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Abstract

In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of

the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing

that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base

system RCA0. In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false,

constructs a topological embedding of R4 into R3.
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1. Introduction

How different are R< and R=? It is intuitively obvious that R< and R= are not homeomorphic whenever

< ≠ =. However, this is not as easy as it appears. Quite a few prominent mathematicians have tried

to solve this invariance of dimension problem, and nobody before Brouwer succeeded in providing a

correct rigorous proof (see [14, Section 5.1] for the history of the invariance of dimension problem).

In the early days of topology, Brouwer proved three important theorems: the Brouwer fixed point

theorem, the invariance of dimension theorem, and the invariance of domain theorem. Modern proofs

of these theorems make use of singular homology theory [3] or its relative of the same nature, but even

today, no direct proofs (only using elementary topology) have been found.
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Brouwer’s intuitionist standpoint eventually led him to refuse his theorems and even propose a

counterexample to his fixed point theorem. As an alternative, he introduced an approximate version

of the fixed point theorem (which follows from Sperner’s lemma); however, it does not provide us an

approximation of an actual fixed point, as Brouwer himself already pointed out (cf. [14, p. 503]). Indeed,

there is no computable algorithm which, given a sequence (G=)=∈N of points such that G= looks like a fixed

point within precision 2−=, produces an approximation of an actual fixed point. How nonconstructive,

then, are Brouwer’s original theorems?

We examine this problem from the perspective of reverse mathematics. Reverse mathematics is a

program to determine the exact (set-existence) axioms needed to prove theorems of ordinary mathe-

matics. We employ a subsystem RCA0 of second-order arithmetic as our base system, which consists of

Robinson arithmetic (or the theory of the nonnegative parts of discretely ordered rings), Σ0
1
-induction

schema, and Δ0
1
-comprehension schema (cf. [11, 12]).

Roughly speaking, the system RCA0 corresponds to computable mathematics, which has enough

power to show the approximate fixed point theorem (see [11, Section IV.7]). On the other hand, Orevkov

[8] showed that the Brouwer fixed point theorem is invalid in computable mathematics in a rigorous

sense; hence RCA0 is not enough to prove the actual fixed point theorem.

In Bishop-style constructive mathematics, it is claimed that a uniform continuous version of the

invariance of dimension theorem has a constructive proof (cf. [1, Section I.19]). Similarly, in the same

constructive setting, Julian et al. [4] studied the Alexander duality theorem and the Jordan-Brouwer

separation theorem (which are basic tools to show the invariance of domain theorem in modern algebraic

topology; cf. [3]). However, these constructive versions are significantly different from the original ones

(from constructive and computable viewpoints).

Concerning the original theorems, Shioji and Tanaka [10] (see also [11, Section IV.7]) utilized

Orevkov’s idea to show that over RCA0, the Brouwer fixed point theorem is equivalent to the weak

König’s lemma (WKL): Every infinite binary tree has an infinite path. Other examples equivalent to WKL

include the Jordan curve theorem and the Schönflies theorem [9].

In [12], Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me

one of the most interesting open problems in reverse mathematics.’ In this article, we solve this problem

by showing that some forms of the Brouwer invariance theorems are equivalent to WKL over the base

system RCA0.

Theorem 1. The following are equivalent over RCA0:

1. The weak König’s lemma.

2. (Invariance of domain) Let * ⊆ R< be an open set and 5 : * → R< be a continuous injection.

Then the image 5 [*] is also open.

3. (Invariance of dimension I) If < > =, then there is no continuous injection from R< into R=.

4. (Invariance of dimension II) If < > =, then there is no topological embedding of R< into R=.

Proof. For (1)⇒(2), as mentioned in [12], the usual algebraic topology machineries (cf. [3]) are available

in WKL0. A simpler proof of the invariance of domain theorem is presented in [13, Section 6.2], which

can also be carried out in WKL0.

For (2)⇒(3), suppose < > = and that there is a continuous injection 5 from R< into R=. Define

6 : R< → R< by 6(G) = ( 5 (G), 0, 0, . . . , 0). Then 6 is also a continuous injection. Hence, by invariance

of domain, the image of 6 is open. However, if < > =, then {(I, 0, 0, . . . , 0) ∈ R< : I ∈ R=} does not

contain a nonempty open set. Thus, we get < ≤ =.

The implication (3)⇒(4) is obvious. We devote the rest of the paper to proving the implication

(4)⇒(1). �

We first describe the outline of our strategy for (the contrapositive of) (4)⇒(1).

First, we will show that several basic results in topological dimension theory are provable in RCA0.

More explicitly, RCA0 proves that whenever the =-sphere S= is an absolute extensor for - , the covering
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dimension of - is at most =. We will also show that the Nöbeling embedding theorem (stating that

every =-dimensional Polish space is topologically embedded into a ‘universal’ =-dimensional subspace

of R2=+1) is provable in RCA0.

Then, under RCA0 + ¬WKL, we will show that the 1-sphere S1 is an absolute extensor (for all Polish

spaces). This means that under ¬WKL, every Polish space is at most one-dimensional, and therefore, by

the Nöbeling embedding theorem, every Polish space is topologically embedded into R3. In particular,

we will show that assuming ¬WKL, a topological embedding of R4 into R3 does exist. However, the

following two questions remain open.

Question 1. Does RCA0 prove that there is no topological embedding of R3 into R2?

Question 2. Does RCA0 prove that R< is not homeomorphic to R= whenever < ≠ =?

