

(∃v,w <u)

⎛⎜⎜⎝ CTermn(v)
∧CTermn(w)

∧

⎛⎜⎜⎝
(u= (v=. w)∧ valn(v) = valn(w)) ∨
(u= (v <. w)∧ valn(v)< valn(w)) ∨

(u=¬. (v=. w)∧¬ valn(v) = valn(w))∨
(u=¬. (v <. w)∧¬ valn(v)< valn(w))

⎞⎟⎟⎠
⎞⎟⎟⎠

∨ (∃v,w <u)
(

Sentn,T (v)∧ Sentn,T (w)∧
(

(u= (v ∧. w)∧U (v)∧U (w))
∨ (u= (v ∨. w)∧ (U (v)∨U (w)))

))
∨ (∃v <u)

(
CTermn(v)∧

(
(u=T. (v)∧U (valn(v)))∨

(u=¬.T. (v)∧U (∼. valn(v)))

))

∨ (∃v,w, x <u)

⎛⎝ Var(x)∧CTermn(v)∧Formn,T (w, x)∧(
(u= (∀. x <. v)w ∧ (∀y < valn(v))U (sbst(w, x, num(y)))
∨ (u= (∃. x <. v)w ∧ (∃y < valn(v))U (sbst(w, x, num(y)))

)⎞⎠ .
Theorem 6.5. Let n≥ 2. For any L(Sn, T ) formula A, if FKF(Sn) 
 A then

ÎD1(Sn+1) 
 AKn , where AKn is the result of replacing all the subformulae of the
form T (t) by FKn (t) in A. Thus FKF(Sn)≤L(Sn) ÎD1(Sn+1).

Remark 6.6. We can also interpret T (t) by ∼FKn (∼. t). Together with the
following fixed-point construction induction where U occurs only negatively in B, we
can add either the consistency ∼ (T (u)∧T (∼. u)) or the completeness T (u ∨. ∼. u).

B(U )→B({x :O(x,U )})

B({x :⊥})→B({x :FO(x)})
(FCI)

§7. Δ0
0 Hat inductive definition in second order arithmetic. For our final goal,

what remains to be shown is ÎD1(Sn+1)≤L(Sn) FA(Sn+1) for n≥ 2. In this section,
we prove this conservation, with ≤L(Sn) being actually enhanced to ≤L(Sn+1) (and
also ÎD1(Sn+1) to ÎD<�(Sn+1)). Our strategy is to use well known first-order theories
at intermediate steps.

ÎD1(Sn) is defined in the finitist setting in the same way as the fixed point theory
ÎD1 is in the first-order setting. The linguistic limitation amounts to the restriction
that operators be Δ0

0 in terms of first-order arithmetic. Thus, ÎD1(Sn) is the finitist
part of Δ0-ÎD1, the fixed point theory restricted to positive Δ0 operators. The
restricted and unrestricted fixed point theories Δ0-ÎD1 and ÎD1 are the first-order
parts of the second-order arithmetic generated by the fixed point axioms ((Δ0

0)–-FP)
and ((Δ1

0)–-FP) respectively, where the superscript “–” means that the schemata are
free from second-order parameters.

There have been extensive studies on second-order arithmetic (see [25]), especially
on the so-called big five: RCA0, WKL0, ACA0, ATR0, and Π1

1-CA0, where the last
four extend RCA0 with (WKL), (Δ1

0-CA), (ATR), and (Π1
1-CA), respectively. The

following three known facts are important for us. Firstly, as Avigad [2] showed,
the parameter-allowing fixed point axiom (Δ1

0-FP) is equivalent to (ATR). Secondly,
the relationship of RCA0 and WKL0 and that of Δ1

1-CA0 and ATR0 are strongly
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analogous as described informally as follows (see [25, Remark I.11.8]):

WKL0

RCA0
≈ ATR0

Δ1
1-CA0

.

For example, (WKL) and (ATR) are equivalent, over some base theory, to (Σ0
1-Sep)

and (Σ1
1-Sep) respectively, while the characteristic axioms of RCA0 and Δ1

1-CA0 are
(Δ0

1-CA) and (Δ1
1-CA). This analogy survives, in the presence of �3 ≡ exp, even if we

drop (Σ0
1-Ind) from WKL0 and RCA0, namely

WKL∗
0

RCA∗
0

≈ ATR0

Δ1
1-CA0

.

Thirdly, WKL∗
0 is known to be Π1

1 conservative over RCA∗
0 and Π0

2 conservative over
IΔ0(exp), whose finitist part is our FA(S3). This is in contrast to the strong analogy
mentioned just above, because ATR0 is not conservative over Δ1

1-CA0. Because of
the first and the second facts, one can expect that (Δ0

0-FP) is equivalent to (WKL)
and that, if so, the third fact yields the conservation of (Δ0

0-FP) over IΔ0(exp), and
hence of the set-parameter-free variant ((Δ0

0)–-FP). We show that this expectation is
actually the case.

7.1. First-order and second-order arithmetic. As mentioned above, in this section
we use first-order theories as auxiliary tools.

Definition 7.1 (L1(Sn) and IΔ0(Sn)). Let L1(Sn) be the one-sorted first-order
language of first-order arithmetic which has the same constant, function, and relation
symbols as the finitist language L(Sn).

Let IΔ0(Sn) be the L1(Sn) theory generated from the same non-logical axioms as
FA(Sn).

Recall that first-order languages and theories are denoted by calligraphic and
bold letters, and that negation ¬ applies only to atomic formulae, but a syntactic
operation ∼ is defined by De Morgan’s Law.

As non-logical axioms of IΔ0(Sn) are only those of FA(Sn), in IΔ0(Sn) we have
induction schema only for L(Sn) formulae, which are called Δ0 formulae in the
context of first-order arithmetic. We use lower-case Greek letters ϕ, 
 to denote
first-order formulae (whereas we used capital Roman letters A, B, C, ...to denote
finitist formulae, which are, at the same time, Δ0 first-order formulae).

By the standard cut-elimination argument, we can show the following.

Theorem 7.2. IΔ0(Sn) =L(Sn)FA(Sn).

Proof. Trivially FA(Sn)≤L(Sn) IΔ0(Sn). For the converse, let A be any L(Sn)
formula with IΔ0(Sn) 
 A. Then, there is a finite set Γ of non-logical axioms
of IΔ0(Sn) such that the sequent ¬Γ, A is provable in the sequent-calculus of
classical logic. By cut-elimination, we have a proof of this sequent in which only
subformulae of ¬Γ, A occur. All these subformulae are in L(Sn) and so this shows
FA(Sn) 
 A. �

We also need another family of first-order theories, called second-order
arithmetic. The name seems to contradict the fact that they are not theories over
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second-order logic but only over (two-sorted) first-order logic. However, this is an
established standard terminology, and we have to get along with it.

