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Abstract Given a Banach space E and positive integers k and l we investigate the smallest constant C
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1. Introduction

Let k and l be positive integers. In [7] it is shown that given any complex Banach space
E and any two polynomials P of degree k and Q of degree l on E we have

‖P‖‖Q‖ � nn

kkll
‖PQ‖,

where n = k + l. Results of this nature have long been studied for finite dimensions
(see [6], [8], [9], [13], [16], [17] and [18]). Given a suitable function F of n complex
variables, the Mahler measure of F , M(F ), is defined by

M(F ) = exp
{∫ 1

0
· · ·

∫ 1

0
log |F (e2πit1 , . . . , e2πitn)| dt1 · · ·dtn

}
.

It is shown in [8] that if f = gh is a polynomial of degree n in one complex variable, then

‖g‖‖h‖ � δn‖f‖,

where δ is the Mahler measure of F (x, y) = 1 + x + y − xy. Furthermore, this inequality
is shown to be asymptotically sharp as n → ∞. In infinite dimensions inequalities for the
norms of products of linear functionals have been presented in [1], [10] and [21].
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18 C. Boyd and R. A. Ryan

In this paper, we will show that for certain spaces the constant nn/kkll can be
improved. Our approach is to use the geometry of the underlying Banach space (type
and uniform convexity) to estimate the ‘weighted’ distance between the norming points
of P and Q. Using symmetric multilinear maps we show that if P and Q are k and l

homogeneous polynomials, respectively, on a Hilbert space, then

‖P‖‖Q‖ � n!
k!l!

‖PQ‖.

Given a Banach space E we shall use P(nE) to denote the space of all bounded n-
homogeneous polynomials on E and Ls(nE) to denote the space of all bounded symmetric
n-linear mappings on En. The space P(nE) becomes a Banach space when given the
norm ‖P‖ = sup‖x‖<1 |P (x)|, while ‖L‖ = sup‖xi‖<1 |L(x1, . . . , xn)| makes Ls(nE) into a
Banach space. For further reading on polynomials on infinite-dimensional Banach spaces
we refer the reader to [12].

2. Estimates using symmetric multilinear maps and biduals

Given x and y in a complex Banach space E, P ∈ P(kE) and Q ∈ P(lE), Beńıtez,
Sarantopoulos and Tonge [7] give the formula

P (x)Q(y) =
1
2π

∫ 2π

0
e−ikθP (eiθx + y)Q(eiθx + y) dθ. (2.1)

Using this identity they obtain the following theorem.

Theorem 2.1. Let E be a complex Banach space and let k and l be positive integers.
Let n = k + l. If P and Q are polynomials on E of degree k and l, respectively, then

‖P‖‖Q‖ � nn

kkll
‖PQ‖. (2.2)

The existence of a universal constant which satisfies (2.2) in Theorem 2.1 can also be
established using ultrapowers in much the same way as in Proposition 2.3.1 of [10]. This
proof, however, gives no idea of the size of the constant.

As pointed out in [7] the constant nn/kkll in Equation (2.2) of Theorem 2.1 is sharp.
To see this take E = �n

1 , P (z) = z1 · · · zk, Q(z) = zk+1 · · · zn. By Lemma 3.1 of [20] we
have

‖P‖ =
1
kk

, ‖Q‖ =
1
ll

and ‖PQ‖ =
1
nn

.

Thus
‖P‖‖Q‖ =

nn

kkll
‖PQ‖.

For many spaces, however, it is possible to improve on the constants given in Theo-
rem 2.1. Our first approach is to obtain a version of (2.1) for symmetric n-linear maps.
Given A in Ls(kE) and B in Ls(lE) we define functions (AB)s and (AB̄)s of n variables
by

(AB)s(x1, . . . , xn) =
1
n!

∑
σ∈Sn

A(xσ(1), . . . , xσ(k))B(xσ(k+1), . . . , xσ(n))
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and

(AB̄)s(x1, . . . , xn) =
1
n!

∑
σ∈Sn

A(xσ(1), . . . , xσ(k))B(xσ(k+1), . . . , xσ(n)).

Note that (AB)s ∈ Ls(nE), while (AB̄)s is a symmetric real n-linear function on E.