1.1. Preliminaries

We assume that the reader is familiar with reverse mathematics (see [11, 12]). In particular, we use

standard formulations of mathematical concepts in second-order arithmetic: A real number is coded as

a Cauchy sequence of rational numbers with modulus of convergence ([11, Definition II.4.4]). A Polish

space - is coded as a pair of a countable set � ⊆ N (which represents a countable dense subset of

a space -) and a function 3 : �2 → R ([11, Definition II.5.2]). A code of an open set * ⊆ - is any

sequence of rational open balls �= whose union is * ([11, Definition II.5.6]). A code of a closed set

* ⊆ - is a code of its complement (as an open set). A code of an open set and a code of a closed set

in this sense are sometimes called a positive code and a negative code, respectively. A code of a partial

continuous function 5 : ⊆ - → . is any data Φ specifying a modulus of point-wise continuity for 5 ;

that is, if (0, A, 1, B) is enumerated into Φ at some round, then G ∈ dom( 5 ) and 3- (G, 0) < A imply

3. ( 5 (G), 1) ≤ B ([11, Definition II.6.1]). A topological embedding 5 of - into . is coded as a pair of

(codes of) continuous functions ( 5 , 6) such that 6 ◦ 5 (G) = G for any G ∈ - .

In particular, we note that a ‘code’ of some mathematical object can always be considered as an

element of NN. In reverse mathematics, we often use sentences like ‘for a given G one can effectively

find a H such that . . . ’ when there is a partial continuous function 5 : ⊆ NN → NN such that if ¤G is a

code of G, then 5 ( ¤G) is defined and returns a code of such a H.

2. Proof of (4)⇒(1)

2.1. Coincidence of dimension

In this section, we discuss a few basic results in topological dimension theory within RCA0. For basics

on classical topological dimension theory, see [2, 7]. Throughout this section, a space always means a

Polish space.

It is not hard to see that the results we will discuss in this section are provable within RCA (i.e.,

RCA0 plus full induction); however, most basic results in topological dimension theory involve induction

argument (see Lemma 1 and Lemma 4), so we will need a few tricks to make the proofs work with only

Σ0
1
-induction.

2.1.1. Normality

A space - is normal if for any (negative codes of) disjoint closed sets %0, %1 ⊆ - , one can find (positive

codes of) disjoint open sets (0, (1 ⊆ - such that %0 ⊆ (0 and %1 ⊆ (1. A space - is perfectly normal

if for any disjoint closed sets %0, %1 ⊆ - , one can effectively find a (code of) continuous function

6 : - → [0, 1] such that for all G ∈ - and 8 < 2, G ∈ �8 if and only if 6(G) = 8. Note that effectivity is

required for all notions to reduce the complexity of induction involved in our proofs. It is known that

the effective version of Urysohn’s lemma is provable within RCA0 as follows:
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Fact 1 (cf. [11, Lemma II.7.3]). Over RCA0, every Polish space is perfectly normal. �

Let U be a cover of a space - . A cover V of - is a refinement of U if for any � ∈ V there is � ∈ U

such that � ⊆ �. A shrinking of a cover U = (*8)8<B of - is a cover V = (+8)8<B of - such that +8 ⊆ *8

for any 8 < B.

Lemma 1 (RCA0). Let - be a perfectly normal space. Then for every finite open cover U of - , one can

effectively find a closed shrinking of U.

Proof. Let U = {*8}8<: be a finite open cover. By perfect normality of - , for each 8 < : one can

effectively find a continuous function 68 : - → [0, 1] such that 68 (G) > 0 if and only if G ∈ *8 for any

G ∈ - . One can effectively construct (a code of) the following sequence 〈6′8 , 6̃8〉8<: of (possibly partial)

continuous functions:

6̃8 (G) =
68 (G)

68 (G) + max{6′B (G), 6C (G) : B < 8 < C < :}
,

6′8 (G) = max

{

0, 6̃8 (G) −
1

2

}

.

Fix G ∈ - . By Σ0
1
-induction, we show that the denominator in the definition of 6̃8 (G) is nonzero.

Note that 68 (G) > 0 for some 8 < : , since (*8)8<: covers - . This verifies the base case. We inductively

assume that the denominator of 6̃8 (G) is nonzero, that is, 6′B (G) > 0 for some B < 8 or 6C (G) > 0 for some

C ≥ 8. Suppose that the denominator of 6̃8+1(G) is zero, that is, 6′B (G) = 0 for any B ≤ 8 or 6C (G) = 0 for

any C > 8. Note that 6′8 (G) = 0 implies 6̃8 (G) ≤ 1/2, and therefore, by the definition of 6̃8 , we have

68 (G) ≤ max{6′B (G), 6C (G) : B < 8 < C < :} = 0.

However, this contradicts the induction hypothesis. Hence, 〈6′8 , 6̃8〉8<: defines a sequence of total

continuous functions, and for any G ∈ - , we have 6′8 (G) > 0 for some 8 < : , as seen earlier. This means

that ,8 = {G ∈ - : 6′8 (G) > 0} = {G ∈ - : 6̃8 (G) > 1/2} covers - . Therefore, �8 = {G ∈ - : 6̃8 (G) ≥

1/2} also covers - . Now if 68 (G) = 0, then clearly 6̃8 (G) = 0 < 1/2; hence we have,8 ⊆ �8 ⊆ *8 . This

concludes that (�8)8<: is a closed shrinking of (*8)8<: . �

2.1.2. Star refinement

Let ( ⊆ - and U be a cover of a space - . A star of ( w.r.t. U is defined as

st((,U) =
⋃

{* ∈ U : ( ∩* ≠ ∅}.