Definition 7.3. Let L2(Sn) be the two-sorted first-order language of second-
order arithmetic that extends L1(Sn). Namely, it has two sorts, called number and
set; the number-sort fragment is exactly L1(Sn); terms of set-sort are only variables;
and the only relation symbol beyond L1(Sn) is ∈, whose first argument is of number-
sort and whose second argument is of set-sort. Number-variables are denoted by
lower-case Latin letters x, y, z, ... and set-variables by capital ones X,Y,Z, ..., both
possibly with subscripts.

The equality between set-variables is not a primitive symbol, but can be defined:
X =Y :≡∀x(x ∈X ↔x ∈Y ).

Definition 7.4 (Class notation). For L2(Sn) formulae ϕ(X ) and 
(x) with
distinguished set- and number-variables X and x, let ϕ({x :
(x)}) denote the result
of replacing all the subformulae of the forms t ∈X and ¬(t ∈X ), in ϕ(X ), by 
(t)
and ∼
(t) respectively.

Definition 7.5 (Δ0(Sn), Σ1(Sn), Π1(Sn), Π2(Sn)). An L2(Sn) formula is called
Δ1

0(Sn) if it has no set-quantifiers and called Δ0
0(Sn) if, additionally, all the number-

quantifiers in it are bounded. It is called Σ0
1(Sn), Π0

1(Sn), or Π0
2(Sn) if it is of the

form ∃x
(x), ∀x
(x), or ∀x∃y
(x, y), respectively, with 
 being Δ0
0(Sn).

Δ0(Sn), Σ1(Sn), Π1(Sn), and Π2(Sn) are defined in the same way for the language
L1(Sn).

Definition 7.6. Let Δ0
0-CA0(Sn) be the L2(Sn) theory extending IΔ0(Sn) by the

following further axiom and axiom schema:
(Ind): 0∈X ∧ (∀y <x)(y ∈X → y+1∈X )→x ∈X ;
(Δ0

0(Sn)-CA): ∃X (X = {x :ϕ(x)}) for any Δ0
0(Sn) formula ϕ in which X does

not occur.
Here we employ sans serif letters to denote axiom schemata in first-order

languages.
Let RCA∗

0 (Sn) the extension of Δ0
0-CA0(Sn) by (Δ0

1(Sn)-CA), which is defined as
follows:

(Δ0
1(Sn)-CA): ∀x(ϕ(x)↔∼
(x))→∃X (X = {x :ϕ(x)}) for any Π0

1(Sn) for-
mulae ϕ and 
 in both of which X does not occur.

The theory denoted by RCA∗
0 (without “(Sn)”) in the literature is thus RCA∗

0 (S3)
in our notation. It is known to prove Σ0

1 bounding schema (also called Σ0
1 collection

schema): (∀x <u)∃yϕ(x, y)→∃v(∀x <u)(∃y <v)ϕ(x, y) for any ϕ in Σ0
1.

Definition 7.7. In (extensions of) Δ0
0-CA0(Sn), we use the following abbrevia-

tions:

BinSeq(u) :≡ Seq(u)∧ (∀x < lh(u))(u(x)< 2);

ExtOnSeq(X ) :≡∀u, v
((

Seq(u)∧ Seq(v)∧ lh(u) = lh(v)
∧ (∀x < lh(u))(u(x) = v(x))

)
→ (u ∈X ↔ v ∈X )

)
;

BinTree(T ) :≡ExtOnSeq(T )∧ 〈 〉∈T ∧∀u(u ∈T →BinSeq(u)
∧ (∀x < lh(u))(u�x ∈T ))

.
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The notion of bounded definability of functions in the finitist setting can
be transferred to the first-order setting, where it should be called bounded Δ0

0
definability. This can further be extended to allow set variables in arguments. As an
instance of the so extended notion, we introduceX �t, which refers to the least u such
that BinSeq(u), lh(u) = t and (∀y < t)(u(y) = 0↔ y ∈X ). Thus, ϕ(X �t) should be
seen as an abbreviation of

∃u
(
ϕ(u)∧BinSeq(u)∧ lh(u) = t ∧ (∀y < t)(u(y) = 0↔ y ∈X )∧

∼ (∃v <u)(BinSeq(v)∧ lh(v) = t ∧ (∀y < t)(v(y) = 0↔ y ∈X ))

)
.

To boundX �t, the use of exp ≡ �3 is essential (otherwise we could only defineX �|t|).
Now we can introduce the theory WKL∗

0 (Sn), which extends RCA∗
0 (Sn) by a

single L2(S3) assertion.

Definition 7.8. For n≥ 3, let WKL∗
0 (Sn) be the extension of RCA∗

0 (Sn) by
(WKL), which is defined as follows:

(WKL): BinTree(T )∧∀x∃u(lh(u) =x ∧ u ∈T )→∃P∀x(P�x ∈T ).

The following theorem is known. For example, [26, Corollary 4.9] gave a model-
theoretic proof of it for n= 3 (where IΔ0(S3) is denoted by EFA), and no essential
change is needed for n≥ 4.

Theorem 7.9. WKL∗
0 (Sn) =Π0

2(Sn) IΔ0(Sn) for n≥ 3.

By combining this with Theorem 7.2, we have WKL∗
0 (Sn) =L(Sn) FA(Sn) forn≥ 3.

In Section 7.3, we will give a direct proof-theoretic proof of this (as Corollary 7.23)
due to Arai.

7.2. Equivalents of WKL. In this subsection, we show that WKL∗
0 (Sn) can be

axiomatized over Δ0
0-CA0(Sn) by either (Σ0

1(Sn)-Sep) or (Δ0
0(Sn)-FP) instead of

(WKL). The former was well known over RCA0(Sn) (e.g., [25, Lemma IV.4.4]), i.e.,
in the presence of Σ0

1 induction and (Δ0
1-CA). As ATR0 is known to be axiomatizable

by either (Σ1
1-Sep) or (Δ1

0-FP) over ACA0, our result enhances the aforementioned
analogy as follows.

WKL∗
0 (Sn)

Δ0
0-CA0(Sn)

≈ ATR0

ACA0
.