Proposition 2.2. Let E be a complex Banach space and let k and l be positive
integers. Let n = k + l. For A ∈ Ls(kE) and B ∈ Ls(lE) we have

‖A‖‖B‖ � n!
k!l!

‖(AB̄)s‖. (2.3)

Proof. This follows immediately from the identity

A(x1, . . . , xk)B(xk+1, . . . , xn)

=
1
2π

n!
k!l!

∫ 2π

0
e−ikθ(AB̄)s(eiθx1, . . . , eiθxk, xk+1, . . . , xn) dθ.

�

Again, this inequality is sharp. Take E equal to �n
1 ,

A(x1, x2, . . . , xk) =
1
k!

∑
σ∈Sk

x1
σ(1)x

2
σ(2) · · ·xk

σ(k),

B(x1, x2, . . . , xl) =
1
l!

∑
τ∈Sl

x1
τ(k+1) · · ·xl

τ(n).

Then
‖A‖‖B‖ =

n!
k!l!

‖(AB̄)s‖.

Given a complex Banach space E, Beńıtez, Sarantopulos and Tonge define the nth
(linear) polarization constant cn(E) as

cn(E) = inf{M > 0 : ‖f1‖‖f2‖ · · · ‖fn‖ � M‖f1 · · · fn‖ for all f1, . . . , fn ∈ E′}.

Clearly, by [7] we have that cn(E) � nn. If H is a complex Hilbert space of dimension at
least n, then Arias-de-Reyna [2] shows that cn(H) = nn/2. Estimates for cn(Lp(µ)) are
given in [19, Proposition 16].

If P ∈ P(nE), we shall use P̌ to denote the (unique) symmetric n-linear map associated
with P . Given a complex Banach space E we let CE(n) denote the polarization constant
of degree n of E and we let RE(n) denote the polarization constant of degree n of the
underlying real Banach space ER. That is,

CE(n) = inf{C : ‖P̌‖ � C‖P‖ for all P ∈ P(nE)},

whereas

RE(n) = inf{C : ‖P̌‖ � C‖P‖ for all P ∈ P(nER)}.
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We note that, in general, CE(n) � RE(n). For positive integers k and l we define FE(k, l),
GE(k, l) and HE(k, l) to be the infimum of all positive reals that satisfy, respectively,

‖P‖‖Q‖ � FE(k, l)‖PQ‖

for all P ∈ P(kE) and Q ∈ P(lE), and

‖A‖‖B‖ � GE(k, l)‖(AB)s‖

and

‖A‖‖B‖ � HE(k, l)‖(AB̄)s‖

for all A ∈ Ls(kE) and B ∈ Ls(lE). If k and l are integers, we denote by CE(k, l) the
infimum of all positive reals that satisfy

sup
x,y∈BE

‖P̌ (x)k(y)l‖ � CE(k, l)‖P‖

for all P ∈ P(nE) and by RE(k, l) the infimum of all positive reals that satisfy

sup
x,y∈BER

‖P̌ (x)k(y)l‖ � RE(k, l)‖P‖

for all P ∈ P(nER). We have the following relationship between these constants.

Proposition 2.3. Let k and l be positive integers and let n = k + l. Then

GE(k, l)
CE(k)CE(l)

� FE(k, l) � GE(k, l)CE(k, l) (2.4)

and

HE(k, l)
CE(k)CE(l)

� FE(k, l) � HE(k, l)RE(k, l). (2.5)

Proof. Take P ∈ P(kE) and Q ∈ P(lE) and let A = P̌ , B = Q̌. Then we have

‖P‖‖Q‖ � ‖A‖‖B‖ � GE(k, l) sup
x,y∈BE

|(AB)s(x)k(y)l|

� GE(k, l)CE(k, l)‖PQ‖

and

‖A‖‖B‖ � CE(k)CE(l)‖P‖‖Q‖
� CE(k)CE(l)FE(k, l)‖PQ‖
� CE(k)CE(l)FE(k, l)‖(AB)s‖,

which gives (2.4).
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The norm of the product of polynomials in infinite dimensions 21