Define U★ by {st(*,U) : * ∈ U}. A star refinement of a cover U of - is a cover V of - such that V★

is a refinement of U. It is known that a space is normal if and only if every finite open cover has a finite

open star refinement.

Lemma 2 (RCA0). Let - be a normal space. Then for every finite open cover U of - , one can effectively

find a finite open star refinement of U.

Proof. Given a finite open cover U = {*8}8<: of - , as in the proof of Lemma 1, one can effectively find

a closed shrinking {�8}8<: and an open shrinking W = {,8}8<: such that,8 ⊆ �8 ⊆ *8 for each 8 < : .

Then V8 = {- \ �8 ,*8} is an open cover of - . Define V as the following open cover of -:

V = W ∧
∧

8<:

V8 :=

{

, ∩
⋂

8<:

+8 : , ∈ W, +8 ∈ V8

}

.
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We claim that if + ∈ V is of the form ,ℓ ∩
⋂

8<: +8 , then st(+,V) ⊆ *ℓ . For any +∗ ∈ V of the

form ,< ∩
⋂

8<: +
∗
8 , if + ∩ +∗ ≠ ∅, then +∗

ℓ
≠ - \ �ℓ , since + ⊆ ,ℓ ⊆ �ℓ . Therefore, +∗ ⊆ +∗

ℓ
= *ℓ .

Consequently, V is an open star refinement of U as desired. �

Also define U△ by {st({G},U) : G ∈ -}. A point-star refinement (or a barycentric refinement) of a

cover U of - is a cover V of - such that V△ is a refinement of U. Clearly, every star refinement is a

point-star refinement.

2.1.3. Absolute extensor

A space  is called an absolute extensor for a space - if for any continuous map 5 : % →  on a closed

set % ⊆ - , one can find a continuous map 6 : - →  extending 5 , that is, 6 ↾ % = 5 ↾ %. It is known

that the topological dimension (and the cohomological dimension) of a normal space can be restated in

the context of the absolute extensor. Classically, it is known that the covering dimension of - is at most

= if and only if the =-sphere S= is an absolute extensor for - (cf. [2, Theorem 1.9.3] or [7, Theorem

III.2]). This equivalence is due to Eilenberg and Otto. To prove the equivalence, Eilenberg and Otto

introduced the notion of an essential family.

We will need effectivity for inessentiality to reduce the complexity of induction. Therefore, instead of

considering the essentiality of a family, consider the following notion: A space - is (= + 1)-inessential

if for any sequence (�8 , �8)8<=+1 of disjoint pairs of closed sets in - , one can effectively find a sequence

(*8 , +8)8<=+1 of disjoint open sets in - such that �8 ⊆ *8 and �8 ⊆ +8 for each 8 ≤ =, and (*8 ∪+8)8<=+1

covers - .

Lemma 3 (RCA0). Let - be a Polish space. If the =-sphere S= is an absolute extensor for - , then - is

(= + 1)-inessential.

Proof. As the boundary mI=+1 of the (= + 1)-hypercube I=+1 is homeomorphic to S=, we can assume

that mI=+1 is an absolute extensor for - . Given a sequence (�8 , �8)8<=+1 of disjoint pairs of closed sets,

one can define 5 :
⋃

8<=+1 (�8 ∪ �8) → mI=+1 such that (c8 ◦ 5 )
−1{0} = �8 and (c8 ◦ 5 )

−1{1} = �8 by

perfect normality (Fact 1), where c8 is the projection into the 8th coordinate. Then, by our assumption,

we have 6 : - → mI=+1, which agrees with 5 on
⋃

8<=+1(�8 ∪ �8). Define *8 := (c8 ◦ 6)
−1 [0, 1/2) and

+8 := (c8 ◦ 6)
−1(1/2, 1]. Then (*8 , +8)8<=+1 covers - , since the range of 6 is contained in mI=+1. Hence,

the sequence (*8 , +8) observes the condition of (= + 1)-inessentiality. �

2.1.4. Covering dimension

Let U be a cover of a space - . The order of U is at most = if for any *0,*1, . . . ,*=+1 ∈ U we have
⋂

8<=+2*8 = ∅. A space - has the covering dimension at most = if for any finite open cover of - , one

can effectively find a finite open refinement of order at most =.

Lemma 4 (RCA0). Let - be a Polish space. If - is (= + 1)-inessential, then the covering dimension of

- is at most =.

Proof. We first show the following claim.

Claim 1 (RCA0). If - is (= + 1)-inessential, then for any open cover U = (*8)8<=+2 of - , one can

effectively find an open shrinking W = (,8)8<=+2 of U such that
⋂

W = ∅.