Definition 7.10. For any class C of L2(Sn) formulae, we define the following
axiom schemata:

(C-Sep): ∀x∼(ϕ(x)∧
(x))→∃X∀x((ϕ(x)→x ∈X )∧ (
(x)→¬x ∈X )) for
any C formulae ϕ and 
 in both of which X does not occur;

(C-FP): ∃X (X = {x :ϕ(x,X )}) for any C formula ϕ(x,X ) in which X occurs
only positively.

For C ≡ (Δ1
0(Sn))–, the class of Δ1

0(Sn) formulae without set parameters, it is easy
to see, by partial cut elimination, that ACA0+((Δ1

0(Sn))–-FP) is L1(Sn) conservative
over ÎD1(Sn), and for C ≡Δ1

0(Sn), ACA0+(Δ1
0(Sn)-FP) is L1(Sn) conservative over

the finitary iterated version ÎD<�(Sn), as shown in [2]. Similarly, we can show that
Δ0

0-CA0(Sn)+((Δ0
0(Sn))–-FP) is L1(Sn) conservative over Δ0-ÎD1(Sn) and L(Sn)

conservative over ÎD1(Sn). What we will actually need is weaker than these, namely,
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that our finitist fixed point theory ÎD1(Sn) is included in Δ0
0-CA0(Sn)+(Δ0

0(Sn)-FP)
(with set parameters being allowed).

Corollary 7.11. ÎD1(Sn) ≤L(Sn) ÎD<�(Sn) ≤L(Sn) Δ0
0-CA0(Sn)+(Δ0

0(Sn)-FP).

Because we will see Δ0
0-CA0(Sn) + (Σ0

1(Sn)-Sep)≤L(Sn) FA(Sn), in order to
have ÎD1(Sn)≤L(Sn) FA(Sn), it suffices to show the equivalence of the three
axiomatizations, especially Δ0

0-CA0(Sn) + (Σ0
1(Sn)-Sep) 
 (Δ0

0(Sn)-FP).
Let us start with going from Δ0

0-CA0(Sn) + (Σ0
1(Sn)-Sep) to WKL∗

0 (Sn). Trivially
(Δ0

1(Sn)-CA) follows from (Σ0
1(Sn)-Sep). As (WKL) is a single axiom formulated

in L2(S3), the well known fact RCA∗
0 (S3) + (Σ0

1(S3)-Sep) 
 (WKL) suffices. Let us
recall the proof.

Theorem 7.12. Δ0
0-CA0(Sn) + (Σ0

1(Sn)-Sep) 
 (WKL) for n≥ 3.

Proof. Define the following, with the former being equivalent to a Δ0
0(S3)

formula under ExtOnSeq(T ):

�(u, x, T ) :≡∃v(BinSeq(v)∧ lh(v) =x ∧ u∗v ∈T ),

ϕi(u, T ) :≡∃x(�(u∗〈i〉, x, T )∧∼�(u∗〈1–i〉, x, T )).

ϕi(u, T ) asserts u∗〈i〉 has a longer extension than u∗〈1–i〉. Thus, if BinTree(T), then
∀u∼(ϕ0(u, T )∧ϕ1(u, T )). Now (Σ0

1(S3)-Sep) yields X with

∀u((ϕ0(u, T )→ u ∈X )∧ (ϕ1(u, T )→ u /∈X )).

By recursion on x, define P by x ∈P↔P�x ∈X . Then

ϕi(P�x, T )→ (P�(x+1))(x) = i.

We show BinTree(T )∧∀x�(〈 〉, x, T )→∀x(P�x ∈T ).
Assume BinTree(T ). We prove �(P�(x–y), y, T )→P�x ∈T by induction on y. If

y= 0, this is obvious. We show �(P�(x–(y+1)), y+1, T )→ �(P�(x–y), y, T ).
Let v witness �(P�(x–(y+1)), y+1, T ). Then �(P�(x–(y+1))∗〈v(0)〉, y, T ).
Let i := (P�(x–y))(x–(y+1)). If v(0) = i , we are done. Assume otherwise, i.e.,
v(0) = 1–i . Since (P�(x–y))(x–(y+1)) 	= 1–i we have ∼ϕ1–i(P�(x–(y+1)), T ) and
�(P�(x–(y+1))∗〈i〉, y, T ). �

Next we show WKL∗
0 (Sn) 
 (Δ0

0(Sn)-FP). The key observation is the following,
whose second conjunct means that, if v encodes a larger finite set than u does, then
�(x, u)→ �(x, v). We call it monotonicity.

Lemma 7.13 (Δ0
0 Normal Form Theorem). Let n≥ 3. For any Δ0

0(Sn) formula
ϕ(x,X ) in which X occurs only positively, we have an L2(Sn) term t(x) and a Δ0

0(Sn)
formula �(x, u) without occurrences of X such that

Δ0
0-CA0(Sn) 
 (∀z ≥ t(x))(ϕ(x,X )↔ �(x,X �z))∧

(lh(u)≤ lh(v)∧ (∀y < lh(u))(u(y)≥ v(y))→ (�(x, u)→ �(x, v)))
.

Proof. By meta-induction on ϕ. The non-trivial cases are those of bounded
quantifiers.

Let ϕ(x,X )≡ (∀y < t(x))
(y, x,X ). By induction hypothesis, there are a term
s and a Δ0

0 formula � with 
(y, x,X )↔ �(y, x,X �z) for z ≥ s(y, x). Hence we
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have (∀y < t(x))
(y, x,X )↔ (∀y < t(x))�(y, x,X �z) for z ≥ s(t(x), x), because
y < t(x)→ s(y, x)<s(t(x), x). Thus s(t(x), x) and �(x, u)≡ (∀y < t(x))�(y, x, u)
are the required term and formula. �

This lemma without positivity and monotonicity is the set-based analogue of
Kleene’s Normal Form Theorem and was proved in detail in [14, Lemma 2.13].

Another lemma that we will need is a form of pigeon-hole principle.

Lemma 7.14. IΔ0(S3) 
 ∀u(Seq(u)∧ (∀x <y+2)(u(x)<y+1)
→ (∃x0, x1<y+2)(x0 	=x1 ∧ u(x0) = u(x1)))

.

