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Computational modelling of Leidenfrost drops
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The Leidenfrost effect, where a drop levitates on a vapour film above a hot solid, is
simulated using an efficient computational model that captures the internal flow within
the droplet, models the vapour flow in a lubrication framework and is capable of resolving
the dynamics of the process. The initial focus is on quasi-static droplets and the associated
geometry of the vapour film formed beneath the drop, where we are able to compare
with experimental analyses and assess the range of validity of the theoretical model
developed in Sobac et al. (Phys. Rev. E, vol. 103, 2021, 039901). The computational model
also allows us to explore parameter space, varying both the drop size and viscosity of
the liquid, with computational results in excellent agreement with the theoretical model
for high-viscosity liquids. Interestingly, for large water drops, discrepancies between the
computational model and experiments occur, and possible reasons for this observation are
provided. Our predictions reveal features including a regime with a dimpleless bottom
surface of the drop and a minimum in the vapour layer thickness as a function of the drop
size. Finally, the capability to simulate dynamics is revealed by computations that predict
and track the vapour ‘chimney’ instability for large drops.

Key words: condensation/evaporation

1. Introduction

When liquid drops are gently deposited on a hot solid surface whose temperature Tw
is slightly above the boiling temperature Tb, the liquid boils violently resulting in rapid
disappearance of the drop. However, if Tw is increased past the Leidenfrost temperature
TL, the lifetime of the drop abruptly increases (Gottfried, Lee & Bell 1966; Biance, Clanet
& Quéré 2003) due to the so-called Leidenfrost effect (Burton et al. 2012; Leidenfrost
1756), where the drop levitates on its own vapour layer and is thus thermally shielded
from the hot solid. This effect is an everyday phenomenon, seen as a water drop glides
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across a very hot pan, but is also crucial to numerous drop-based technologies, where
the Leidenfrost effect can prevent efficient heat transfer, such as the spray cooling of
high performance electronic devices (Kim 2007) and spray combustion (Moreira, Moita
& Panã 2010). Moreover, recent attention has been given to fascinating new topics, such
as the self-propulsion of drops on ratchet surfaces (Linke et al. 2006) and hydrodynamic
drag reduction (Vakarelski et al. 2012). Fundamental studies of Leidenfrost drops, and
numerous applications, are reviewed in great detail by Quéré (2013) and Ling & Mudwar
(2017).

At the most basic level, one would like to understand how and when the vapour
film is able to retain a steady cushion for the drop and this naturally leads to a study
of the geometry of the vapour film, which is complex experimentally due to its thin
and almost hidden nature. In Biance et al. (2003) and Burton et al. (2012) these
challenges were overcome in order to experimentally record the equilibrium shapes of
Leidenfrost water drops and measure the geometry of the vapour film for different drop
sizes. It was demonstrated that the film thickness increases with increasing drop radii,
being around 30–100 μm for drop radii of 1.6–7 mm. Using lubrication theory, and
assuming an approximately uniform film, Biance et al. (2003) found good agreement
with their experimental measurements, with two regimes identified based on whether
the size of the drop, defined by its maximum radius Rmax, is larger or smaller than
the capillary length lc = (σ/ρlg)1/2 (dimensionlessly R̃max = Rmax/lc, with ˜ henceforth
denoting dimensionless quantities), where σ is the surface tension of the liquid–vapour
interface, g is gravitational acceleration and ρl is the density of the liquid. Notably, for
water, Burton et al. (2012) showed that the vapour layer cannot be considered uniform and
observed that the minimum height of this layer, at the ‘neck’, near its edge, varies from
5–100 μm for drop sizes of radii 0.5–10 mm, thus motivating the development of more
complex models for the film.

Variations in the profile of the vapour layer are accompanied by different drop shapes:
for small drops (R̃max < 1), surface tension dominates gravity so that the drop shape
becomes quasi-spherical, with a slightly flattened base near the solid surface. Interestingly,
for very small Leidenfrost drops (radii 1–30 μm), gap thicknesses actually increase with
drop radius, as predicted and confirmed experimentally in Celestini, Frisch & Pomeau
(2012), eventually leading to ‘take off’, but this regime is yet to be considered in detail
computationally/theoretically.

For large drops (R̃max > 1), gravity dominates so that a flat puddle shape is formed with
a concave pocket-like geometry of the vapour layer (Burton et al. 2012). For a sufficiently
large puddle drop, a vapour chimney forms underneath the puddle and eventually bursts
at the upper surface of this drop. The onset of a chimney instability R̃max ≈ 3.84 is
analytically estimated by Biance et al. (2003) by examining the Rayleigh–Taylor instability
(Taylor 1950) of the liquid–vapour interface and then verified experimentally. Notably,
Snoeijer, Brunet & Eggers (2009) also found a critical radius R̃max ≈ 4.0 using a model
that considered the static shapes of drops levitated by a lubricating film of air injected
with constant velocity through the substrate, under isothermal conditions. For large drops,
spontaneous symmetry-breaking oscillations can be observed that create the appearance of
star-shaped drops (Ma, Liétor-Santos & Burton 2017; Brunet & Snoeijer 2011), but these
are beyond the scope of this article.

For the study of quasi-static Leidenfrost drops, Sobac et al. (2014) proposed a
theoretical model that balances the evaporation-driven viscous lubrication, hydrostatic
and capillary pressures in the vapour film and matches this to a (Young–Laplace type)
capillary and hydrostatic balance for the upper surface of the drop, under the assumption
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of axisymmetry. There are two main assumptions of the model: (i) the process is
assumed to be quasi-static, with the evaporation time of the drop much longer than
the viscous and thermal relaxation times in the vapour, so that the change of the
drop radius can be neglected, and (ii) the liquid motion inside the drop is neglected.
The theoretical predictions show very good agreement with experiments, for both the
shapes of Leidenfrost water drops and the geometry of the vapour film. Despite the
agreement, we will revisit the theory of Sobac et al. (2014) in § 2, as we have seen
that the original numerical solutions required reassessment (Chakraborty, Chubynsky
& Sprittles 2020); a fact which motivated our present study and led to an Erratum
being published in Sobac et al. (2021) after the authors discovered a typo in their
code.

Recently, there has been interest in the dynamics of drops impacting on hot surfaces
to predict the transition between the boiling and Leidenfrost regime; a question of key
importance for cooling technologies (see Ling & Mudwar 2017). Similarly to the static
case, above the dynamic Leidenfrost temperature the drop does not touch the substrate
(Tran et al. 2012; Shirota et al. 2016). Here, we will focus on developing a reliable
computational model for the case of quasi-static Leidenfrost drops, with some dynamics
captured for the chimney instability, and extend this in future work to study impact events.

In the aforementioned investigations, Leidenfrost drops are typically of millimetre size
while the underlying vapour films are two orders of magnitude smaller, revealing a
multiscale problem that makes direct computational approaches challenging. Numerical
studies of the dynamics of droplets impacting on a hot surface above TL have been reported
using the level set/arbitrary Lagrangian Eulerian methods (Ge & Fan 2005) and direct
simulations of level set/ghost fluid methods (Villegas et al. 2017, and references therein).
By using the interface capturing techniques and solving the full Navier–Stokes–Fourier
equations in the whole computational domain, the drop’s shape evolution and the
thickness of thin vapour layer during the impact process were examined. These approaches
require, on one hand, high density mesh in both the liquid and surrounding medium,
especially in the thin vapour layer close to the hot surface, and on the other hand, very
small time steps to produce stable and accurate numerical solutions, rendering such
approaches computationally expensive and extremely challenging to produce accurate
results, particularly as one approaches the transition between contact and bouncing
(Chubynsky et al. 2020).

Despite a wealth of experimental data, the computational modelling of quasi-static
Leidenfrost drops over a range of parameters remains lacking from the literature.
Furthermore, little research has been concerned with the interior flow and hence the
effect of liquid viscosity on the process. In the present work, a robust hybrid/multiscale
computational model is proposed based on coupling the lubrication approximation
for the vapour flow to the Navier–Stokes equations for the flow within the drop.
Numerical simulations are conducted using finite-element software and extend the work
of Chubynsky et al. (2020), who studied the isothermal impact of a droplet on a solid
surface to capture the suspension of a millimetre-sized drop by a nanoscale air film. The
notable advantage of our approach is that only the liquid domain requires meshing with
finite elements, with the vapour manifesting itself through the drop’s boundary conditions,
resulting in an efficient numerical method.