Proof. We follow the argument in [2, Theorem 1.7.9]. Given an open cover U = (*8)8<=+2 of - , pick a

closed shrinking (�8)8<=+2 by Lemma 1. Then consider the sequence (*8 , - \�8)8<=+1 of open covers. By

(=+1)-inessentiality, one can find a sequence of disjoint open sets (,8 , +8)8<=+1 in - such that,8 ⊆ *8 ,

+8 ⊆ (- \�8) and
⋃

8<=+1,8 ∪+8 covers - . Define,=+1 := *=+1 ∩
⋃

8<=+1+8 . As �=+1 ⊆ *=+1, we have

⋃

W =

[

⋃

8<=+1

,8 ∪*=+1

]

∩

[

⋃

8<=+1

,8 ∪
⋃

8<=+1

+8

]

⊇
⋃

8<=+2

�8 = -.
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Thus, W = (,8)8<=+2 is an open cover of - . Moreover, as +8 and,8 are disjoint, we have

⋂

8<=+2

,8 =

⋂

8<=+1

,8 ∩

[

*=+1 ∩
⋃

8<=+1

+8

]

⊆
⋂

8<=+1

,8 ∩
⋃

8<=+1

+8 = ∅.

This concludes that W is an open refinement of U of order at most =, as desired. �

We then follow the argument in [2, Theorem 1.6.10]. Suppose that U = {*8}8<B is a finite open cover

of - . Let [B]=+2 be the collection of all set � ⊆ B such that |� | = = + 2, and �4 be the 4th element in

[B]=+2. Put 1 := | [B]=+2 | =
( B
=+2

)

and set *−1
8 = *8 . We will construct a sequence (�4

8
,*4

8
)4<1 of pairs

of a closed set �4
8

and an open set*4
8

such that (*4
8
)8<B is an open shrinking of U and, moreover,

(∀8 < B) *4
8 ⊆ �4

8 ⊆ *4−1
8 , and

⋂

8∈�4

*4
8 = ∅.

Given a sequence U = (*8)8<B of open sets which is given as cozero sets of (D8)8<B, by Claim 1 one

can effectively find a code of a sequence (F8)8∈�4
of partial continuous functions such that whenever U

is a cover of - , F8 is total, the cozero sets W = (,8)8∈�4
of (F8)8∈�4

are an open shrinking of (*8)8∈�4

and U
′ := (*8 ,, 9 : 8 ∈ �4, 9 ∉ �4) covers - . Set D′8 = D8 for 8 ∉ �4 and D′8 = F8 for 8 ∈ �4. Then U

′

is given as a collection of cozero sets of D′8’s.

Then, by Lemma 1, one can effectively find a code of a sequence (Ẽ8)8<B of partial continuous functions

such that whenever U is a cover of - , E8 is total, D′8 (G) = 0 implies Ẽ8 (G) = 0 and+8 = {G : Ẽ8 (G) > 1/2}

covers - . Set �8 = {G : Ẽ8 (G) ≥ 1/2} and E8 (G) = max{0, Ẽ8 (G) − 1/2}.

It is clear that if U is an open cover of - , then (+8)8<B is an open shrinking of U, and moreover,

+8 ⊆ �8 ⊆ *8 , and
⋂

8∈�4

+8 = ∅.

To reduce the complexity of induction, we now note that the construction (D8)8<B ↦→ (E8 , Ẽ8)8<B
is effective, that is, has an explicit Σ0

1
-description Φ. Hence, one can effectively obtain (a code of) a

sequence (6̃4
8
, 64

8
)4,8 such that (D8)8<B = (64−1

8
) and (Ẽ8 , E8)8<B = (6̃4

8
, 64

8
)8<B satisfies the Σ0

1
-condition

Φ describing the construction. Then define*4
8
= {G : 6̃4

8
(G) > 1/2} and �4

8
= {G : 6̃4

8
(G) ≥ 1/2}.

We first check that (*4
8
)8<B forms an open cover for any 4 < 1. Fix G ∈ - . By Σ0

1
-induction, one can

easily show that for any 4, G ∈ *4
8

for some 8 < B. Next we see that *3
8
⊆ *4

8
for any 4 ≤ 3 < 1. Fix

G ∈ - . Note that 64−1
8

(G) = 0 implies 6̃4
8
(G) < 1/2, and this condition is Σ0

1
. For 3 > 4, inductively

assume that 64−1
8

(G) = 0 implies 6̃3
8
(G) < 1/2. Then 6̃3

8
(G) < 1/2 clearly implies 63

8
(G) = 0, and

therefore 6̃3+1
8

(G) < 1/2. By Σ0
1
-induction, 64−1

8
(G) = 0 implies 6̃3

8
(G) < 1/2 for any 3 > 4. Hence,

64−1
8

(G) = 0 implies 63
8
(G) = 0 for 3 > 4, which implies that*3

8
⊆ *4

8
for any 4 ≤ 3 < 1.

Finally, set +8 = *
1−1
8

. We have shown that (+8)8<B is an open shrinking of U. It remains to show

that the order of (+8)8<B is at most =. To see this, it suffices to show that for any 4,
⋂

8∈�4
+8 = ∅. As

shown earlier, U4−1 = (*4−1
8

)8<B forms an open cover. Therefore, (*4
8
)8<B is an open shrinking of U4−1

such that
⋂

8∈�4
*4
8
= ∅. Then, as seen before, we have +8 = *1−1

8
⊆ *4

8
for any 8 < B. Therefore,

⋂

8∈�4
+8 = ∅ as desired. �

2.2. Nöbeling’s embedding theorem

The =-dimensional Nöbeling space #= is a subspace of I2=+1 consisting of points with at most =

rational coordinates. The Nöbeling embedding theorem says that an =-dimensional separable metrizable

space is topologically embedded into the =-dimensional Nöbeling space. We will see that the Nöbeling

imbedding theorem is provable in RCA0 in the following sense.
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Theorem 2 (RCA0). If the covering dimension of a Polish space - is at most =, then - can be

topologically embedded into the =-dimensional Nöbeling space.