As ‖PQ‖ = ‖PQ̄‖ we obtain the left-hand side of (2.5) as we obtained the left-hand
side of (2.4). Since (AB̄)s is a real n-linear symmetric function, we have

‖P‖‖Q‖ � ‖A‖‖B‖ � HE(k, l) sup
x,y∈BE

‖(AB̄)s(x)k(y)l‖

� HE(k, l)RE(k, l)‖PQ̄‖
= HE(k, l)RE(k, l)‖PQ‖,

which is (2.5). �

Thus, if CE(n) ≡ 1, which happens if E is a Hilbert space (see [14, Theorem 4]) or �2∞,
then it follows that CE(k, l) = 1 and we see that FE(k, l) = GE(k, l).

When E is a complex Hilbert space we have the following corollary.

Corollary 2.4. Suppose E is a complex Hilbert space and let Pi ∈ P(kiE) for 1 �
i � l. Let n = k1 + k2 + · · · + kl. Then

‖P1‖‖P2‖ · · · ‖Pl‖ � n!
k1! · · · kl!

‖P1P2 · · ·Pl‖. (2.6)

Proof. Since RE(m) ≡ 1 (see [4,12]), FE(k, l) = HE(k, l) for all k, l and the result
will follow by iteration and Proposition 2.2. �

This result has also been established in [7] in the special case where k1 = k2 = · · · = kl

and n is a power of 2. The fact that n!/k!l! is an improvement on (2.2) follows from
Lemma 3.2 of [20].

Proposition 2.3 used with the estimate given in [14, Theorem1] gives an alternative
proof of [7, Lemma 2].

Proposition 2.3 also gives a lower bound of FE(k, l)/GE(k, l) for CE(n).
For estimates on the biduals of a Banach space we have the following result.

Theorem 2.5. If E is a complex Banach space such that E′′ has the metric approxi-
mation property, then FE(k, l) = FE′′(k, l) for every k and l.

Proof. Choose c > 0. Then there are P ∈ P(kE) and Q ∈ P(lE) such that

(FE(k, l) − c)‖PQ‖ � ‖P‖‖Q‖ � FE(k, l)‖PQ‖.

Let R̃ denote the Aron–Berner extension of a homogeneous polynomial R from E to E′′.
Since this extension process is multiplicative and norm preserving (see [3] and [11, The-
orem 5]), we have

(FE(k, l) − c)‖P̃ Q̃‖ � ‖P̃‖‖Q̃‖.

It follows that
FE(k, l) � FE′′(k, l).

On the other hand, given c > 0, choose P ∈ P(kE′′) and Q ∈ P(lE′′) so that

(FE′′(k, l) − c)‖PQ‖ � ‖P‖‖Q‖.
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Now choose ε > 0 and x′′, y′′ and z′′ in BE′′ such that

|P (x′′)| � ‖P‖ − ε, |Q(y′′)| � ‖Q‖ − ε and |PQ(z′′)| � ‖PQ‖ − ε.

Let K = {x′′, y′′, z′′}. Since E′′ has the metric approximation property, it follows as in
the proof of [15, Lemma 3.1] that there exist finite-type polynomials Po ∈ Pf(kE′′) and
Qo ∈ Pf(lE′′) such that

‖P − Po‖K < ε, ‖Q − Qo‖K < ε, ‖P‖ − 2ε � ‖Po‖ � ‖P‖,

‖Q‖ − 2ε � ‖Qo‖ � ‖Q‖ and ‖PQ‖ − 2ε � ‖PoQo‖ � ‖PQ‖.

Now applying the principle of local reflexivity and arguing as in the proof of Theo-
rem 3.2 of [15], there exist finite-type polynomials R ∈ Pf(kE) and S ∈ Pf(lE) such
that

‖R‖ � ‖Po‖ + ε, ‖S‖ � ‖Qo‖ + ε, ‖RS‖ � ‖PoQo‖ + ε,

R̃(x′′) = Po(x′′) and S̃(y′′) = Qo(y′′).