The paper is organized as follows. In §§ 2 and 3, we present two modelling approaches
designed to provide insight into the Leidenfrost phenomenon: the hybrid/multiscale
computational model and the theoretical framework of Sobac et al. (2014). In § 4, we
present and discuss the computational results for the various shape regimes of quasi-static
Leidenfrost drops over a wide range of parameters that enable comparisons with previous
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Figure 1. Schematic of an axisymmetric Leidenfrost drop above an isothermal hot rigid flat surface at
temperature Tw. (a) An initially spherical drop of radius R0 placed on a vapour cushion at an initial height
h0 above a heated flat surface with cylindrical coordinates (r, z, θ) shown, (b) shows an experimental image
of a quasi-static Leidenfrost drop floating on a thin vapour film above a flat surface, taken from Quéré (2013)
and (c) a sketch of a quasi-static Leidenfrost drop levitating on a vapour layer of thickness h(r). Numerical
solutions of the theoretical model by Sobac et al. (2014) (see § 2) are obtained by patching the solution for
the upper surface of the drop to that for the lower surface bordering the lubrication vapour layer, at r = Rp.
The image shows the maximum droplet radius Rmax, the radius of the neck Rneck and the height of the neck
measured from the solid surface (minimum vapour film thickness) hneck. The evaporation mass flux across the
liquid–vapour interface is denoted by j.

experimental analyses (Biance et al. 2003; Burton et al. 2012). Interestingly, in § 5
we discover an unexpected effect of liquid viscosity and divergence from experiments,
which motivates further study. Next, in § 6, the limits of applicability of the lubrication
approximation are established and a method to go beyond this is considered. Finally, in
§ 7, we show that our model is able to capture the dynamic chimney instability, before
making concluding remarks in § 9.

2. Formulation of the computational model

Consider a Leidenfrost drop placed gently on a uniformly heated rigid horizontal surface
at a constant Tw, where Tw is kept above TL (� Tb), see figure 1(a). The drop levitates due
to the evaporation-driven lubrication pressure which develops in the draining vapour film
between the drop surface and the hot rigid wall. When the lubrication force due to vapour
pressure in the gap is equal to the weight of the liquid drop, the drop is at equilibrium,
as can be seen in figures 1(b) and figure 1(c). We aim to determine the quasi-static
equilibrium shape of such a drop and, in particular, the underlying vapour film geometry.

We consider an axisymmetric problem, an assumption which is discussed later,
described in the cylindrical coordinate system (r, z, θ), where r is the radial coordinate,
z is the axial coordinate measured in the opposite direction of gravity and the problem is
considered to be independent of the azimuthal coordinate θ . As shown in figure 1, z = 0
and r = 0 represent the solid wall and the axis of symmetry, respectively. Even though
the liquid and vapour properties are temperature dependent, in this study, for simplicity,
we assume they can be approximately evaluated at the boiling temperature Tb and at the
mean temperature Tm = ((Tw + Tb)/2) between the wall and liquid, respectively, similar
to Sobac et al. (2014).
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In this section, we formulate our computational model and then, in the next section,
show how this relates to the simplified theoretical model of Sobac et al. (2014). Our
approach, which naturally extends to the consideration of dynamic processes, is to start
with an initially spherical liquid drop of radius R0 which is released from rest above a
solid at a height h0 = 0.1R0, as shown in figure 1(a), falls due to gravity and then evolves
dynamically in time towards a quasi-static shape.

2.1. Liquid flow
The flow of liquid inside the drop is governed by the isothermal incompressible
Navier–Stokes equations, with incompressibility

1
r

∂(rul)

∂r
+ ∂wl

∂z
= 0, (2.1)

and the momentum equations

ρl

(
∂ul

∂t
+ ul

∂ul

∂r
+ wl

∂ul

∂z

)
= −∂pl

∂r
+ μl

(
∂2ul

∂r2 + 1
r

∂ul

∂r
+ ∂2ul

∂z2 − ul

r2

)
, (2.2)

ρl

(
∂wl

∂t
+ ul

∂wl

∂r
+ wl

∂wl

∂z

)
= −∂pl

∂z
+ μl

(
∂2wl

∂r2 + 1
r

∂wl

∂r
+ ∂2wl

∂z2

)
− ρlg, (2.3)

where henceforth a subscript l denotes the liquid phase and v will denote the vapour. Here,
ρ will represent densities; μ dynamic viscosities; u and w are velocity components in the
r and z directions; p is the pressure; and t is the time.

2.2. Vapour flow
In the vapour film we develop a lubrication model, with height h(r, t) considered slowly
varying (∂h/∂r � 1) and small compared with the drop size Rmax (ε = h/Rmax � 1) in
those parts of the film that contribute significantly to the pressure drop in the film and
vapour generation. In addition, we neglect the influence of gravity in the vapour layer and
consider inertial forces negligible compared with viscous ones, for which we need εRev �
1 (Aursand, Davis & Ytrehus 2018), where the Reynolds number of the thin vapour layer is
defined as Rev = ρvh3|∇pv|/μ2

v (Biance et al. 2003; Celestini et al. 2012; Aursand et al.
2018). This establishes the use of lubrication theory in the vapour film (Biance et al. 2003;
Sobac et al. 2014; Aursand et al. 2018), with incompressibility unchanged

1
r

∂(ruv)

∂r
+ ∂wv

∂z
= 0, (2.4)

and the momentum equations simplifying to

∂pv

∂r
= μv

∂2uv

∂z2 and
∂pv

∂z
= 0. (2.5a,b)

The velocity component tangent to the interface (z = h(r, t)) is assumed continuous
across it, so that uv,Γ = ul,Γ ≡ uΓ , where Γ indicates a surface property of the
liquid–vapour interface and subscripts v, Γ and l, Γ refer to bulk properties at the
interface. By integrating equation (2.5a,b) with the boundary conditions uv(z = 0) = 0
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at the solid wall and uv(z = h(r, t)) = uΓ at the drop surface, the local radial velocity
profile in the lubricating film is obtained as

uv(r, z, t) = 1
2μv

∂pv(r, t)
∂r

{z2 − zh(r, t)} + uΓ (r, t)
z

h(r, t)
. (2.6)

This shows that the radial velocity profile underneath the drop is expressed by the
superposition of two components, a Poiseuille flow (pressure-driven) component with an
immobile interface and a Couette flow driven by the interface’s tangential velocity with no
pressure gradient.

In the Leidenfrost phenomenon, heat transfer and evaporation both take place in the
region of the vapour film. Under the considered lubrication approximation, the effects
of convective heat transfer are negligible compared with thermal conduction when
εRevPrv � 1, where the Prandtl number is Prv = μvcp,v/kv (for water vapour Prv ≈ 0.95
at Tm = 200 ◦C), and kv and cp,v are thermal conductivity and specific heat capacity (see
Aursand et al. 2018) . Hence, in the lubrication approximation the energy conservation
equation simplifies to

∂2Tv

∂z2 = 0, (2.7)

which indicates that the temperature across the vapour film varies linearly between
the solid surface temperature Tv|z=0 = Tw and the liquid–vapour interface temperature
Tv|z=h = Tb.

Let the rate of change of the vapour film height in the frame of reference moving
horizontally with speed uΓ be wΓ . Then in the laboratory frame

∂h
∂t

= wΓ − uΓ

∂h
∂r

. (2.8)

Without evaporation, the usual kinematic boundary conditions then give wΓ = wl,Γ =
wv,Γ , where wl,Γ and wv,Γ are the vertical liquid and vapour velocities at the interface,
respectively. In our case, the heat transferred by conduction from the hot solid to the drop
is used for evaporative vapour generation at the liquid–vapour interface (as the temperature
in the liquid is assumed fixed at its boiling point, so there is no heat flux into it). In this
case, mass and energy conservation at z = h yield (keeping in mind that the interface is
nearly horizontal)

ρv(wv,Γ − wΓ ) = ρl(wl,Γ − wΓ ) = −j, and qv = jL, (2.9)

where j is the evaporative mass flux through the liquid–vapour interface and L is the latent
heat of evaporation. Equation (2.9) implies that the vertical velocities undergo a jump
across the interface due to evaporation.