Proof. Since we have an S3 term t(y, z) such that

IΔ0(S3) 
 ∀u
(

Seq(u)∧ (∀x <y)(u(x)<z)
→ (∃v < t(y, z))(Seq(v)∧ (∀x <y)(u(x) = v(x)))

)
,

we can prove the statement by induction on y. If y= 0, this is obvious.
Assume Seq(u)∧ (∀x <y+3)(u(x)<y+2). If (∀x <y+3)(u(x)<y+1), the

induction hypothesis yields x0, x1<y+2 with x0 	=x1 and u(x0) = u(x1), which
yields a conclusion of the lemma. Thus we may assume x3<y+3, u(x3) = y+1 and
(∀x <y+3)(x 	=x3 → u(x)<y+1). Define v with lh(v) = y+2 by v(x) = u(x) for
x <x3 and v(x) = u(x+1) for x≥x3. Apply the induction hypothesis to v. �

Theorem 7.15. Δ0
0-CA0(Sn) + (WKL) 
 (Δ0

0(Sn)-FP) and therefore we have
WKL∗

0 (Sn) 
 (Δ0
0(Sn)-FP) for n≥ 3.

Proof. Let ϕ(X ) be any Δ0
0(Sn) formula in which X occurs only positively. Let t

and � be as in Lemma 7.13 (Δ0
0 Normal Form Theorem). We may assume t(x)>x.

Define T by

u ∈T ↔ BinSeq(u)∧ (∀x < lh(u))(t(x)≤ lh(u)→ ((�(x, u)↔ u(x) = 0)).

First we show BinTree(T ). Let u ∈T and y < lh(u). We have to show u�y ∈T .
For x < lh(u�y) = y, if t(x)≤ y then t(x)≤ lh(u) and so �(x, u)↔ u(x) = 0. It
remains to show ∀x(t(x)≤ y→ (�(x, u)↔ �(x, u�y))). If t(x)≤ y, then we have
�(x, u)↔ϕ(x, {z < lh(u) : u(z) = 0})↔ �(x, u�y).

If T is an infinite tree, then (WKL) yields an infinite path P, which means
P�t(x)∈T for any x, implying

x ∈P ↔ (P�t(x))(x) = 0 ↔ �(x, P�t(x)) ↔ ϕ(x, P).

It remains to show that T is an infinite tree. We have to show that, for given
y > 0, there is u ∈T with lh(u) = y. Define v such that (∀x <y)(v(0)(x) = 1), that
(∀z <y+2)(BinSeq(v(z))∧ lh(v(z)) = y) and that

(∀z <y+1)(∀x <y)(v(z+1)(x) = 0↔ �(x, v(z))).

Intuitively, v(z) encodes the result of the z-th iterated application of the
operator, but truncated at y, to ∅. By induction on z ≤ y we can easily show
(∀x <y)(v(z)(x) = 0→ v(z+1)(x) = 0) using the monotonicity of �. If there is
z ≤ y with (∀x <y)(v(z)(x) = v(z+1)(x)), i.e., (∀x <y)(v(z)(x) = 0↔ �(x, v(z)),
then v(z)∈T .

We derive a contradiction assuming ∼(∃z ≤ y)(∀x <y)(v(z)(x) = v(z+1)(x)).
Now define w with lh(w) = y+1 such that (∀z ≤ y)(v(z)(w(z)) 	= v(z+1)(w(z))).
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Then we have (∀z0 ≤ z)(v(z0)(w(z)) = 1) and (∀z1 ≤ y)(z1>z→ v(z1)(w(z)) = 0).
Hence z0<z1 ≤ y→w(z0) 	=w(z1), contradicting Lemma 7.14. �

The proof of ∀y∃u(lh(u) = y ∧ u ∈T ) above is quite parallel to the standard
bottom-up proof of the Knaster–Tarski fixed point theorem. Specifically, the last
paragraph is the cardinality argument.

We can replace (Δ0
0(Sn)-FP) with

∃P(P= {x :ϕ(x, P)}∧ (∀X (
(X )→
({x :ϕ(x,X )}))∧
(∅)→
(P)))

for any Δ0
0 formula 
(X ) in which X occurs only negatively, by adding a conjunct

“∧
({x < lh(u) : u(x) = 0})” to the definition of T. This allows us to add finitely
many applications of (FCI) from Remark 6.6 in Corollary 7.11.

Finally, we prove that (Δ0
0(Sn)-FP) implies (Σ0

1(Sn)-Sep). Although we do not
need this implication, it is relatively easy and does not require n≥ 3.

Proposition 7.16. Δ0
0-CA0(Sn) + (Δ0

0(Sn)-FP) 
 (Σ0
1(Sn)-Sep).

Proof. Let ϕ and 
 be Δ0
0. Assume ∀x∼(∃yϕ(x, y)∧∃y
(x, y)). Consider the

following positive Δ0
0 operator:

�(z, X ) :≡ (∃x, y < z+1)
(

pair(x, y) = z ∧
(
ϕ(x, y)∨

(
∼
(x, y)∧

pair(x, y+1)∈X

)))
.

(Δ0
0(Sn)-FP) yields F with z ∈F ↔ �(z, F ). By induction on k we can show both

ϕ(x, y)→ pair(x, y–k)∈F and
(x, y)→∼ϕ(x, y–k)∧ pair(x, y–k) /∈F using the
assumption. Therefore, ∃yϕ(x, y)→ pair(x, 0)∈F and ∃y
(x, y)→ pair(x, 0) /∈F .
By (Δ0

0(Sn)-CA), we can take X = {x : pair(x, 0)∈F }. �

Corollary 7.17. The following are all equivalent formulations of theL2(Sn) theory
WKL∗

0 (Sn) for n≥ 3:

• Δ0
0-CA0(Sn) + (WKL);

• Δ0
0-CA0(Sn) + (Δ0

0(Sn)-FP); and
• Δ0

0-CA0(Sn) + (Σ0
1(Sn)-Sep).

Remark 7.18. With ∼ replaced by the intuitionistic negation, all the arguments
and hence all the results in this subsection survive in intuitionistic or constructive
settings, where we have the law of excluded middle (and double negation elimination)
for Δ0

0(Sn) formulae.

7.3. Arai’s proof. As announced before, we give a proof-theoretic proof of
WKL∗

0 (Sn) =L(Sn) FA(Sn) for n≥ 3 and of Theorem 7.9. With Corollaries 7.11
and 7.17, this shows ÎD1(Sn)≤L(Sn) FA(Sn). Our proof is taken from [1, Corollary
2.6], which is however for WKL0 =Π0

2
IΣ1, namely in the presence of the induction

schema for Σ1 formulae.
We employ a sequent calculus. We use capital Greek letters Γ,Λ, ... to denote

sequents, namely, finite sets of formulae, and adapt the usual notions for sequents:
Γ, ϕ stands for Γ∪{ϕ}, and so on.
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Definition 7.19. Let G(Sn) be the usual sequent calculus on L2 sequents with
the following axioms.