Hence ‖Po‖ � ‖R‖ + 2ε, ‖Qo‖ � ‖S‖ + 2ε, and we have

(FE′′(k, l) − c)‖RS‖ � (FE′′(k, l) − c)(‖PoQo‖ + ε)

� (‖Po‖ + 2ε)(‖Qo‖ + 2ε) + ε(FE′′(k, l) − c)

� (‖R‖ + 4ε)(‖S‖ + 4ε) + ε(FE′′(k, l) − c).

Since ε was arbitrary, it follows that FE′′(k, l) � FE(k, l). �

We note that if F is a L∞ space and E is a superspace of F , every homogeneous poly-
nomial on F extends to a polynomial on E with the same norm (see [3, Corollary 1.3]).
It follows that FF (k, l) � FE(k, l).

3. Estimates using the geometry of Banach spaces

For certain Banach spaces and polynomials on those spaces which have approximate
norming points which are far apart it may be possible to improve on the estimates given
in (2.2) or (2.6). These estimates depend on the geometry of the underlying Banach spaces
and the weighted distance between circles that approximate the norms of the polynomials.
We introduce some notation. Given a Banach space E, polynomials P and Q of degree k

and l, respectively, 1 � p � 2 and ε > 0, we define νε(P, Q) by

νε(P, Q) = sup
x,y

inf
θ

{‖eiθx − y‖ : ‖x‖ = ‖y‖ = 1, θ ∈ [0, 2π],

|P (x)| � ‖P‖ − ε, |Q(y)| � ‖Q‖ − ε},

and ηε(P, Q) by

ηp,ε(P, Q) = sup
x,y

inf
θ

{∥∥∥∥
(

k

n

)1/p

eiθx −
(

l

n

)1/p

y

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, θ ∈ [0, 2π],

|P (x)| � ‖P‖ − ε, |Q(y)| � ‖Q‖ − ε

}
.
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Since ηp,ε(P, Q) and νε(P, Q) are decreasing function of ε, we may define ν(P, Q) and
ηp(P, Q) by

ν(P, Q) = inf
ε

νε(P, Q),

ηp(P, Q) = inf
ε

ηp,ε(P, Q).

Homogeneous polynomials on complex Banach spaces have not only approximate norm-
ing points but approximate norming circles. In this case we can interpret ν(P, Q) as the
maximum distance between the approximate norming circles of P and Q and ηp(P, Q)
as the maximum weighted distance between approximate norming circles of P and Q.
When k = l, ν(P, Q) = 21/pηp(P, Q).

We introduce the notion of Rademacher type as defined by Beauzamy in [5]. We shall
use rk to denote the kth Rademacher function on [0, 1]. A Banach space has type p if
there is C > 0 such that for all n � 1 and all x1, . . . , xn in E we have that

(∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥
p

dt

)1/p

� C

( n∑
k=1

‖xk‖p

)1/p

.

The smallest C which satisfies the above inequality is denoted by Tp and is called the type
constant of E. Although this definition of Rademacher type is equivalent to that which
appears in most standard texts, it does give different values for the type constant. These
values of Tp have the advantage of being relatively small when E is Lp(µ), 1 < p < ∞.

Theorem 3.1. Let E be a complex Banach space which has type p. For P ∈ P(kE)
and Q ∈ P(lE),

‖P‖‖Q‖ �
(

nn

kkll

)1/p

(2T p
p − ηp(P, Q)p)n/p‖PQ‖. (3.1)

Proof. Given ε, σ > 0, choose x and y with ‖x‖ = ‖y‖ = 1, |P (x)| � ‖P‖ − ε,
|Q(y)| � ‖Q‖ − ε so that

inf
θ

∥∥∥∥
(

k

n

)1/p

eiθx −
(

l

n

)1/p

y

∥∥∥∥ > ηp,ε(P, Q) − σ.