Since η = ρv/ρl ∼ 10−3, (2.9) implies that wv,Γ − wΓ is very large compared with
wl,Γ − wΓ ; thus, we can assume wΓ = wl,Γ . Furthermore, the low density ratio η

establishes that the timescales for viscous and thermal diffusion in the vapour film are
very small compared with the liquid in the drop, which also marks a quasi-static process
in this Leidenfrost phenomenon. In (2.9), the heat flux qv is modelled by Fourier’s law
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expressed as

qv = −kv

(
∂T
∂z

)
|z=h = kv	T

h
, (2.10)

where 	T = Tw − Tb. Hence, (2.9) with (2.8) at z = h can be rewritten as

wv,Γ = ∂h
∂t

+ uΓ

∂h
∂r

− kv	T
Lρvh

. (2.11)

By substituting (2.6) into (2.4) and integrating equation (2.4) over the film thickness in
the vertical direction with boundary conditions wv|z=0 = 0 and wv|z=h = wv,Γ (obtained
from (2.11)), and applying the Leibniz integral rule, we get

1
r

∂

∂r

{
r
(

− h3

12μv

∂pv

∂r
+ uΓ

h
2

)}
+ ∂h

∂t
− kv	T

Lρvh
= 0. (2.12)

Note that, in regions where the lubrication assumptions are not valid, h is large, the last
(evaporation) term vanishes, so the expression in braces is constant and then ∂pv/∂r ≈
0, which is still correct, so the equation remains valid. From (2.12), one readily obtains
the pressure distribution pv(r, t) in the film expressed as a differential equation along the
liquid–vapour interface

∂2pv

∂r2 + ∂

∂r
{ln (rh3)}∂pv

∂r
= 6μv

rh3

{
−2r

kv	T
Lρvh

+ ∂

∂r
(rhuΓ ) + 2r

∂h
∂t

}
. (2.13)

The corresponding boundary conditions are given by

∂pv

∂r

∣∣∣∣
r=0

= 0 and pv|r=ro = po. (2.14)

Here, ro is defined at the boundary of the vapour film where po = 0 is equal to the
atmospheric pressure (i.e. pressures are measured relative to their atmospheric value). The
exact choice of ro is discussed below. Finally, in the lubrication approximation, the shear
stress on the drop surface is given by τv(r, t) = μv(∂uv/∂z|)z=h. This leads to

τv = h
2

(
∂pv

∂r

)
+ μv

uΓ

h
(2.15)

with, as expected, terms from both Poiseuille and Couette components.

2.3. Boundary conditions
In order to solve the Navier–Stokes equations (2.1)–(2.3), we need the free surface
boundary conditions: normal and shear stresses are enforced on the entire drop surface.
For this purpose, the drop surface is divided into two parts, as considered also in the
theory of Sobac et al. (2014), separated at r = ro. The top of the drop (part 1) is modelled
conventionally with the ambient pressure equal to the atmospheric pressure (po = 0), the
normal stress is equal to the Laplace pressure, and the shear stress is zero. The bottom
of the drop (part 2), adjacent to the vapour layer, has (i) the normal stress set to the sum
of Laplace pressure and the lubrication pressure pv(r, t), where pv(r, t) is obtained by
solving (2.13) and (ii) the shear stress τv(r, t) given by (2.15). Note that pv(r, t) and τv(r, t)
depend on the radial velocity of the liquid (uΓ = ul,Γ ) at the free surface, and ∂h/∂t in
(2.8) depends on the vertical velocity of the liquid (wΓ = wl,Γ ) at the interface, which are
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obtained simultaneously by solving the Navier–Stokes equations for the drop. We choose
ro to be at the maximum radial extent of the drop surface where the vapour pressure is
nearly equal to the atmospheric pressure. The computed results are insensitive to the exact
value of ro providing at that point the value of h is much larger than that in the vapour layer
at its thinnest point; see the supplemental material of Chubynsky et al. (2020) for more
details. Note also that the conventional kinematic boundary condition for the evolution of
the free surface of the drop in terms of the liquid velocity at the surface applies everywhere
on the surface, since in parts of the surface where evaporation is not negligible, ul,Γ = uΓ

and wl,Γ = wΓ is still assumed.

2.4. Computational implementation
Our hybrid/multiscale computational model is solved in Comsol Multiphysics (COMSOL
Ltd., Cambridge, UK; version 5.4) using finite elements, as described in Appendix A.

3. Theoretical model

This section reviews the theoretical framework proposed by Sobac et al. (2014) and
discusses its connections to the computational model just derived. Further details of the
numerical implementation are provided in Appendix A. As previously, the surface of an
axisymmetric Leidenfrost drop at equilibrium is divided into two parts, separated by a
patching point (Rp, hp), with the upper and lower drop surfaces treated differently, as
shown in figure 1(c). We choose the patching point to lie at the position where dz̃/dr̃ = 1.
This is different from the choice we have made in our computational model (see § 2);
thus, agreement between the two models will also indicate insensitivity to the choice of
the patching point. The upper surface of the drop is determined from the Young–Laplace
equation and the lower surface is, in addition, affected by a lubrication pressure from the
thin vapour layer, with the two solutions matched at the patching point in order to predict
the equilibrium shape of the drop.

First, the shape of the upper surface of the drop at equilibrium is governed by a balance
between the interfacial capillary pressure and hydrostatic pressure variations in the liquid,

σκ − ρlgz1 = σκapex, (3.1)

where z1 = z − ztop is the vertical coordinate measured from the apex of the drop (z =
ztop) and κapex is the curvature of the drop surface at the apex. This equilibrium condition
neglects internal flow in the drop, which is taken into account in our computational model.
In dimensionless form (with respect to the capillary length),

κ̃ = z̃1 + κ̃apex. (3.2)

Given κ̃apex, (3.2) can be solved to obtain the shape of the upper surface, in the form
of the dependences z̃1(s̃) and r̃(s̃), where s̃ is the arc length measured from the apex
(Duchemin, Lister & Lange 2005). Rather than specifying the size of the drop R̃max, it
is more convenient to choose κ̃apex instead and R̃max is then found from the solution. Note
that at this point z̃top remains unknown, in other words, the shape is determined up to a
vertical shift.
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Computational modelling of Leidenfrost drops

Second, for the lower surface we include the vapour pressure, and then the equilibrium
condition (again neglecting the liquid flow) is

pv + ρlgh + σκ = const. (3.3)

We next use (2.12), where we again neglect the liquid flow and therefore uΓ , which gives

∂h
∂t

= kv	T
Lρvh

− 1
r

∂

∂r

{
r
(

− h3

12μv

∂pv

∂r

)}
. (3.4)

Using (3.3) to eliminate pv and switching to dimensionless variables, we get

∂ h̃
∂ t̃

= E

h̃
− 1

12r̃
∂

∂ r̃

[
r̃h̃3 ∂

∂ r̃

(
h̃ + κ̃

)]
, (3.5)

where t̃ = t/tc with tc = μvlc/σ . Note that (3.5) does not describe the true time evolution
of the film thickness, since (3.3) is only valid in equilibrium; in fact, true dynamics
depends on liquid viscosity and becomes infinitely slow as μl → ∞. However, the steady
state of (3.5) is correct (indeed, putting ∂ h̃/∂ t̃ = 0 turns it into the main equation of the
theory of Sobac et al. 2014); the time derivative is retained for computational reasons and
the steady-state profile is obtained as a result of time evolution in the long-time limit. It
can be seen that (3.5) depends on a single dimensionless parameter

E = kvμv	T
σLρvlc

, (3.6)

which is the (dimensionless) evaporation number. In most cases, we find the condition
E � 1 which represents slow evaporation, corroborating the consideration of a quasi-static
process. Note that the exact expression for the curvature, not assuming the slow variation
of film thickness,

κ̃ =
∂2h̃
∂ r̃2⎡

⎣1 +
(

∂ h̃
∂ r̃

)2
⎤
⎦

3/2 +
∂ h̃
∂ r̃

r̃

⎡
⎣1 +

(
∂ h̃
∂ r̃

)2
⎤
⎦

1/2 (3.7)

is used in (3.5), which makes that equation valid in parts of the surface where the
lubrication approximation is not valid (but the terms calculated using that approximation
are negligible).