(A is a substitution instance of an axiom of FA(Sn))
Γ, A

(FA(Sn))

(ϕ is a Δ0
0(Sn) formula)

Γ, ϕ(0)∧ (∀x < t)(ϕ(x)→ϕ(x+1))→ϕ(t)
(Ind)

This calculus is, optionally, extended by the following rule, a sequent-style
counterpart of (Σ0

1(Sn)-Sep), with eigenvariables x, y, z and X.

Γ, ϕ(x, y)∨
(x, z)
Γ,∃x, y, z

(
(x ∈X ∧∼ϕ(x, y))
∨ (x /∈X ∧∼
(x, z))

) ⎛⎝ ϕ,
 are
Δ0

0(Sn)
formulae

⎞⎠
Γ

(Π0
1-Red)

Definition 7.20. For any Δ0
0(Sn) formula ϕ(x0, ... , xk–1, y), let

(∃y0, ... , y�–1ϕ(x0, ... , xk–1, y0, ... , y�–1))(z)

:≡ (∃y0, ... , y�–1<z)ϕ(x0, ... , xk–1, y0, ... , y�–1).

Define Γ(z) = {
(z) :
 ∈Γ} for any sequent Γ of Σ0
1(Sn) formulae.

Lemma 7.21. The following rules are admissible in G(Sn).

Γ
Γ,Λ

Weakening
Γ,∀xϕ(x)

Γ, ϕ(t)
Inversion

Γ(X ) (
 is Δ0
0(Sn))

Γ({x :
(x)})
Subst

Λ(s) s < t (Λ⊆Σ0
1(Sn))

Λ(t)
Persis

Theorem 7.22. Let Γ be any sequent of Σ0
1(Sn) formulae.

If G(Sn) + (Π0
1-Red) 
 Γ, then there is an Sn term t whose free variables are among

those of formulae in Γ such that G(Sn) 
 Γ(t).

Proof. Assume G(Sn) + (Π0
1-Red) 
 Γ. By partial cut elimination, we may

assume that in this proof (Cut) applies only to Δ0
0(Sn) formulae. We prove the

conclusion by meta-induction on such a proof. We make a case distinction based on
the last inference.

We consider only two cases: (∃-Intr) and (Π0
1-Red).

Assume that the last inference is (∃-Intr). We may assume the upper sequent is
Γ, ϕ(s) with ∃xϕ(x)∈Γ. Thus ϕ is a Δ0

0(Sn) formula. By induction hypothesis,
there is an Sn term t such that G(Sn) 
 Γ(t), ϕ(s). By substituting 0 if necessary, we
may assume that the free variables of s and t are only among those of Γ. Then we
have G(Sn) 
 Γ(t), (∃x < s+1)ϕ(x) and hence G(Sn) 
 Γ(t+s+1).
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Assume finally that the last inference is (Π0
1-Red). Below, we apply (Subst) to

(∀y < t)ϕ(x, y).

Γ, ϕ(x, y)∨
(x, z)

Γ(s(x,y,z)), ϕ(x, y)∨
(x, z)
I.H.

Γ(s(t,t,t)),
(∀x, y, z < t)

(ϕ(x, y)∨
(x, z))

Persis

Γ,∃x, y, z((x ∈X ∧∼ϕ(x, y))∨ (x /∈X ∧∼
(x, z))

Γ(t), (∃x, y, z < t)(x ∈X ∧∼ϕ(x, y))∨ (x /∈X ∧∼
(x, z))
I.H.

Γ(t), (∃x < t)
(

(x ∈X ∧ (∃y < t)∼ϕ(x, y))
∨ (x /∈X ∧ (∃z < t)∼
(x, z)

)
Γ(t), (∃x < t)

(
(∃y < t)∼ϕ(x, y)
∧ (∃z < t)∼
(x, z)

) Subst

Γ(t),
(∃x, y, z < t)

(∼ϕ(x, y)∧∼
(x, z))

Γ(s(t,t,t)),Γ(t)
(Cut)

Γ(s(t,t,t)+t)
Persis

�

Up to now in this subsection, we did not need n≥ 3. Below we need n≥ 3 through
Corollary 7.17.

Corollary 7.23. Let n≥ 3. Then WKL∗
0 (Sn) =Π2(Sn) IΔ0(Sn) and also

WKL∗
0 (Sn) =L(Sn) FA(Sn).

Proof. For any Δ0
0(Sn) formula ϕ(x, y) in which no set variables occur, if

WKL∗
0 (Sn) 
 ∀x∃yϕ(x, y), then clearly G(Sn) + (Π0

1-Red) 
 ∃yϕ(x, y) and, the
last theorem gives us an Sn term t(x) with G(Sn) 
 (∃y < t(x))ϕ(x, y). By partial
cut elimination, we may assume that (Cut) applies only to Δ0

0 formulae in the G(Sn)
proof of (∃y < t(x))ϕ(x, y) and, by Substitution (if set variables occur in some part
of the proof), we can conclude FA(Sn) 
 (∃y < t(x))ϕ(x, y). �

§8. Grounded truth and inductive definition. Among other well motivated truth
theories is the so-called theory of grounded truth from [3]. It is called Kripke–
Feferman–Burgess truth theory in [11, Chapter 17] and extends Kripke–Feferman
truth theory by the schema asserting that the truth predicate denotes the least fixed
point of the first-order analogue of Kn from Definition 6.4. However, Kn involves
the valuation function and the schema needs unbounded quantifiers, both of which
are not available in the finitist setting. Thus we make the following modifications.

Definition 8.1 (Finitist Kripke–Feferman–Burgess truth). For n≥ 2, let
FKFB(Sn) extend FKF(Sn) by the following non-logical rule:

Closn(y, z, v, w, {u :A(u, x0, ... , xk–1)})

T (u)→A(u, x0, ... , xk–1)
(Grd)

for eigenvariables y, z, v, w and any L(Sn, T ) formula A(u, x0, ... , xk–1), where

Closn(y, z, v, w,U ) :≡(
AtFormn(v)∧ Sentn(v)∧T (v)→U (v)

)
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∧
(

Sentn,T (v)∧ Sentn,T (w)→
(

(U (v)∧U (w)→U (v ∧. w))
∧ (U (v)∨U (w)→U (v ∨. w))

))

∧

⎛⎜⎜⎝
Var(y)∧CTermn(v)∧T (num(z) =. v)∧Formn,T (w, y)

→

⎛⎝ (U (z)→U (T. (v)))∧ (U (¬. z)→U (¬. T. (v)))
∧ ((∀x <z)U (sbst(w, y, num(x)))→U ((∀. y <. v)w))
∧ ((∃x <z)U (sbst(w, y, num(x)))→U ((∃. y <. v)w))

⎞⎠
⎞⎟⎟⎠ .