More precisely, there is a topological embedding 5 of - into I2=+1 such that for any G ∈ - , at most

= coordinates of 5 (G) are rational.

2.2.1. The modified Kuratowski mapping

We say that points {?8}8<ℓ in I3+1 are in a general position, that is, if 0 ≤ < ≤ 3, then any < + 2 points

from {?8}8<ℓ do not lie in an <-dimensional hyperplane of I3+1. The following is an easy effectivization

of a very basic observation (cf. [2, Theorem 1.10.2]).

Observation 1 (RCA0). Given Y > 0 and points @1, . . . , @: ∈ R<, one can effectively find ?1, . . . ?: ∈

R
< in general position such that 3 (?8 , @8) < Y for any 8 ≤ : . �

A polyhedron is a geometric realization |K| of a simplicial complex K in a Euclidean space. We

approximate a given space by a polyhedron as follows: Let U = (*8)8<: be a finite open cover of - .

The nerve of U is an abstract simplicial complex N(U) with : vertices {?8}8<: such that an <-simplex

{? 90 , . . . , ? 9<+1
} belongs to N(U) if and only if * 90 ∩ · · · ∩* 9<+1

is nonempty. We define the function

^ : - → |N(U) | as

^(G) =

∑:−1
8=0 3 (G, - \*8)?8

∑:−1
9=0 3 (G, - \* 9 )

.

The function ^ is called the ^-mapping (or Kuratowski mapping) determined by U and (?8)8<: . For

basics on ^-mapping, see also [2, Definition 1.10.15] and [7, Section IV.5].

However, we cannot ensure the existence of (G, 8) ↦→ 3 (G, - \ *8) within RCA0. Therefore, we

introduce a replacement for the ^-mapping. Recall that within RCA0, given an open set *8 , one can

effectively find a continuous function D8 : - → [0, 1] whose cozero set is exactly *8 . The modified

^-mapping ^ : - → I2=+1 determined by (D8)8<B and (I8)8<B is defined as

^(G) =

∑

8<B D8 (G)I8
∑

9<B D 9 (G)
.

The denominator of this formula is nonzero whenever U is a cover of - . Given G ∈ - , let Λ(G) be the

list of all indices 4 < B such that G ∈ *4. Such sets exist by bounded Σ0
1

comprehension within RCA0.

Let / (G) be the hyperplane spanned by (I4 : 4 ∈ Λ(G)).

Claim 2 (RCA0). For any G ∈ - , ^(G) is contained in the convex hull of (I4 : 4 ∈ Λ(G)), and in

particular, ^(G) ∈ / (G). �

Proof. Fix G ∈ - . By definition of D8 , G ∉ *8 (that is, 8 ∈ Λ(G)) implies D8 (G) = 0. Set _8 =

D8 (G)/(
∑

9∈Λ(G) D 9 (G)). Clearly,
∑

8∈Λ(G) _8 = 1 and ^(G) =
∑

8∈Λ(G) _8I8 . Hence, ^(G) is contained in

the convex hull of (I4 : 4 ∈ Λ(G)). �

2.2.2. Proof of Theorem 2

First, note that to work within RCA0, we need to avoid any use of compactness. Therefore, we cannot

use the standard proof of Nöbeling’s embedding theorem. However, we will show that one can remove

compactness arguments from some proof of Nöbeling’s embedding theorem, for example, given in [7,

Theorem IV.8], by performing very careful work.

Proof. For =+1 coordinates (28)8<=+1 ∈ (2=+1)=+1 and =+1 rationals (A8)8<=+1, consider the following

hyperplane:

! = {(G 9 ) 9<2=+1 ∈ I2=+1 : (∀8 < = + 1) G28 = A8}.

Let (!C )C ∈N be the list of all such hyperplanes. For a list (+4)4∈N of all basic open balls in - , let 〈8, 9〉
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be the Cth pair such that+8 ⊆ + 9 . Then consider the open cover VC = {+ 9 , - \+8}, where+8 is the formal

closure of +8 , that is, the closed ball whose center and radius are the same as +8 .

We first give an explicit construction of (a code of) a sequence ( 5C )C ∈N of (possibly partial) continuous

functions. We describe the construction at stage C. Suppose that a continuous function 5C : - → I2=+1

and a positive rational XC > 0 have already been constructed. Consider !C and VC . We construct a

VC -mapping 5C+1 which avoids !C .

By the total boundedness of I2=+1, one can easily find a collection (G 9 ) 9≤< of points in I2=+1 such

that (�(G 9 ; XC )) 9≤< covers I2=+1, where �(G; X) is the open ball centered at G of radius X. Consider

WC = { 5 −1
C [�(G 9 ; XC )] : 9 ≤ <}. Since the covering dimension of - is at most =, one can effectively

find an open refinement of VC ∧WC of order at most =. Apply Lemma 2 to this new open cover of - to

get an open star refinement UC = (*C
8
)8<B of VC ∧WC of order at most =. Then one can effectively find a

sequence of continuous functions (DC
8
)8<B such that*C

8
is the cozero set of DC

8
.