Equation (3.5) is fourth order in r̃ and therefore requires four boundary conditions:
dh̃/dr̃ = dκ̃/dr̃ = 0 at the axis of symmetry r̃ = 0, and matching of dh̃/dr̃ and κ̃ at r̃ = R̃p
with the corresponding values obtained from the upper surface of the drop. After obtaining
a steady-state solution, the continuity of h̃(r̃) itself simply amounts to translating vertically
the upper surface of the drop, thus determining z̃top and revealing the complete equilibrium
shape of the drop.

Whilst this formulation still requires a numerical solution, we refer to it as the
‘theoretical model’ or ‘theoretical solutions’ to distinguish it from the solutions to our
computational model, which additionally solve for the internal flow via the Navier–Stokes
equations.

To summarize, the theoretical model of Sobac et al. (2014) can be obtained from our
computational model by neglecting the flow inside the drop and thus the results of the
models are expected to coincide when this flow is negligible, i.e. when the liquid viscosity
μl is large.
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4. Leidenfrost drop shapes and identification of regimes

We are now in a position to compare our computational model with experimental analyses
conducted on water drops and utilize it to establish the limits of applicability of the
theoretical model. As described, the theoretical model neglects flow within the droplet
and so to imitate this state with our computational model we align all parameters with
those used in experiments (i.e. for water drops of a given size on a surface at a given
temperature) with the exception of liquid viscosity which is set at a high value. This has
the effect of ‘turning off’ the connection between the internal flow and the vapour film
dynamics. The effect of internal flow can then be isolated and is investigated in § 5.

4.1. Shapes of Leidenfrost drops
Figure 2 shows the shapes of quasi-static Leidenfrost drops at equilibrium predicted
by our computational model for four different sizes R̃max = 0.26, 0.41, 2.69, 3.72 at a
fixed evaporation number E = 6.26 × 10−7 (all parameters are given in the caption) of a
high-viscosity liquid (μl = 0.3 Pa s). Superimposed are the theoretical solutions showing
excellent agreement is obtained. Four distinct regimes are observed upon increasing the
drop size:

(i) Dimpleless quasi-spherical drop – where the drop is approximately spherical as
R̃max < 1 and the curvature does not change sign at the bottom of the drop, seen
in figure 2(a) for R̃max = 0.26.

(ii) Dimpled quasi-spherical drop – where the drop is approximately spherical as R̃max <

1 but now a vapour pocket is formed under the drop, which is seen in figure 2(b) at
R̃max = 0.41.

(iii) Puddle-like drop – where gravity flattens the drop as R̃max > 1, as seen in figure 2(c)
for R̃max = 2.69.

(iv) Chimney instability – where stable quasi-static shapes no longer exist. In figure 2(d)
we show a case R̃max = 3.72 close to where this instability occurs.

It is noticeable from figure 2(b–d) that the region of the deformed drop adjacent to the
steady vapour film takes a dimple shape (an approximately parabolic shape with curvature
opposite to that of the undeformed sphere), with a maximum vapour film thickness hcentre
at the centre of the vapour layer r = 0 and a minimum film thickness hneck defining
the neck r = Rneck; see also figure 1. This dimpled regime is well known, and was first
observed experimentally discovered for Leidenfrost droplets in Burton et al. (2012), having
been theoretically predicted for a drop suspended by an upward air flow from a permeable
solid in Duchemin et al. (2005) for curved substrates and Snoeijer et al. (2009) for flat
ones, and having been seen in a variety of other drop/gas-film interactions, such as drop
impact (Chandra & Avedisian 1991; Thoroddsen, Etoh & Takehara 2003). In contrast, the
dimpleless regime in figure 2(a), also commented on in Sobac et al. (2021), is a new
phenomenon.

4.2. Geometry of the vapour film
To enable a comparison with the experimental results in Biance et al. (2003) and Burton
et al. (2012), we consider the geometry of the vapour film using the parameters from these
experiments (with the exception of liquid viscosity). In particular, in figure 3 we present
the dependence of the vapour film thickness at the neck hneck, the difference in vapour
film thickness 	h = hcentre − hneck and the film’s neck radius Rneck on the drop size Rmax

936 A12-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

66
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.66


Computational modelling of Leidenfrost drops

~

~z

z

r

r

~

~

z

z

r

r~

~

~

~

–2.50 2.50

–2 0
0

0.1

0.2

2

–0.2 0
0

0.01

0.02

0.2

–2–4 0
0

0.2
0.4
0.6

2 4

–0.1 0
0

0.05

0.010

0.015

0.1

3.75–1.25 1.250
0

1

2

3

–0.50 0.50–0.25 0.250
0

0.25

0.50

–0.8 0.8–0.4 0.40
0

0.4

0.8

–4 4–2 20
0

1

2

4

3

(a) (b)

(c) (d)

Figure 2. Comparison of the computational (black line) and theoretical (yellow dashed line) equilibrium
shapes of Leidenfrost drops at Tb = 100 ◦C above a hot rigid surface at Tw = 300 ◦C for (a) R̃max = 0.26,
(b) R̃max = 0.41, (c) R̃max = 2.69 and (d) R̃max = 3.72. At Tm = 200 ◦C, the input parameters (Biance et al.
2003) are ρv = 0.5 kg m−3, μv = 1.63 × 10−5 Pa s, kv = 0.032 W m−1 K−1 and the latent heat of evaporation
L = 2.26 × 106 J kg−1 at Tb = 100 ◦C and thus the calculated value of evaporation number E = 6.259 × 10−7.
Here, simulations are carried out for a higher-than-water dynamic liquid viscosity of μl = 0.3 Pa s.
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Figure 3. Comparison of the computational model with experiments for the geometry of the vapour layer
underneath a Leidenfrost drop. (a) The vapour film thickness at the neck hneck vs the drop size Rmax, (b) the
difference in the vapour film thickness 	h = hcentre − hneck as a function of Rmax and (c) the neck radius
Rneck vs Rmax, see figures 1 and 2. The solid line represents the results of our computational model for
Tw = 300 ◦C and370 ◦C and μl = 0.3 Pa s, compared with the symbols corresponding to the experimental
data reported by Burton et al. (2012) for Tw = 245 ◦C, 320 ◦C and 370◦C (for water drops), the dashed-dot
lines are the solutions of the theoretical model; the vertical dotted line denotes the computed critical value of
Rmax,DL−D below which ‘dimpleless’ (DL) regime with a nearly spherical drop shape can be seen, with the
‘dimpled’ (D) regime for higher Rmax. In addition, the experimental data of Biance et al. (2003) for hneck (filled
circle symbols) at Tw = 300 ◦C (for water) are plotted in (a).

varying over the range of 0.65 mm ≤ Rmax � 10.0 mm. This is done for two different wall
temperatures Tw = 300 ◦C and 370 ◦C, corresponding to E = 6.259 × 10−7 and 1.01 ×
10−6, at high liquid viscosity μl = 0.3 Pa s. In general, it is observed that the computed
hneck, 	h and Rneck all increase with Rmax; 	h and Rneck are nearly independent of wall
temperature Tw; and hneck somewhat increases with Tw.

Notably, the computational model was able to identify differences with the solutions
presented in Sobac et al. (2014) that, upon seeing our results (in Chakraborty et al. 2020),
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Figure 4. The vapour film thickness at the centre h̃centre and at the neck h̃neck vs the drop size R̃max for E =
1.01 × 10−6 (Tw = 370 ◦C). The red and blue solid/dashed lines correspond to the results of the computational
model for μl,water = 0.00034 Pa s (water) and μl,high = 0.3 Pa s (high viscosity), respectively, compared with
the theoretical solution. Regimes marked on the plot correspond to (i) dimpleless quasi-spherical drops, (ii)
dimpled quasi-spherical drops, (iii) dimpled puddles and (iv) chimney instabilities. The experimental data for
h̃centre are obtained from the data for h̃centre − h̃neck and h̃neck given by Burton et al. (2012).

the authors were able to correct in Sobac et al. (2021). In particular, for smaller values of
Rmax, where the dimpleless regime sits, the original solution of the theoretical model from
Sobac et al. (2014) diverges from the corrected solution (Sobac et al. 2021).