Intuitively, Closn(y, z, v, w,U ) means that U is a closed set of the operator Kn
from Section 6.

In the first-order setting, Kripke–Feferman–Burgess truth theory is known to
be equivalent to the first-order theory ID1 of non-iterated inductive definition. We
define ID1(Sn) similarly to ID1 but with a rule.

Definition 8.2. ID1(Sn) is the Lfix(Sn) theory extending ÎD1(Sn) with the
following non-logical rule, for any L(Sn) operator form O(x,U ) and any Lfix(Sn)
formula A(x, z0, ... , zk–1), where y is an eigenvariable.

O(y, {x :A(x, z0, ... , zk–1)})→A(y, z0, ... , zk–1)

FO(zk)→A(zk, z0, ... , zk–1)
(FI)

We can easily see FKFB(Sn)≤L(Sn) ID1(Sn+1) for n≥ 2 by extending the
argument in Section 6.

The lower bound for FKFB(Sn) can be given without significant difference from
the first-order analogue. It is convenient to extend the dot notation for operator
forms, or, more generally, for L(Sn, U ) formulae.

Definition 8.3. For any L(Sn, U ) formula P(x0, ... , xk–1, U ), define an S2 term
P. (x0, ... , xk–1, u) by meta-recursion on P similarly to A. in Definition 3.2 except the
following additional clause for atomic formulae with U :

P. (x0, ... , xk–1, u) := sbst(u, �y�, t.(x0, ... xk–1))

if P(x0, ... , xk–1, U )≡U (t(x0, ... , xk–1)).

Lemma 8.4. For any L(Sn, U ) formula P(x0, ... , xk–1, U ) in which U occurs only
positively and for any L(Sn, T ) formula A(x) in which T occurs only positively and
y, z0, ... , zk–1 do not occur,

FKF(Sn) 
 T (P. (num(z0), ... , num(zk–1), A. (�y�)))↔P(z0, ... , zk–1, {x :A(x)}).

Proof. We prove this lemma by meta-induction on P. We consider only the
case of P(x0, ... , xk–1, U )≡U (t(x0, ... , xk–1)). We reason in FKF(Sn). Since
P. (num(z0), ... , num(zk–1), A. (�y�))≡ sbst(A. (�y�), �y�, t.(num(z0), ... , num(zk–1)))
is A. (t.(num(z0), ... , num(zk–1))) by definition, we can see by Theorem 4.12 that
T (P. (num(z0), ... , num(zk–1), A. (�y�))) is equivalent to A(t(z0, ... , zk–1)), that is,
P(z0, ... , zk–1, {x :A(x)}). �

The next shows that Gödel’s self-referential (fixed point) lemma follows from
“fixed point” in our sense.

Theorem 8.5. For any positive L(Sn) operator form O(x,U ), there is a standard
number o such that:
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(i) FKF(Sn) 
 T (O. (num(y), o))↔O(y, {x :T (O. (num(x), o))}), where o is the
numeral for o;

(ii) the following rule is derivable in FKFB(Sn): for any L(Sn, T ) formula A(y)
which might have free variables other than y.

O(y, {x :A(x)})→A(y)

T (O. (num(y), o))→A(y)

Proof. Let diag be a definable function in FA(S2) with the defining axiom

diag(y) := sbst(y, �x�, num(y)),

and let k be such that FA(Sn) 
 k=T. (O.. (num. (�y�), diag. (�x�)). Let o= diag(k).

Then FA(Sn) 
 o=T. (O.. (num. (�y�), diag. (num(k))).
(i) By Lemma 8.4,T (O. (num(y), o)) is equivalent toO(y, {x :T (O. (num(x), o))}).
(ii) Define B as follows, where y0, ... , yk–1 do not occur in A(x):

B(u) :≡
∧

P(x0, ... , xk–1, U ) is a subformula of O(x,U )

(∀y0, ... , yk–1<u)(u=P. (num(y0), ... , num(yk–1), o)
→P(y0, ... , yk–1, {x :A(x)}))

.

We reason in FKFB(Sn). Assume O(y, {x :A(x)})→A(y). It suffices to show
Closn(x, y, v, w, {u :B(u)}), as B(O. (num(y), o)) is equivalent to O(y, {x :A(x)}).

First assume AtFormn(v)∧ Sentn(v)∧T (v). Ifv=P. (num(y0), ... , num(yk–1), o),
then U does not occur in P, and so T (v) implies P(y0, ... , yk–1). Thus, B(v).

Next assume Sentn,T (v)∧ Sentn,T (w). In order to show B(v ∧. w), we let
v ∧. w =P. (num(y0), ... , num(yk–1), o). Then P≡Q ∧R and B(v)∧B(w) implies
Q(y0, ... , yk–1, o)∧R(y0, ... , yk–1, o). Similarly (B(v)∨B(w))→B(v ∨. w), and

Var(y)∧CTermn(v)∧T (num(z) =. v)∧Formn,T (w, y)

→ ((Qx <z)B(sbst(w, y, num(x)))→B((Q. y <. v)w)).

Assume CTermn(v)∧T (num(z) =. v) and B(z). In order to show B(T. (v)), let
T. (v) =P. (num(y0), ... , num(yk–1), o) for a subformula P of O. As O does not
contain T, we have P(x0, ... , xk–1, U )≡U (t(x0, ... , xk–1)) and

T. (v) = sbst(o, �y�, t.(num(y0), ... , num(yk–1)))

=T. (O.. (num. (t.(num(y0), ... , num(yk–1))), diag. (num(k))))

and so z =O. (num(t(y0, ... , yk–1)), o). B(z) implies O(t(y0, ... , yk–1), {x :A(x)})
and A(t(y0, ... , yk–1)), i.e., B(T. (v)).

Note that B(¬. T. (v)) is vacuous, since U must be positive in P. Thus we have
covered all the cases. �

Corollary 8.6. (1) ÎD1(Sn) + (Tot-�n+1)≤L(Sn) FKF(Sn).
(2) ID1(Sn) + (Tot-�n+1)≤L(Sn) FKFB(Sn).

In the first-order setting, the analogues of (1) and of Section 6 show
the equivalence ÎD1 =L1 KF directly. We do not know if the argument of
Section 2.4 can be extended to ÎD1(Sn+1)≤L(Sn) ÎD1(Sn) + (Tot-�n+1) nor to
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ID1(Sn+1)≤L(Sn) ID1(Sn) + (Tot-�n+1). Instead, ID1(Sn+1) =L(Sn) ID1(Sn) can be
shown as follows.