For each 8 < B, one can effectively choose G8 ∈ *
C
8

and then get the value 5C (G8). Then, by Observation

1, we can effectively choose IC
8
∈ - and ?C

9
∈ !C such that

3 ( 5C (G8), I
C
8
) < X, and (IC

8
, ?C

9
)8<B, 9<=+1 are in a general position,

that is, if 0 ≤ < ≤ 2=, then any < + 2 vertices do not lie in an <-dimensional hyperplane of I2=+1. Let

^ : - → I2=+1 be the modified ^-mapping determined by (D8)8<B and (I8)8<B.

Claim 3 (RCA0). For any G ∈ - , 3 ( 5C (G), ^(G)) < 3XC .

Proof. Let G ∈ - be given. If G ∉ *C
8
, then DC

8
(G) = 0. If G ∈ *C

8
, since UC is a refinement of WC , we have

3 ( 5C (G), 5C (H)) < 2XC for any H ∈ *C
8
. Therefore, 3 ( 5C (G), I

C
8
) < 3XC , since 3 ( 5C (G8), I

C
8
) < XC , where

G8 ∈ *
C
8
. Hence, by the definition of the modified ^-mapping, we get 3 ( 5C (G), ^(G)) < 3XC for any G ∈ - ,

since

3 ( 5C (G), ^(G)) = 3

(

∑

8<B

_8 (G) 5C (G),
∑

8<B

_8 (G)I
C
8

)

≤
∑

8<B

_8 (G)3 ( 5C (G), I
C
8 ) < 3XC ,

where _8 (G) is defined as in Claim 2. The first equality follows from
∑

8<B _8 = 1, and the middle

inequality follows from the triangle inequality. �

Let [B]≤= denote the set of all finite subsets � ⊆ B with |� | ≤ =, and / C
�

be the hyperplane spanned

by (IC4 : 4 ∈ �). Now one can calculate the following value:

[C := min{3 (/ C
� , /

C
� ) : �, � ∈ [B]≤=, / C

� ∩ / C
� = ∅)} > 0.

Recall that (IC
8
)8∈Λ(G) and (?C

9
) 9<=+1 are in a general position, and !C is spanned by (?C

9
) 9<=+1, which

implies that 3 (/ C
�
, !C ) > 0 for any � ∈ [B]≤=. One can also calculate the following value:

[′C := min{3 (/ C
� , !C ) : � ∈ [B]≤=} > 0.

Now define 5C+1 = ^ (where ^ is the modified ^-mapping defined before Claim 3) and

XC+1 = min{XC , [C/8, [
′
C/4}/3. To reduce the complexity of induction, note that the construction

( 5C , XC ) ↦→ ( 5C+1, XC+1, [C , [
′
C ) is effective, that is, has an explicit Σ0

1
-description. We then have a

sequence ( 5C , XC , [C , [
′
C )C ∈N with auxiliary parameters (IC

8
)C ∈N,8<B and (?C

9
)C ∈N, 9<=+1. A simple in-

duction shows XC < 2−C . By Σ0
1
-induction with Claim 3, for any C ≤ B one can also show that

3 ( 5C (G), 5B (G)) <
∑

B≥C XB+1 < 2−C ; hence this is classically a uniform convergent sequence. Note that

the uniform limit theorem is provable within RCA0, since a modulus of point-wise continuity of the uni-

form limit 5 = limC→∞ 5C is effectively calculated from a sequence of moduli of point-wise continuity

of ( 5C )C ∈N and the modulus of uniform convergence 2−C . Hence, the uniform limit 5 = limC→∞ 5C exists.

By the definition of XC , we also get 3 ( 5 , 5C+1) < [C/4, [
′
C/2.
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Claim 4 (RCA0). For any C ∈ N and H ∈ I2=+1, there is + ∈ VC such that 5 −1 [�(H; [C/4)] ⊆ + .

Proof. Let H ∈ I2=+1 be given. For G, G ′ ∈ 5 −1 [�(H; [C/4)], we have 3 ( 5 (G), 5 (G ′)) < [C/2. As

3 ( 5 , 5C+1) < [C/4, we have 3 ( 5C+1(G), 5C+1(G
′)) < [C . By Claim 2, we have 5C+1(G) = ^(G) ∈ /

C (G) and

5C+1(G
′) = ^(G ′) ∈ / C (G ′), where / C (G) is defined in a similar manner as before. By the choice of [C ,

we have / C (G) ∩ / C (G ′) ≠ ∅.

Assume that / C (G) is spanned by (IC
8ℓ
)ℓ<C and / C (G ′) is spanned by (IC

9ℓ
)ℓ<D . Since / C (G)∩/ C (G ′) ≠ ∅,

(IC
8ℓ
, IC

9<
)ℓ<C,<<D lie on a ((C − 1) + (D − 1))-dimensional hyperplane. By our choice, the open cover UC

has order at most =, and therefore C, D ≤ = + 1; hence C + D ≤ 2= + 2. Since {I8ℓ , I 9< }ℓ<C,<<D are in a

general position, C + D vertices do not lie in a (C + D − 2)-dimensional hyperplane. Hence, there must be

ℓ and < such that I8ℓ = I 9< . This implies that G, G ′ ∈ *8ℓ .

Consequently, if G, G ′ ∈ 5 −1
C [�(H; [C/4)], then G ′ belongs to the star of {G} w.r.t. UC , that is,

G ′ ∈ st({G},UC ). As UC is a star refinement of VC , we obtain + ∈ VC such that 5 −1 [�(H; [C/4)] ⊆

st({G},UC ) ⊆ + . �

Claim 5. For any G ∈ - and ? ∈ !C , 3 ( 5 (G), ?) > [
′
C/2.