In figure 3, we compare the result of our computational model with experiments and
the theoretical model. Results for 	h and Rneck show very good agreement with the
experimental data of Burton et al. (2012) when Rmax � 1.0 mm. For smaller values of
Rmax, we see discrepancies appearing between our predictions and experiments. This is
worthy of further attention and could be caused by increased scatter from the indirect
measurements as the film height shrinks (Burton et al. 2012) or due to the motion of the
drop laterally (Bouillant et al. 2018). Qualitatively, it is noteworthy that experimental data
for 	h for 245 and 320 ◦C rapidly decrease with decreasing Rmax, indicating an approach
to the dimple-less regime we have predicted. However, in figure 3(a) data for hneck from
the experiment of Burton et al. (2012) go into the dimpleless regime, where the neck no
longer exists in our computational model; the reason for this discrepancy remains unclear.
Furthermore, our results in figure 3(a) show less good agreement with experimental data
of Biance et al. (2003) for minimum film thickness hneck, at Tw = 300 ◦C, particularly for
larger drop sizes. The reason is not clearly understood, but a probable explanation is that
Biance et al. (2003) measure an effective vapour film thickness, and never actually discuss
the height at the neck, and it is inferred here, as in Sobac et al. (2014), that this value is
closely related to the local measurement hneck.

To further study the geometry of the vapour film and establish how/if the liquid viscosity
influences it, in figure 4 we compute the dimensionless vapour film thickness at the centre
h̃centre = hcentre/lc and at the neck h̃neck = hneck/lc as a function of the dimensionless
drop size 0.0016 ≤ R̃max � 4.0 for fixed E = 1.01 × 10−6 (Tw = 370 ◦C). In this case,
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which is used in many forthcoming calculations, the vapour density is ρv = 0.47 kg m−3,
its viscosity μv = 1.70 × 10−5 Pa s, its conductivity is kv = 0.0347 Wm−1 K−1 and the
latent heat of vaporization is L = 2.26 × 106 J kg−1. Calculations are done using both the
dynamic viscosity of water μl,water = 0.00034 Pa s at Tb = 100 ◦C and the high dynamic
viscosity μl,high = 0.3 Pa s (used in previous results). The theoretical model’s results are
also plotted and have no dependence on internal flow and hence liquid viscosity. These
are both compared with experimental data for Leidenfrost water drops (Burton et al. 2012)
and are now considered by regime.

4.2.1. Dimpleless quasi-spherical drops: R̃max < R̃max,DL−D = 0.3
In this regime, figure 4 shows that for both viscosities computational and theoretical
curves for h̃centre merge with those for h̃neck indicating a dimpleless regime. Interestingly,
in this regime, there is non-monotonic behaviour, with both heights initially decreasing
with smaller R̃max, reaching a minimum at R̃max,hmin ≈ 0.14, after which film heights
increase, in qualitative agreement with the experimental discoveries made in Celestini
et al. (2012). Computational and theoretical results are in excellent agreement above the
minima (0.14 ≤ R̃max ≤ 0.3) but discrepancies appear below it, where the accuracy of the
lubrication approximation is reduced as the film height becomes comparable to the drop
size; going beyond the lubrication approximation will be discussed in § 6. Notably, it can
be observed (not shown here) that our results of h̃min and R̃max,hmin are only relatively
weakly sensitive to the variation in the evaporation number E or Tw.

4.2.2. Dimpled quasi-spherical drops: R̃max,DL−D < R̃max < 1
Here, the dimpleless regime gives way to the well-known dimpled regime with figure 4
showing that film heights increase with R̃max and that for h̃neck the computational, for both
viscosities, and theoretical models agree well with experimental trends from Burton et al.
(2012).

4.2.3. Dimpled puddles: 1 < R̃max < R̃max,Ch ≈ 4.0
Here, results for water viscosity from the computational model diverge from both
experiments and the theoretical solutions. Specifically, for water drops the computational
model predicts a complex non-monotonic behaviour and much smaller values of hcentre are
observed than for the high viscosity computations, the theoretical model and experiments,
which all align. This will be probed further in § 5.

4.2.4. Chimney instability: R̃max → R̃max,Ch
In figure 4, we show two branches of the theoretical solution, with a stable lower branch
meeting an upper unstable one at a ‘turning point’ or ‘fold’ (shown by an arrow) indicative
of a saddle-node bifurcation point. (Strictly speaking, since it is the drop volume, or,
equivalently, its initial radius R̃0, that is fixed and not R̃max, the bifurcation occurs at the
point along the solution curve where R̃0, rather than R̃max, reaches its maximum, which is
slightly below the turning point on the plot.) This point defines the onset of the chimney
instability whose dynamics will be considered further by our computational model in § 7.
The advantage of the theoretical model of Sobac et al. (2014) is that it can also reveal
the unstable branch, whereas obtaining this in the computational model is difficult and
sometimes impossible if the unstable solution corresponds to a self-intersecting curve.
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Figure 5. (a) The film height at the centre of the vapour pocket h̃centre, (b) the neck height of the vapour film
h̃neck and (c) the neck radius R̃neck as a function of the drop size R̃max obtained from COMSOL simulations for
E = 1.01 × 10−6 at the wall temperature Tw = 370 ◦C and different liquid viscosities. The square symbols for
h̃neck and R̃neck represent the experimental data (Burton et al. 2012).

A similar turning point at R̃max,Ch, of course, exists on the h̃neck curve, as well as the
low-viscosity curves, for which the instability threshold is nearly the same; for these curves
the unstable branches are not shown, but the existence of the turning point is also not
apparent from the behaviour of the stable branches, as the slopes of the curves rise and
approach infinity in a very narrow region near the threshold.

5. Internal flow

Having observed an unexpected dependence of h̃centre on liquid viscosity, in figure 5 a
more detailed study is shown for a range of liquid viscosities. This reveals that h̃centre
is independent of liquid viscosity for R̃max < 1 and above this the curves vary smoothly
between the two viscosities previously presented. Notably, figure 5(b,c) shows that the
computed h̃neck and R̃neck depend only weakly on the liquid viscosity in contrast to h̃centre.

To study further the influence of liquid viscosity and internal flow, in figure 6 we show
the results of our computational model for drops with an initial radius R0 = 3.75 mm
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Figure 6. The steady equilibrium shape of a drop with initial radius R0 = 3.75 mm and the velocity field
inside the drop including the velocity vectors of flow for (a) μl = 0.3 Pa s, (b) μl = 0.001 Pa s and (c) μl =
0.00034 Pa s (water at Tb = 100 ◦C) and the fixed evaporation number E = 1.01 × 10−6 placed on a very hot
surface at Tw = 370 ◦C. The colour denotes the corresponding velocity magnitude inside the drop. (d) The air
film profiles for the cases presented in (a–c).

for three different viscosities (μl = 0.3 Pa s, 0.001 Pa s and 0.00034 Pa s) with at fixed
E = 1.01 × 10−6. For a highly viscous drop as shown in figure 6(a), there is very little
internal flow, the shape of the drop becomes a puddle, a dimple is formed and the computed
drop size becomes Rmax = 4.63 mm (R̃max = 1.85). This result and the corresponding
geometry of the vapour pocket below the drop (see figure 6d) are in excellent agreement
with experiment (Burton et al. 2012) and theory (Sobac et al. 2014); see also figure 3.

In contrast, the shapes of the low-viscosity drop with Rmax = 3.84 mm (R̃max = 1.54)
shown in figure 6(b) and the water drop with Rmax = 3.46 mm (R̃max = 1.39) shown in
figure 6(c) display almost no dimple; instead a ‘wimple’ like shape of the vapour film
is observed in figure 6(d). This shape has also been observed in a previous investigation
(Chan, Klaseboer & Manica 2011) for the case of a drop suspended by a thin air film above
a solid surface and similar theoretical results for the case of a large drop (R̃max � 1) are
reported by Maquet et al. (2016), who studied the levitation of ethanol drops on a vapour
layer above the surface of a heated liquid pool. Moreover, it can be seen from figure 6(b,c)
that the drop attains a distinctly different prolate shape.

The observed situation is rather unusual, the more accurate computational model
suddenly starts giving worse agreement with experiments than the less accurate theoretical
model, which neglects internal flow. The complexity of the process is such that there are
many potential reasons for this situation, but the weakest assumptions in our model are
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Figure 7. Variation of h̃centre with the drop radius R̃max for E = 1.01 × 10−6 (Tw = 370 ◦C for water) for
small- and medium-sized drops. Different approaches are used: the theoretical (blue) and computational (red)
approaches used in the rest of the paper, a similar theoretical approach assuming that the drop is a rigid sphere
(Sobac et al. 2021) (orange), the same approach with a different patching point (magenta) and, finally, an
approach going beyond lubrication, as described in the text (turquoise). The short dashed lines denote a scaling
exponent −1/2 obtained (in both limits) from the scaling laws derived in Celestini et al. (2012); the prefactor
for large Rmax is known (Sobac et al. 2021), while for small Rmax it is estimated based on the computational
data.