Definition 8.7. Let IΣ1(Sn) be the extension of IΔ0(Sn) by

ϕ(0)∧ (∀y <x)(ϕ(y)→ϕ(y+1))→ϕ(x) for any Σ1(Sn) formula ϕ(x).

We will omit “(Sn)”, as IΣ1(Sn) and IΣ1(Sm) are known to be mutually
interpretable for n,m≥ 2.

Theorem 8.8. ID1(Sn) =L(Sn) IΣ1 for n≥ 2.

Proof. First we embed ID1(Sn) in IΣ1. For any positive operator O(x,U ),
define the following first-order formulae, where ESO(u) means that finite sets
Xj = {y < lh(u(j)) : u(j)(y) = 0} satisfy Xj ⊆{x :O(x,

⋃
i<j Xi)}.

ESO(u) :≡ (∀j < lh(u))(BinSeq(u(j))∧
(∀y < lh(u(j))(u(j)(y) = 0→O(y, {x : (∃i <j)(x< lh(u(i))∧u(i)(x) = 0)})),

FixO(x) :≡∃u(lh(u)> 0∧ lh(u(lh(u)–1))>x ∧ u(lh(u)–1)(x) = 0∧ESO(u)).

We can show O(z, {x : FixO(x)})→FixO(z) by Δ0
0 Normal Form Theorem and

Σ1 bounding schema, provable in IΣ1 (cf. [17, Lemma 5]). Since we have the
induction schema for Δ0(Σ1) formulae (Δ0 relative to Σ1, i.e., generated from
Σ1 formulae by propositional connectives and bounded quantifiers), for any
Δ0(Σ1) formula ϕ, from ∀x(O(x, {y :ϕ(y)})→ϕ(x)), by induction on j we obtain
ESO(u)→ (∀x < lh(u(j)))(u(j)(x) = 0→ϕ(x)). Thus, by interpreting FO(t) as the
Σ1 formula FixO(t), we can interpret ID1(Sn) in IΣ1.

Next consider the converse. For any Δ0(Sn) formula C (x, y0, ... , yk–1), define an
operator

O(〈x, y0, ... , yk–1〉, U ) :≡U (〈x+1, y0, ... , yk–1〉)∨C (x, y0, ... , yk–1).

We can show C (x, y0, ... , yk–1)→FO(〈x–z, y0, ... , yk–1〉) by induction on z. For
any Lfix(Sn) formula D(y0, ... , yk–1) in which x does not occur, if ID1(Sn) proves
C (x, y0, ... , yk–1)→D(y0, ... , yk–1), then ID1(Sn) also proves

O(〈x, y0, ... , yk–1〉, {z :D(z(1), ... , z(k))}))→D(y0, ... , yk–1),

and FO(〈x, y0, ... , yk–1〉)→D(y0, ... , yk–1) by (FI). Therefore, by interpreting
∃xC (x, y0, ... , yk–1) as FO(〈0, y0, ... , yk–1〉) in ID1(Sn) we can interpret the Δ0(Σ1)
fragment of IΣ1. Since all the non-logical axioms are Δ0(Σ1), cut-elimination yields
ID1(Sn)≥L(Sn) IΣ1. �

In relation to this theorem, the equivalence between (Δ0
0-LFP) and (Σ0

1-CA) is
proved in [21, Proposition 5].

We define ID–
1(Sn) by requiring A in (FI) to be equivalent both to a formula in

which FO occurs only positively and to one in which FO occurs only negatively.
Then, as the first half of the proof shows, the modified schema is interpretable in
RCA∗

0 (Sn).
By applying Parson’s theorem IΣ1 =L(Sn) PRA, which can also be proved similarly

to Section 7.3, we can conclude that FKFB(Sn) is equivalent to PRA with which
Tait identified Hilbert’s Finitism.
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Corollary 8.9. FKFB(Sn) =L(Sn) ID1(Sn) =L(Sn) PRA for n≥ 2.

§9. Concluding remarks. We have shown that, for n≥ 2, finitist versions of Tarski
ramified truth (including Tarski compositional truth), Kripke–Feferman truth, and
Friedman–Sheard truth, all formulated over FA(Sn), have the same L(Sn) theorems
as FA(Sn+1) and as FA(Sn) + (Tot-�n+1), namely

FET(Sn) =L(Sn) FCT(Sn) =L(Sn) FRTm+1(Sn)
=L(Sn) FRT<�(Sn) =L(Sn) FFS(Sn) =L(Sn) FKF(Sn)
=L(Sn) FA(Sn+1) =L(Sn) FA(Sn) + (Tot-�n+1) =L(Sn) ÎD1(Sn+1).

Especially, the hierarchy of Tarski ramified truth theories FRTm’s collapses for
m≥ 1, and the difference of strength between Friedman–Sheard truth and Kripke–
Feferman truth is dissolved. These are completely opposed to the corresponding
results on the analogous first-order truth theories.

The strength is due to the adaption of the rule (∃-val), which essentially asserts the
totality of �n+1, the function on the next level of (smashed) Grzegorczyk hierarchy.
What we have shown is that no further strength is added by any other truth-
theoretic axiom or rule in these theories. An alternative formulation of finitist Tarski
compositional truth in Section 11, avoiding (∃-val) but with ramified valuation
functions, has at least the same strength. This might suggest that the strengths of
finitist Tarski ramified truth of finite ranks do not rely on (∃-val). Moreover, in the
forthcoming [24], we will substantiate the claim that the strengths of FRT<�(Sn),
of FFS(Sn), and of FKF(Sn) do not rely on (∃-val) either, since the proof will rely
only on a natural property of truth theory.

On the other hand, as seen in Section 8, the finitist version FKFB(Sn) of Kripke–
Feferman–Burgess truth has the same L(Sn) theorems as PRA, with which Tait
identified the limit of Hilbert’s Finitism. In this sense, the groundedness adds more
strength than the other truth-theoretic axioms and rules.

As technical intermediate steps, we obtained several basic results on finitist
theories and second-order axioms of full and hat inductive definitions for bounded
(i.e., Δ0

0) positive operators, in a manner comparable to more popular arithmetical
(i.e., Δ1

0) ones. The reader may want to review the tables in Section 1.3.

§10. Open problems.

Minor questions already raised. (i) Are the rule (T∃-val) (from Proposition 4.14)
and the axiom (TT=) derivable in FFS(Sn) minus (TT=)?