Since E has type p,

∥∥∥∥
(

k

n

)1/p

eiθx +
(

l

n

)1/p

y

∥∥∥∥
p

+
∥∥∥∥
(

k

n

)1/p

eiθx −
(

l

n

)1/p

y

∥∥∥∥
p

� 2T p
p

(
k

n
+

l

n

)p

= 2T p
p

for all θ in [0, 2π] and so

sup
θ

∥∥∥∥
(

k

n

)p

eiθx +
(

l

n

)1/p

y

∥∥∥∥
n

� (2T p
p − (ηp,ε(P, Q) − σ)p)n/p.
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Thus, by (2.1), we have

(‖P‖ − ε)(‖Q‖ − ε) �
(

nn

kkll

)1/p∣∣∣∣P
((

k

n

)1/p

x

)∣∣∣∣
∣∣∣∣Q

((
l

n

)1/p

y

)∣∣∣∣
� ‖PQ‖

(
nn

kkll

)1/p

sup
θ

∥∥∥∥
(

k

n

)1/p

eiθx +
(

l

n

)1/p

y

∥∥∥∥
n

� ‖PQ‖
(

nn

kkll

)1/p

(2T p
p − (ηp,ε(P, Q) − σ)p)n/p.

Letting ε and σ tend to 0 gives the result. �

If we assume that E is a complex Banach space with type p such that Tp = 1 (this
happens when E is Lp(µ), 1 � p � 2) and P and Q are two homogeneous polynomials
of degree n on E such that ηp(P, Q) �

√
2/21/p, then our estimate from Theorem 3.1 is

that

‖P‖‖Q‖ � (4 − 2p/2)2n/p‖PQ‖,

while our estimate from Theorem 2.1 is that

‖P‖‖Q‖ � (2)2n‖PQ‖.

The value in (3.1) is an improvement on (2.2) when

2p + 2p/2 − 4 � 0.

This happens when
log( 1

2 (9 −
√

17))/ log 2 < p � 2,

which is the interval (1.2859 . . . , 2]. In particular, when E is a complex Hilbert space and
P and Q are two n-homogeneous polynomials on E such that ηp(P, Q) = 1, the estimate
we get with (3.1) is

‖P‖‖Q‖ � 2n‖PQ‖,

compared with

‖P‖‖Q‖ � 4n‖PQ‖

using (2.2).
A Banach space E is said to be uniformly convex if, for all r > 0, there is γ(r) > 0

such that if x, y are unit vectors in E that satisfy ‖x−y‖ � r, then ‖x+y‖ � 2(1−γ(r)).
Using (2.1) we obtain the following result.

Theorem 3.2. Let E be a complex uniformly convex Banach space. For P ∈ P(kE)
and Q ∈ P(lE) and n = k + l,

‖P‖‖Q‖ � 2n(1 − γ(ν(P, Q)))n‖PQ‖.
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When P ∈ P(kLp(µ)), Q ∈ P(lLp(µ)), for p � 2 we obtain two estimates for ‖P‖‖Q‖.
Using the fact that Lp(µ) has type 2, arguing as in Theorem 3.1, we obtain

‖P‖‖Q‖ � (4B2
p − ν(P, Q)2)n/2‖PQ‖,

where Bp is the constant on the right-hand side of Khinchin’s inequality. While using
uniform convexity and the fact that the modulus of convexity of Lp(µ) with p � 2 satisfies

γ(r) � 1 − 1
2 (2p − rp)1/p,

we obtain
‖P‖‖Q‖ � (2p − ν(P, Q)p)n/p‖PQ‖.

This last inequality can also be obtained from Clarkson’s inequality, which says that for
x, y in Lp(µ) we have

2(‖x‖p + ‖y‖p) � ‖x + y‖p + ‖x − y‖p.

4. Estimates for general polynomials

For θ ∈ [0, 2π], f ∈ H(E), we define fθ ∈ H(E) by fθ(x) = f(e−iθx). We have the
following generalization of the identity (2.1).

Proposition 4.1. Let f and g be entire holomorphic functions on a complex locally
convex space E. Then for every x, y in E we have

f(x)g(y) =
(

1
2π

)2 ∫ 2π

0

∫ 2π

0
fθ(eiθx + eiφy)gφ(eiθx + eiφy) dθ dφ.