(i) that the liquid drop is at a constant (boiling) temperature and (ii) that the system is
axisymmetric; these possibilities are discussed in § 8.

6. Beyond lubrication theory: R̃max < R̃max,hmin ≈ 0.14

Consider now the dimpleless small-drop regime, in which film heights start to increase
with decreasing drop sizes (lower R̃max) according to both the computational and
theoretical models, which are underpinned by lubrication theory, see figure 7. To make
further analytic progress, one can assume the drop takes a rigid-sphere shape, and derive
an asymptotic expression h̃centre ∼ R̃−1/2

max in the limit of large Rmax, see Sobac et al. (2021),
which highlights the increase of h̃centre with decreasing R̃max. This plot also shows at what
point deformability of the sphere becomes important, as the rigid-sphere theoretical result
starts to deviate from that making no such assumption, which occurs near where there is a
minimum in h̃centre with a subsequent increase for bigger drop sizes (i.e. larger R̃max). This
increase is thus clearly due to deformability of the drop surface.

However, figure 7 also shows that as R̃max decreases and h̃centre increases, eventually
the two become comparable so that the lubrication approximation becomes invalid. In this
regime, there is a discrepancy between the computational and theoretical solutions, but
also a dependence of the theoretical solution on the exact position of the matching point
Rp (see figure 1).

In fact, in this non-lubrication regime, scaling arguments in Celestini et al. (2012) for
h̃centre � R̃max suggest that the characteristic film thickness also follows the power law
dependence h̃centre ∼ R̃−1/2

max , with the pre-factor now unknown. In this regime, one can
likewise make the rigid-sphere assumption for the drop, but, on the other hand, the vapour
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flow around it needs to be considered in full. The consideration is simplified significantly
by making additional assumptions of various degrees of realism, including Stokes flow of
the vapour and its uniformity in space (even though it is, in fact, a vapour–air mixture of
a varying composition). Under such assumptions, conveniently, h̃(R̃max) still depends on
just a single parameter E. For details, see the Appendix B. The result is plotted in figure 7
and approaches the asymptotics in both limits, as expected.

For small drops, we see that lubrication theory loses its accuracy as the vapour film
loses its high aspect ratio. To capture these regimes reliably one must solve the full
Navier–Stokes–Fourier equations in the ambient phase and account for the interplay of
air and water vapour. In fact, this is not so complex as the multiscale nature of the problem
is lost in this regime and the equations for the physical processes are well known.

7. Dynamic chimney instability

When the drop size is larger than the threshold for the chimney instability (R̃max,Ch), the
quasi-static state is lost and dynamic evolution of the interface commences, with a vapour
pocket under the drop growing towards the upper surface. The values we find for this
instability of R̃max,Ch ≈ 4.0 for both models and all viscosities are close to the predictions
in the literature of R̃max,Ch = 3.84 in Biance et al. (2003) and 3.95 in Snoeijer et al.
(2009) and Burton et al. (2012), where this instability is attributed to the Rayleigh–Taylor
mechanism, with shapes similar to those observed for inviscid drop computations in
Bouwhuis et al. (2013). In particular, careful calculations for the theoretical model with
E = 1.014 × 10−6 corresponding to water with Tw = 370◦ give the maximum value of R̃0
on the solution curve R̃0,Ch ≈ 2.558, corresponding to R̃max,Ch ≈ 3.944, slightly below the
maximum value of R̃max, 3.973, and in the simulations of the computational model for the
same temperature and μl = 0.3 Pa s very similar values of 2.569 and 3.970, respectively,
are obtained.

Physically, the vapour pocket eventually bursts, i.e. penetrates the upper surface.
Reassuringly, in our computational model, the chimney is formed in around a second,
in agreement with observations in Burton et al. (2012). As previously described, our
computational model can capture the dynamics and its prediction and simulation of
this event highlight these capabilities, although the code is terminated prior to film
rupture/pocket bursting as this topological change requires further work. Nevertheless we
are able to capture the development of the instability in figure 8, which illustrates a quick
formation of a dimpled shape followed by a slow growth of the instability. For such large
drops the negative curvature of the bottom surface cannot be sufficiently large to balance
the difference in hydrostatic pressure between the top and bottom of the drop, thus, the
thin liquid ‘film’ at the top gradually drains until it breaks up.

8. Discussion

One of the most surprising findings of our work is the poor agreement of the computational
model with experimental analyses for large water drops, where the model predicts a strong
internal flow that creates a prolate drop profile which is not observed experimentally. As
a starting point, we consider whether the magnitude of the velocities predicted by the
computational model (≈0.4 m s−1) is commensurate with simple estimates and, after, we
discuss the possible reasons for the discrepancy between computations and experiments.
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Figure 8. Simulation of the chimney instability for a drop with an initial drop radius R0 = 6.45 mm (R̃0 =
2.58), which is above the threshold for the chimney instability (calculated using the theoretical model to be at
≈ R̃0 = 2.56). Here, E = 1.01 × 10−6 (Tw = 370 ◦C for water) and viscosity μ = 0.3 mPa s. (a) The evolution
of the shape of the drop from an initially spherical drop, through to a puddle and then into a chimney instability
and (b) the flow field with the colormap showing the velocity magnitude and the arrows indicating the direction
of flow.

8.1. Estimates for internal flow
Having in mind the situation in figure 6(c), with the corresponding vapour film profile
in figure 6(d), we consider the approximation where the film has a constant thickness
h and radius Rf . Notably, the assumption of a constant film height cannot be made for
the high-viscosity shapes as in figure 6(a), where Laplace pressure gradients compensate
vapour pressure gradients. Even though the flow in the drop will drive Couette flow in the
film, we assume that Poiseuille flow still dominates so the Couette term (containing uΓ )
in (2.12) can be neglected in that equation (this assumption will be checked later). Since
the stationary case is considered, the time derivative term vanishes. Then the solution for
the pressure is

pv = 3μvkv	T
Lρvh4 (R2

f − r2), (8.1)

and, by integrating this over the circle of radius Rf , the total pressure force is obtained

Fp =
3πμvkvR4

f 	T

2Lρvh4 . (8.2)

This force supports the weight of the drop, ρlgV , where V is its volume, which gives

h =
(

3πμvkvR4
f 	T

2LρvρlgV

)1/4

=
(

3πER4
f l3c

2V

)1/4

. (8.3)

Using E = 10−6, liquid parameters for water at 100 ◦C, and, according to figure 6(c), Rf =
3 mm and the volume corresponding to that of a sphere of radius 3.5 mm, this gives a film
height of 0.076 mm, consistent with the wimple profile in figure 6(d).

There are two ways in which the vapour film can drive flow in the drop: first, due to
shear stress on the liquid–vapour interface from the Poiseuille flow in the film and, second,
due to pressure gradients that exist in the film, which are nearly continuous across the
vapour–liquid interface (as it is almost flat).
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8.1.1. Shear-stress-induced flow
The shear stress on the liquid–vapour interface from the Poiseuille flow in the film is given
by

τΓ = −h
2

∂pv

∂r
= T r, (8.4)

where

T =
(

24μvkvρ
3
l g3V3	T

π3LρvR12
f

)1/4

=
(

24Eρ4
l g4V3l3c

π3R12
f

)1/4

. (8.5)

This stress is continuous across the interface and drives flow in the drop. The horizontal
velocity of this flow drops rapidly in a boundary layer above the interface. Assuming that
the thickness of this layer is much smaller than Rf and ignoring the pressure gradients, the
equation for the horizontal component of the flow velocity is

ρlul
∂ul

∂r
= μl

∂2ul

∂z2 . (8.6)

Here, z is measured from the liquid–vapour interface. The solution of this equation
vanishing at z = ∞ and with the boundary condition (8.4) at z = 0, to ensure continuity
of shear stress across the interface, is

ul = Ur
(1 + z/b)2 , (8.7)

where U = (3T 2/2ρlμl)
1/3 and the thickness of the boundary layer b = (6μl/ρlU)1/2.