Proof. By the definition of [′C , we have 3 (/C (G), !C ) ≥ [′C for any G ∈ - . By Claim 2, we also have

5C+1(G) ∈ /C (G), and therefore 3 ( 5C+1 (G), !C ) ≥ [
′
C . Hence 3 ( 5 (G), !C ) ≥ [

′
C/2. �

Claim 5 ensures that the range of 5 avoids !C ; hence, 5 is a continuous map from - into the =-

dimensional Nöbeling space #= ⊆ R2=+1.

Claim 6. 5 is injective.

Proof. Let, be any open neighborhood of G ∈ - . Then, by the perfect normality of - (Fact 1), there are

basic open balls +8 and + 9 such that G ∈ +8 ⊆ +8 ⊆ + 9 ⊆ , . By applying Claim 4 to the code C of pairs

〈8, 9〉, that is, VC = {+ 9 , - \ +8}, we get an open neighborhood � of 5 (G) such that either 5 −1 [�] ⊆ + 9

or 5 −1 [�] ⊆ - \+8 . However, as G ∈ +8 , we have G ∈ 5 −1 [�] ∩+8 ≠ ∅; hence 5 −1 [�] ⊆ + 9 . Therefore,

if G ′ ∉ , , then, as, ⊇ + 9 , we get 5 (G ′) ∉ �. This implies that 5 is injective. �

It remains to show that 5 −1 is continuous in RCA0. In the usual proof, by using the property that 5 is

an Y-mapping for all Y > 0, we conclude that 5 is a closed map. However, it is unclear, from the property

being an Y-mapping, how one can effectively obtain a code of the closed image 5 [�] of a closed set

� ⊆ - (without using any compactness arguments). Fortunately, Claim 4 has more information than

just saying that 5 is an Y-mapping, which can be used to show that 5 is an effective open map.

Claim 7. 5 is an open map.

Proof. Say that an open ball �- (G; @) in - is formally (resp. strictly) included in �- (H; ?) if 3 (G, H) ≤

? − @ (resp. 3 (G, H) < ? − @). Note that if �- (G; @) is strictly included in �- (H; ?), then �- (G; @) ⊆

�- (H; ?). Let * =
⋃

4 +D (4) ⊆ - be an open set given as a union of open balls. Then make a new list

(+E (4, 9) )4, 9∈N of all open balls + 9 such that + 9 is strictly included in +D (4) .

Let C (4, 9) be the code of the pair 〈E(4, 9), D(4)〉, that is, VC (4, 9) = {+D (4) , - \ + E (4, 9) }. We now

consider a list (�
4, 9

:
):∈N of all open balls of radius ≤ [C (4, 9)/4 in I2=+1. By Claim 4, either 5 −1 [�

4, 9

:
] ⊆

+D (4) or 5 −1 [�
4, 9

:
] ⊆ - \ + E (4, 9) holds. As we have already shown that 5 is continuous, we get a code

of the open set 5 −1 [�
4, 9

:
] =

⋃

<+B (4, 9,:,<) . If +B (4, 9,:,<) is formally included in +E (4, 9) for some <,

then we must have 5 −1 [�
4, 9

:
] ⊆ +D (4) . Let (�8)8∈N be a list of all such open balls �

4, 9

:
, that is,

{�8}8∈N = {�
4, 9

:
: +B (4, 9,:,<) is formally included in +E (4, 9) for some <}.

We claim that 5 [*] =
⋃

8∈N �8 . If G ∈ *, then G ∈ +D (4) for some 4, and so G ∈ +E (4, 9) for some 9 .

By Claim 4, if � is a sufficiently small basic open ball containing 5 (G), then 5 −1 [�] ⊆ +E (4, 9) . Hence,

5 −1 [�] contains an open ball which is formally included in +E (4, 9) . Therefore, 5 (G) ∈ � = �8 for some

https://doi.org/10.1017/fms.2020.52 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.52


10 Takayuki Kihara

8 ∈ N. For the converse, if �8 = �, then 5 −1 [�] ⊆ +D (4) for corresponding 4, as already mentioned, and

therefore 5 −1 [�] ⊆ +D (4) ⊆ *. Consequently, � ⊆ 5 [*]. �

By Claim 7, one can effectively obtain a code of 5 −1 as a continuous function. This concludes the

proof of Theorem 2. �

2.3. Every Polish space is at most one-dimensional

We say that  is an absolute extensor if it is an absolute extensor for any Polish space. In other words,

if - is a Polish space, for any continuous map 5 : % →  on a closed set % ⊆ - one can find a

continuous map 6 : - →  extending 5 . The Tietze extension theorem states that the unit interval

I is an absolute extensor. This clearly implies that I= is also an absolute extensor by coordinate-wise

extending 5 = ( 58)8<= : % → I
= to 6 = (68)8<= : - → I

=. It is known that the effective version of the

Tietze extension theorem is provable within RCA0 as follows:

Fact 2 (see [11, Theorem II.7.5]). The Tietze extension theorem is provable in RCA0, that is, I= is an

absolute extensor. �

It is intuitively obvious that the topological dimension of the =-hypercube I= is = (but the proof is

not so easy even in the classical world). Surprisingly, however, under ¬WKL, every Polish space is at

most one-dimensional in the following sense.

Lemma 5 (RCA0 + ¬WKL). If - is a Polish space, then the 1-sphere S1 is an absolute extensor for - .