(ii) Can the argument of Section 2.4 be extended to operators so that it would
yield

• ÎD1(Sn+1)≤L(Sn) ÎD1(Sn) + (Tot-�n+1) and
• ID1(Sn+1)≤L(Sn) ID1(Sn) + (Tot-�n+1)?

Mutual interpretability and speed-up. In our main series of results, ÎD1(Sn+1)
≤L(Sn) FA(Sn+1) was proved through (at least, a finite fragment of) first-order
theories by partial cut elimination (which can be replaced by some model-
theoretic methods). Corollary 8.6, on the other hand, reduces ÎD1(Sn) + (Tot-�n+1)
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directly to FKF(Sn) in a similar way as the proof of FKF(Sn)≤L(Sn) ÎD1(Sn+1)
from Section 6. This is crucial from the perspective of speed-up, since reducing
finite fragments of first-order theories to finitist ones usually yields exponential
speed-up. A natural question is whether ÎD1(Sn+1)≤L(Sn) FKF(Sn) can be direct
in this sense. Similarly, can we make ÎD1(Sn+1)≤L(Sn) FA(Sn+1) direct? Since
we have shown that FA(Sn+1) ≤L(Sn) FCT(Sn) is direct, the latter would make
FKF(Sn)≤L(Sn) FCT(Sn) direct.

Natural truth theory over PRA. The referee has raised the question whether
a natural truth theory for PRA can be defined. Although FKFB(Sn) is L(Sn)
equivalent to PRA, it does not have function symbols for primitive recursive
functions beyond Sn, i.e., the language is not a superlanguage of that of PRA.
Taking the union, e.g.,

⋃
k∈� FRT<�(Sk), results in theories which have all primitive

recursive functions and are conservative over PRA, but they do not appear natural,
as the truth axioms for connectives are not uniform.

Truth theories over weaker finitist arithmetic. It is natural to investigate similar
truth theories over finitist arithmetic FA(S1) without the totality of smash #, or over
FA without the totality of any functions (but with the graphs of them as relations).
These are considered in the authors’ next works [22, 23]. As mentioned already
in Section 1.2.2, in such arithmetic diagonalization is not available. Actually, the
finitist naı̈ve truth theory over FA(S1) is consistent, and in FA the naı̈ve truth is
even definable, while both the theories are still (arguably) capable of formalizing
syntax. However, we do not know if the former is conservative over FA(S1), nor
if so are the respective Tarski ramified, Friedman–Sheard, and Kripke–Feferman
truth theories.

§11. Appendix. Tarski ramified truth with ramified valuations. In the Introduction,
we mentioned the possibility of formulating theories of typed truth with typed
valuation functions. In this section, we briefly realize this possibility.

Since valn was not primitive but a defined function, we first reformulate FA(Sn+1)
with primitive valn. The lower bound proof by cgrn in Section 3.2 and the upper
bound proof by valn in Section 6 revealed that Sn+1 is generated by Sn ∪{valn}. Our
reformulation is based on this set of generators.

Definition 11.1 (Finitist theory of compositional valuation). For n≥ 2, let valn

be a new unary function symbol. The L(Sn, valn) theory FCV(Sn) extends FA(Sn)
by the defining axioms for valn from Lemma 6.3 (with valn replaced by valn) and
the induction schema extended to all L(Sn, valn) formulae.

With this reformulation, we can ramify the valuation function valn in the same
way as the ramification of the truth predicate. In the reformulation above, we have
already seen typed valuation functions valn along Grzegorczyk hierarchy. However,
the types which we now assign to the valuation function play different roles, and so
we indicate them by subscripts.

Definition 11.2 (Finitist theory of ramified valuation and truth). For n≥ 2,
let L(Sn, T<m, valn<m) be the expansion of L(Sn, T0, ... , Tm–1) with unary function
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symbols valn0 , ... , valnm–1. The L(Sn, T<m, valn<m) theory FRVTm(Sn) is generated by
the following non-logical axioms for j <m:

(FCV(Sn)): all the axioms of FCV(Sn) (defined in the obvious manner) with
valn replaced by valnj for any j <m and the schema of induction extended to
L(Sn, T<m, valn<m) formulae;

(Valtp): valnj(val.
n
i (x)) = valni (valnj(x)) for i < j;

(TAtom∗): (Tj(x=. y)↔ valnj(x) = valnj(y))∧ (Tj(x <. y)↔ valnj(x)< valnj(y));

(T¬Atom∗): defined similarly;
(TTtp), (T¬Ttp), (T∧tp), (T∨tp): as in FRTm(Sn) but with Sentn,T<j replaced

by Sentn,T<j ,valn<j
;

(T∀∗tp): Var(x)∧CTermn,valn<j
(v)∧Formn,T<j ,valn<j

(u, x)

→ (Tj((∀. x <. v)u)↔ (∀y < valnj(v))Tj(sbst(u, x,num(y))));

(T∃∗tp): defined similarly.

We can see FA(Sn+1) =L(Sn) FCV(Sn)≤L(Sn) FRVT1(Sn) easily by interpreting
valn as valn0 . Conversely, a modification of the proof of sentence induction (Theorem
3.11) shows that, for n≥ 3, the characteristic function of T0 is defined by a formula
of the form

(∃y < valn(t))(Q0z0<s0(x, y)) ... (Q�z� < s�(x, y, z0, ...))A(x, y, z0, ... , z�),

where t, s0, ... , s� are Sn terms, and A is an L(Sn) formula, namely they do not
involve valn. More precisely, as in the proof of Theorem 3.11, we fix w with
Frag�n+1

(w)∧ lh(w)≥p and r= boa(�n+1(p), q) for given p and q, and, instead
of the induction for the formula (∀a < r)(...), by recursion on w we define the
binary sequence of length r which encodes that T0(usbs(w, a)) holds or not for
a < r. Thus, we can define an Sn+1 function chi0 so that T0(u) is interpreted as
chi0(u) = 0, concluding

FRVT1(Sn)≤L(Sn) FA(Sn+1).

Thus FRVT1(Sn), an alternative axiomatization of Tarski compositional truth, also
has the same strength as all our other finitist truth theories except FKFB(Sn).

We can extend these interpretations by relating Tj+1 and valnj+1 in FRVTm+1(Sn)
with Tj and valn+1

j in FRVTm(Sn+1), and get FRVTm+1(Sn) =L(Sn) FRVTm(Sn+1).
By composing this equivalence with different n and m, we obtain

FRVTm(Sn) =L(Sn) FA(Sn+m),

and therefore FRVT<�(Sn) =L(Sn) PRA.
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