Note that if the Reynolds number is defined as Re = ρlUR2
f /μl, (as URf is a velocity scale)

then b/Rf ∼ Re−1/2, similar to the Blasius boundary layer. At the interface, uΓ = Ur and
the maximum value at r = Rf is

umax
Γ =

(
3T 2R3

f

2ρlμl

)1/3

=
(

54μvkvρlg3V3	T

π3Lρvμ
2
l R6

f

)1/6

=
(

54Eρ2
l g4V3l3c

π3μ2
l R6

f

)1/6

. (8.8)

Using the same parameters as above gives umax
Γ = 0.5 m s−1, similar to the value found in

COMSOL simulations in figure 6(c), giving us confidence in the prediction of such large
speeds.

We now check the self-consistency of our assumptions. The ratio of the Couette and
Poiseuille terms in (2.12) is

uΓ

h2

6μv

∂pv

∂r

= 3μvU
T h

, (8.9)

where (8.4) was used. Using the same parameters as above and μv = 1.7 × 10−5 Pa s gives
≈ 0.12, sufficiently small for the approximation to be appropriate. The value of Re is
≈ 4200 � 1, so the boundary layer is indeed thin (as also seen in figure 6c).

8.1.2. Pressure-driven flow
We can now estimate the pressure-driven flow by combining Bernoulli’s equation pv +
ρlu2/2 = const. along the free surface (a streamline) with (8.1), where we again assume a
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uniform film thickness, to find that

uΓ =
(

6μvkv	T
Lρvρlh4

)1/2

r. (8.10)

Then using our expression for the film height (8.3), we obtain

uΓ =
(

4gV

πR4
f

)1/2

r. (8.11)

Interestingly, this is only dependent on geometry and gravity and totally independent of
any liquid or vapour properties! The maximum value at r = Rf , for Rf = 3 mm and V as
for a sphere of radius 3.5 mm is 0.5 m s−1, the same as for the shear-driven component.
Again, this gives confidence that the velocities observed in figure 6(c) are plausible,
although the pressure-driven component is more sensitive to the interface shape and is
likely overestimated by this analysis, suggesting that the shear stress component may be
dominant.

8.2. Potential reasons for the discrepancy between computations and experiments
Experimentally, it is seen that larger drops are far more complex than their smaller
counterparts, with the appearance of instabilities that can initiate cell-like vortices within
apparently axisymmetric-shaped drops (Bouillant et al. 2018), drive vertical (Bouillant
et al. 2018) and/or star shaped oscillations (Ma et al. 2017) of the drop surface, and finally
rupture the drop due to the previously discussed chimney mechanism. Understanding
the physical mechanisms for the formation of these structures is not so simple, as for
larger drops additional physical effects come into play. Here, we discuss the two main
assumptions in our model and assess, if relaxed, their potential to drive dominant flow
features.

8.2.1. Temperature gradients in the droplet
Experiments show temperature variations 	T within Leidenfrost droplets of a few Kelvin
(Wciślik 2016; Bouillant et al. 2018; Yim et al. 2020; Ma et al. 2017) which have the
potential to generate thermal Marangoni effects and/or buoyancy-induced convection.
These effects will drive internal flows that could alter the shape of the droplet and thus
the geometry of the vapour layer, if included in our computational model. To capture
these effects numerically requires the energy equation to be solved in the liquid and the
dynamics of the air/vapour phase mixture to be computed and coupled to the drop through
appropriate boundary conditions. Such an approach has been considered in, for example,
(Pan et al. 2000) for non-Leidenfrost drops, but is beyond the scope of this article, where
we focus instead on estimates for the scale of the various additional effects.

Marangoni effects – theoretical estimates for the flow driven by these forces are known
to overpredict by many orders of magnitude experimental findings (Hu & Larson 2005;
Yim et al. 2020), and this has been attributed to impurities/contamination in the liquid.
Furthermore, Marangoni forces would enhance the internal flow shown in figure 6(c),
with fluid pulled up the free surface from regions of low surface tension at the base,
where the drop is hottest, towards the apex, where it is coldest and the surface tension is
larger. Therefore, it is likely that including Marangoni effects would lead to an increased
discrepancy between theory and experiments.
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Buoyancy-driven flow – opposes the internal flow from figure 6(c), with fluid
transported up along the axis of symmetry from the low density (hot) base towards the
(colder) apex (e.g. see figure 1 in Yim, Bouillant & Gallaire 2021). To investigate further
the potential for buoyancy effects to nullify the internal flow seen in figure 6(c), we
estimate the typical velocity scales associated with this effect considering an inertially
dominated regime, as the liquid Reynolds number based on flow speeds (∼10 cm s−1) in
figure 6 is greater than 102. To do so, we determine how the buoyancy force (per unit
volume) ρ0βg	T , where β = 7 × 10−4 K−1 is the thermal expansion coefficient of water
at the boiling temperature and ρ0 is a characteristic density, can drive a characteristic
acceleration U2/R to obtain a velocity scale of U = √

βRg	T which based on 	T = 10 K
gives U ∼ cm s−1 for the drop in figure 6(c), which is consistent with values seen in
Yim et al. (2021). The buoyancy-driven flow is not insignificant, but it is still an order of
magnitude below those velocities seen in figure 6, so it seems unlikely that the inclusion
of these effects would drastically alter the drop shape.

8.2.2. Non-axisymmetric flow
Whilst Marangoni- and buoyancy-induced effects seem relevant, neither appear to
overcome the observed discrepancies. Therefore, it seems most likely that, as experiments
(Bouillant et al. 2018) indicate, in this regime the flow inside the drop loses its
axial symmetry and becomes more complex, while our computational model assumes
axisymmetric motion. It is possible that the azimuthally averaged flow is much weaker
than axisymmetric simulations indicate, which naturally reduces the ability of the vapour
flow to drive a huge internal flow and alter the geometry of the film. Recent articles have
probed this non-axisymmetric flow by conducting linear stability analyses about a base
flow (Yim et al. 2020, 2021), but at present these do not capture vapour-driven internal
flow. Clearly, in future work, there is scope for us to (i) use our model to establish an
axisymmetric base state and then perturb it in the azimuthal direction and (ii) extend our
model to capture three dimensional flow.

9. Concluding remarks

A computational model has been developed that allows us to go beyond the theory of
Sobac et al. (2014) by taking into account internal flow and drop dynamics. Comparisons
with Sobac et al. (2014) identified discrepancies that were subsequently corrected in Sobac
et al. (2021) and show that for a large range of parameters this theory does an excellent
job of predicting the characteristics of quasi-static Leidenfrost drops. In particular, both
the model and theory allowed us to discover that small drops exhibit a transition to a
dimpleless drop which, as far as we are aware, has not yet been recovered experimentally,
being on the edge of what is measured in Burton et al. (2012), see figure 3(a), and thus
should be a stimulus for further analyses. The limits of applicability of the model have
been discussed in § 8, and directions for future work proposed.

Finally, our model demonstrated, via the chimney instability, its capability to capture
dynamic processes that will be the focus of future work. In particular, studying drop impact
Leidenfrost is of most interest, as it represents a highly practically relevant case and many
fascinating high-accuracy experimental results have recently been obtained there (Tran
et al. 2012; Shirota et al. 2016). Importantly, as for drop impact in isothermal conditions
(Chubynsky et al. 2020), the developed framework exhibits accuracy beyond what may
be expected, as for most drop sizes the lubrication pressure only manifests itself when the
vapour film is long and thin, i.e. when the lubrication approximation is indeed valid.
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Appendix A. Computational details

A.1. Computational model in COMSOL Multiphysics
Details of our implementation are provided here, with a description of precisely how this
fits into the COMSOL structure provided in the supplementary material of Chubynsky
et al. (2020).

We started with a spherical drop of radius R placed at distance R/10 from the solid
surface which approaches the solid under the action of gravity. Given the axial symmetry,
the initial simulation domain is then a half-disk with a semicircular boundary, and this the
domain which is filled with a finite element mesh (i.e. the vapour is not meshed). As the
basis of our simulations, we used the built-in Laminar Flow interface for an axisymmetric
flow, which implements a finite-element solver for the Navier–Stokes equations. As
described in § 2.3, the drop surface is divided into two parts; an upper part, where no
lubrication forces act so that expressions follow the standard finite element approach for
the capillary pressure and the lower section where, in addition to the capillary pressure
term, weak contribution terms for normal and shear stress due to the lubrication forces
generated by the vapour film are also added, with the former equal to the vapour pressure
pv(r, t) and the latter given by (2.15) and likewise on pv . The vapour pressure is obtained
by solving (2.13) simultaneously with the NS equations for the drop.