Proof. By Orevkov’s construction [8] (cf. [10]), if the weak König’s lemma fails, then there is a

continuous retraction A : I2 → mI2. Note that the one-dimensional sphere S1 is homeomorphic to mI2.

Let 5 : % → mI2 be a continuous map on a closed set % ⊆ - . Then, since I2 is an absolute extensor by

Fact 2, one can effectively find a continuous extension 5 ∗ : - → I2 of 5 such that 5 ∗ ↾ % = 5 ↾ %. Then

6 = A ◦ 5 ∗ : - → mI2 is continuous and extends 5 , since A is a continuous retraction. This concludes

that S1 is an absolute extensor for - as S1 ≃ mI2. �

Proof (Proof of Theorem 1 (4)⇒(1)) Suppose ¬WKL. Then by Lemma 5, S1 is an absolute extensor

for R<. By Lemmata 3 and 4, the covering dimension of R< is at most one. By Theorem 2, there is a

topological embedding 5 of R< into the one-dimensional Nöbeling space; that is, for any G ∈ R<, at

most one coordinate of 5 (G) ∈ R3 is rational. Consequently, there is a topological embedding of R<

into R3. �

3. Continuous degrees

In this section, we mention some relationships between reverse mathematics of topological dimension

theory and J. Miller’s work on continuous degrees [6].

Classically, a space is countable-dimensional if it is a countable union of zero-dimensional subspaces.

However, within RCA0 it is difficult to handle with the notion of a subspace. Instead, we use the following

definition. A copy of a subspace of . in - is a pair ( = ( 5 , 6) of (codes of) partial continuous functions

5 : ⊆ - → . and 6 : ⊆ . → - . Then we say that G ∈ - is a point in ( = ( 5 , 6) if 5 (G) is defined,

and 6 ◦ 5 (G) is defined and equal to G. A separable metric space - is countable-dimensional if - is a

union of countably many copies of subspaces of NN; that is, there is a sequence ((4)4∈N of copies of

subspaces of NN such that every G ∈ - is a point in (4 for some 4 ∈ N.

Theorem 3. The following are equivalent over RCA0:

1. The weak König’s lemma.

2. The Hilbert cube IN is not countable-dimensional.
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Proof. (1)⇒(2): The usual argument (cf. [2, Theorem 1.8.20]) only uses the Brouwer fixed point

theorem, which can be carried out in WKL0 [10].

(2)⇒(1): As IN is Polish, if we assume ¬WKL then, by Lemma 5, S1 is an absolute extensor for IN.

Therefore, by Lemmata 3 and 4 and Theorem 2, IN can be embedded into the one-dimensional Nöbeling

space #1. It is clear that #1 is a finite union of zero-dimensional subspaces. �

Indeed, the instance-wise version of Theorem 3 holds. We now consider the instance-wise version

in an l-model (l, S) of RCA0: For (1)⇒(2), if ((4)4∈l ∈ S is a sequence of copies of subspaces of

ll , then there is an infinite binary tree ) ∈ S such that every infinite path through ) computes a point

G ∈ Il which is not a point of (4 for any 4 ∈ l. For (2)⇒(1), if ) ∈ S is an infinite binary tree, then

there is a sequence ((4)4∈l ∈ S of copies of subspaces of ll such that if G ∈ Il is not a point in (4 for

any 4 ∈ l, then G computes an infinite path through ) .

We now interpret this instance-wise l-model version of Theorem 3 in the context of continuous

degrees. We say that b is PA-above a (written a ≪ b) if for any a-computable infinite binary tree there

is a b-computable infinite path. Miller [6] reduced the first-order definability of PA-aboveness to that

of continuous degrees: Whenever a and b are total degrees, a ≪ b if and only if there is a non-total

continuous degree v such that a < v < b. For continuous and total degrees, see [6].

(1)⇒(2) implies [6, Theorem 8.2]: If a and b are total degrees and b ≪ a, then there is a non-total

continuous degree v with b < v < a. To see this, consider the topped l-model of RCA0 consisting of

all sets of Turing degree ≤ b. Then, as in [5], take the list ( 54, 64) of all pairs of Turing reductions

(more precisely, all reductions in the sense of representation reducibility), considered copies in Il of

subspaces of ll . By (1)⇒(2), there is an infinite binary tree ) of Turing degree b such that any path

computes G ∈ Il , which is not a point in ( 54, 64). Such an G is non-total, since there is no U ∈ ll such

that 54 (G) = U and 64 (U) = G. As b ≪ a, such an G is computable in a. If necessary, by adding a new

coordinate G to code b, we can conclude that there is a non-total degree v with b < v < a.

(2)⇒(1) implies [6, Theorem 8.4]: If v is a non-total continuous degree and b < v is total, then

there is a total degree c with b ≪ c < v. To see this, consider the same l-model S as before. As in

[5], we consider a copy ( ∈ S of a subspace of ll in Il as a pair of b-relative Turing reductions. As

v is non-total and b ≤ v, a point G ∈ Il of degree v avoids any sequence of copies ((4)4∈l ∈ S of

subspaces of ll in Il . Hence, by (2)⇒(1), for any infinite binary tree ) ∈ S, G computes an infinite

path 2 through ) . Consequently, we have b ≪ c < v for some c.

This argument indicates that (some of) Miller’s work [6] (on definability of PA degrees via continuous

degrees) can be considered as the computable instance-wise version of Theorem 3.
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