Proof. Given polynomials P and Q on E we can write

Pθ(eiθx + eiφy) and Qφ(eiθx + eiφy)

as polynomials in eiθ, eiφ, e−iθ and e−iφ, expand and obtain the identity

P (x)Q(y) =
(

1
2π

)2 ∫ 2π

0

∫ 2π

0
Pθ(eiθx + eiφy)Qφ(eiθx + eiφy) dθ dφ. (4.1)

Let (P )n (respectively, (Q)n) denote the Taylor polynomial for f (respectively, g) of
degree n. Since (Pθ)n(Qφ)n converges uniformly to fḡ on the compact set

{eiθx + eiφy}θ,φ∈[0,2π],

the result follows from (4.1). �

We shall use this identity to give another estimate for the norm of the product of general
polynomials. Let us recall that δ is the Mahler measure of F (x, y) = 1 + x + y − xy and
is equal to 1.7916 . . . .

The support of a function f in Lp(µ) is defined as {x : f(x) �= 0}.
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Theorem 4.2. Consider 1 � p � ∞ and let P and Q be polynomials on Lp(µ) of
degree k and l, respectively, which achieve their norms at points with disjoint support.
Let n = k + l. Then

‖P‖‖Q‖ �
(

nn

kkll

)1/p

δn‖PQ‖. (4.2)

Proof. Choose norming points x and y for P and Q, respectively, which have disjoint
support. By Proposition 4.1,

∣∣∣∣P
((

k

n

)1/p

x

)∣∣∣∣
∣∣∣∣Q

((
l

n

)1/p

y

)∣∣∣∣ � sup
θφ

‖PθQφ‖
∥∥∥∥
(

k

n

)1/p

eiθx +
(

l

n

)1/p

eiφy

∥∥∥∥
n

� sup
θφ

‖PθQφ‖.

Fix an arbitrary z in the closed unit ball of E and consider the polynomial, P̃ , of degree k

on C defined by

P̃ (λ) = λkP

(
1
λ

z

)
.

It follows from the maximum modulus theorem that P̃ (1) � ‖P̃‖(k/n)1/pBC
. This gives

us that

P (z) �
(

n

k

)k/p

sup
|λ|=1

∣∣∣∣P
((

k

n

)1/p

λz

)∣∣∣∣ �
(

n

k

)k/p

‖P‖(n/k)1/pBE
.

Taking the supremum over all z in the unit ball of E we get that

‖P‖ �
(

n

k

)k/p

‖P‖(k/n)1/pBE
.

Similarly, we obtain

‖Q‖ �
(

n

l

)l/p

‖Q‖(l/n)1/pBE
.

Thus we have

‖P‖‖Q‖ �
(

nn

kkll

)1/p

sup
θφ

‖PθQφ‖.

Fix z in E and for f ∈ H(E) let fz ∈ H(C) be defined by fz(λ) = f(λz). Then, by
Theorem 2 of [8], we have

sup
θφ

‖(PθQφ)z‖ = sup
θφ

‖P z
θ Qz

φ‖ = ‖P z‖‖Qz‖ � δn‖P zQz‖ = δn‖(PQ)z‖.

Taking the supremum over all z with ‖z‖ � 1 we obtain

sup
θφ

‖PθQφ‖ � δn‖PQ‖,

which gives (4.2). �
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If P and Q are two norm-attaining polynomials of degree n on Lp(µ) that attain their
norms at points with disjoint support, then Theorem 4.2 tells us that

‖P‖‖Q‖ � 22n/pδ2n‖PQ‖.

For
p >

1
1 − log2 δ

= 6.24 . . .

this is better than the estimate in [7] of 22n.
Theorem 3 of [7] uses the isometry between the space of all polynomials of degree at

most n on a Banach space E and the space of n-homogeneous polynomials on the Banach
space E

⊕
∞ C to obtain the best constant for general polynomials. This isometry can

be used in conjunction with Theorem 2 of [8] to give the following result.

Proposition 4.3. Given P ∈ P(k�2∞) and Q ∈ P(l�2∞), let n = k + l. Then

‖P‖‖Q‖ � δn‖PQ‖

and this estimate is asymptotically sharp as n → ∞.

For any infinite set I, �∞(I) is isometrically isomorphic to �∞(I)
⊕

∞ C. Therefore,
we see that if P and Q are polynomials of degree k and l, respectively, on �∞(I), then

‖P‖‖Q‖ � F�∞(I)(k, l)‖PQ‖.

Thus, the best constant for the product of homogeneous polynomials is also the best
constant for general polynomials.
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