In our framework, the axisymmetric Navier–Stokes equations are solved for the liquid’s
dynamics with the arbitrary Lagrangian–Eulerian approach employed for tracking the
moving and deforming surface of the drop with high accuracy, whilst elements within
the drop remain not too deformed. The liquid domain is meshed using non-uniform
triangular Lagrange elements, with nodes of the mesh evolved using the Laplacian mesh
smoothing technique. The typical number of mesh elements is a few thousand (usually
≈4000) and the mesh is relatively uniform. Remeshing is often required after significant
mesh distortion and can occur, automatically in COMSOL, up to five times for larger
(more deformed) drops. The time evolution is implemented using a second-order implicit
backward differentiation formula, with a maximum time step 	t = 10−3 s. The resulting
nonlinear equations are solved iteratively at each time step using the Newton–Raphson
scheme combined with the multifrontal massively parallel solver solver for the solution of
linear equations at each iteration.

For large drops with low viscosity (water drops), convergence towards a steady-state
solution was complex due to the weak damping of interfacial oscillations that naturally
occur as the drop approaches the surface and can cause the code to crash. To overcome
these issues for large water drops, and find a steady state, we started with a high-viscosity
drop and included some artificial damping, a contribution to the normal stress at the
drop surface proportional to the normal velocity component. The viscosity was then
gradually decreased to the value associated with water and the artificial damping was
slowly switched off, from which we found a robust steady-state solution. It is natural
to wonder if the complexities observed here are related to the self-sustained oscillations
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observed experimentally in such regimes (Bouillant et al. 2018), but these aspects are
beyond the scope of this article.

Convergence of all features of the drop were confirmed under spatial and temporal
refinement studies, with results presented in the article graphically indistinguishable from
those obtained under further refinement.

A.2. Numerical approach to solving the theoretical model
The approach for the upper surface mimics that presented in Duchemin et al. (2005), but
with the full axisymmetric expression for the curvature used here and iterations over the
value of the curvature at the apex used to match a required R̃max. The equations are solved
using a fourth-order Runge–Kutta method, starting from the apex of the drop and ending
at the patching point r̃ = R̃p.

In order to compute the film shape, the governing one-dimensional equation (3.5) is
discretized using a spatially second-order finite-difference method with time stepping
based on the second-order Adams–Bashforth method. Here, the simulations are performed
using the dimensionless grid size 10−3 and the dimensionless time step 10−5; chosen after
conducting grid and time-step sensitivity tests. To solve (3.5), as mentioned in the main
text, we require four boundary conditions: dh̃/dr̃ = dκ̃/dr̃ = 0 at the axis of symmetry
r̃ = 0, and matching of dh̃/dr̃ and κ̃ at r̃ = R̃p with the corresponding values obtained
from the upper surface of the drop. Then, the procedure for the film shape is to start with a
constant initial thickness of the vapour film h̃(r, 0) = h̃0 and iterate towards a steady state.
After obtaining a steady-state solution satisfying ∂ h̃/∂ t̃ = 0, ensuring the continuity of
h̃(r̃) itself simply amounts to translating vertically the upper surface of the drop to reveal
the complete equilibrium shape of the drop. The location of the patching point was varied
from dz̃/dr̃ = 1 to 10 with a negligible influence on the results.

Notably, our numerical results agree with those in Sobac et al. (2021).

Appendix B. Going beyond lubrication theory for small spherical drops

Consider an evaporating rigid sphere of radius R at distance h above an infinite hot planar
solid surface. While we no longer assume that the gap between the sphere and the surface
is thin compared with the size of the sphere, we retain a few other assumptions of the
lubrication approximation we have used, namely, Stokes flow of the vapour and uniformity
of its properties in space, and convective heat transfer is still neglected. In addition, since
gas flow has to be considered in an infinite space, boundary conditions at infinity are
important and we choose them as no flow and T = Tw.

Define dimensionless cylindrical coordinates (r̄, z̄) in units of R and the dimensionless
temperature T̄ via

T = Tb + T̄	T. (B1)

It obeys the Laplace equation

∇2T̄ = 0, (B2)

and the boundary conditions are T̄ = 0 on the sphere and T̄ = 1 on the solid surface and
at infinity. The solution has only h̄ = h/R as the parameter

T̄ = T̄(r̄, z̄; h̄). (B3)
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For vapour flow the dimensional Stokes equations are

∇p = μv∇2v, (B4)

∇ · v = 0. (B5)

The boundary conditions are no slip at the solid surface and a normal outflow velocity is
specified on the surface of the sphere. This outflow velocity varies along the surface and
is given by

vo(z) = kv

ρvL
∂T
∂n

, (B6)

where ∂T/∂n is the normal derivative of T . Introducing dimensionless variables v̄, v̄o and
p̄ via

v = kv	T
ρvLR

v̄, (B7)

vo = kv	T
ρvLR

v̄o, (B8)

p = kvμv	T
ρvLR2 p̄, (B9)

we can rewrite (B4)–(B6) in dimensionless form,

∇p̄ = ∇2
v̄, (B10)

∇ · v̄ = 0, (B11)

v̄o = ∂T̄
∂ n̄

, (B12)

where ∇ = R∇ and ∂T̄/∂ n̄ is the normal derivative of T̄ made dimensionless by
multiplying it by R. This derivative can be obtained from (B3) and depends only on a
single parameter h̄. In dimensionless coordinates, the geometry also depends only on h̄
and no other parameters enter (B10)–(B12). Then h̄ is the only parameter that the solution
of these equations depends on and

v(r̄, z̄) = kv	T
ρvLR

v̄(r̄, z̄; h̄), (B13)

p(r̄, z̄) = kvμv	T
ρvLR2 p̄(r̄, z̄; h̄), (B14)

where on the right-hand sides the dependences on all parameters are specified explicitly.
Note that (B13) and (B14) would not be valid for the solution of the full Navier–Stokes
equations. For the considerations below, the stress tensor is also useful; it is given by

T(r̄, z̄) = −pI + μv

[
(∇v) + (∇v)T] = kvμv	T

ρvLR2

(
−p̄I +

[(∇v̄
)+ (∇v̄

)T])

≡ kvμv	T
ρvLR2 T̄(r̄, z̄; h̄). (B15)

The force balance condition requires that the total force on the sphere due to vapour
balance the gravity force. The vertical component of the force due to the vapour is obtained
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by integrating the Tnz component of the stress tensor (Tnz = n · T · ẑ) over the surface (here
n and ẑ are unit vectors normal to the surface of the sphere and in the direction of the z-axis,
respectively). This gives

F = kvμv	T
ρvL

F̄(h̄), (B16)

where F̄(h̄) is the integral of Tnz over the surface of the sphere. Then

kvμv	T
ρvL

F̄(h̄) = 4
3
πρlgR3, (B17)

or
kvμv	T

ρvL
F̄(h̃/R̃) = 4

3
πρlgl3cR̃3, (B18)

the solution of which is

h̃ = R̃F̄−1
(

4πρlρvLgl3cR̄3

3kvμv	T

)
= R̃F̄−1

(
4πR̃3

3E

)
. (B19)

This shows that under the assumptions we have made, the h̃(R̃) dependence still only
depends on a single parameter E, as in the lubrication approximation. In fact, E and R̃ enter
in a particular combination R̃3/E. This is a consequence of the rigid sphere assumption,
which means that the result cannot depend on σ (effectively σ → ∞).

Equation (B19) makes it possible to obtain the gap width h̃ given the sphere radius R̃,
however, this involves inverting a function calculated numerically via simulations, which
requires a time-consuming iterative procedure. On the other hand, if the goal is simply to
produce a graph similar to figure 7, by obtaining a set of points lying somewhere on the
h̃(R̃) curve, then this is unnecessary. Instead, note first that (B17) can be rewritten as

R̃ =
[

3E
4π

F̄(h̄)

]1/3

. (B20)

Then, to obtain one point for the plot, we choose h̄, carry out the simulation (in COMSOL)
to calculate F̄(h̄), use (B20) to calculate R̃ and, finally, find h̃ = h̄R̃.
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