
8

The leptonic sector

8.1 Feynman rules

We gave in Chapter 6 the Lagrange function for the fermions and the gauge bosons.
In the previous chapter we defined the physical bosons with definite masses. It
is now a straightforward exercise to rewrite the Lagrange density in terms of
the physical bosons and read off the Feynman rules. For the rules, it is neces-
sary to introduce quantized fields in order to keep track of the combinatorics and
other factors, especially for diagrams with closed loops. The canonical quantiza-
tion method in terms of Wick’s theorem does not work for non-Abelian gauge
theories because there are ambiguities that arise from gauge transformations. The
appropriate discussion at this point is the quantization in the path-integral formal-
ism. This will be a long digression and will delay us from arriving at physical
results. We adopt a compromise. We consider the fermionic part of the Lagrange
function in terms of the physical fields and read off the relevant vertices. The
interested reader can compare this method with the procedure used in textbooks
of quantum electrodynamics. In this way we obtain an extensive set of Feynman
rules for vertices and propagators, in terms of which we discuss many physical
processes.

Later on, we repeat this procedure for other parts of the Lagrangian, which in-
clude Higgses and gauge bosons. The rules that we obtain suffice when we calculate
tree diagrams to any order. Difficulties occur when loop diagrams are computed,
beginning with one-loop diagrams. The difficulties are solved by introducing addi-
tional diagrams with scalar particles: the Faddeev–Popov ghosts.

We saw in the previous chapter that the neutral gauge fields mix among them-
selves. It is appropriate to introduce a mixing angle

tan θW = g′

g
. (8.1)
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8.1 Feynman rules 65

The physical fields defined as mass eigenstates are given by

W ±
µ = 1√

2
(W1 ± iW2), (8.2)

Aµ = cos(θW)Bµ + sin(θW)W 3
µ, (8.3)

Zµ = sin(θW)Bµ − cos(θW)W 3
µ. (8.4)

As stated earlier, Aµ represents the photon, while Zµ and W ±
µ represent the neutral

and charged intermediate gauge bosons, whose masses satisfy the relation

M2
W

M2
Z

= cos2θW. (8.5)

In the leptonic Lagrangian (6.18) we substitute for W i
µ and Bµ in terms of the fields

W ±
µ , Zµ, and Aµ. Using again the identity

�τ · �Wµ =
√

2(τ+W −
µ + τ−W +

µ ) + τ3W 3
µ, (8.6)

we can read off the couplings of the W± bosons to charged currents.
The couplings of Zµ and Aµ to their respective currents follow after some algebra.

The neutral gauge couplings are

LNC = −ψ̄Rγ µg′ Y
2

BµψR − ψ̄Lγ µ

(
g′ Y

2
Bµ + g

τ3

2
W 3

µ

)
ψL

= −gs

[
ψ̄Rγ µ Y

2
ψR + ψ̄Lγ µ

(
Y

2
+ τ3

2

)
ψL

]
Aµ

+ g

c

[
−s2

(
ψ̄Rγ µ Y

2
ψR + ψ̄Lγ µ Y

2
ψL

)
+ c2ψ̄Lγ µ τ3

2
ψL

]
Zµ, (8.7)

with (c, s) = (cos θW, sin θW). The weak hypercharge Y can be replaced according
to (6.11) by

ψ̄R
Y

2
γ µψR = ψ̄R Qγ µψR, (8.8)

ψ̄L
Y

2
γ µψL = ψ̄L

(
Q − τ3

2

)
γ µψL, (8.9)

giving finally

LNC = −gs
(
ψ̄Rγ µQψR + ψ̄Lγ µQψL

)
Aµ

+ g

c

[
ψ̄Lγ µ τ3

2
ψL − s2(ψ̄Rγ µQψR + ψ̄Lγ µQψL)

]
Zµ. (8.10)
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66 The leptonic sector

Finally, on substituting for

ψL =
(
ν

e

)
L

and ψR = eR,

we obtain

LF = iē ∂/e + iν̄ ∂/ν − gs Aµēγ µe

+ g

2
√

2

[
ν̄γ µ(1 − γ5)eW +

µ + ēγ µ(1 − γ5)νW −]
+ g

4c

[
ν̄γ µ(1 − γ5)ν + ēγ µγ5e − (1 − 4s2)ēγ µe

]
Zµ. (8.11)

The third term above is the coupling of a massless vector particle to the electro-
magnetic current of electrons. Its coupling is evidently the electromagnetic charge

e = g sin θW. (8.12)

We can read off the following vertices:

Z0

l

l
ig

4 cos θW
γµ(1 − 4 sin2θW − γ5)

Z0

¯

− ig

4 cos θW
γµ(1 − γ5)

W±

l

l

− ig

2
√

2
γµ(1 − γ5)

γ

f

f

−ieQfγ
µ

The propagators for particles are introduced in many textbooks. For the fermions,

i

p−m + iε
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For vector mesons the propagator depends on the gauge. We will frequently use
the Feynman gauge, for which the three relevant propagators are

Z
− igµν
p2 −M2

Z + iε

W
− igµν
p2 −M2

W + iε

− igµν
p2 + iε

γ

In an arbitrary gauge the vector boson propagator depends on the gauge parameter
ξ as follows:

�µν(p) = −i
gµν + (ξ − 1)pµ pν/(p2 − ξ M2)

p2 − M2 + iε
.

In special gauges we obtain

ξ = 1 �µν = −i
gµν

p2 − M2 + iε
(Feynman gauge)

ξ = 0 �µν = −i
gµν − pµ pν/p2

p2 − M2 + iε
(Landau gauge)

ξ = ∞ �µν = −i
gµν − pµ pν/M2

p2 − M2 + iε
(unitary gauge)

In addition to electromagnetism, the theory describes weak interactions mediated
by charged W± bosons and the neutral boson Z. Charged-current interactions are
mediated by the W± bosons, whose mass satisfies the relation

MW = 1

2
gv. (8.13)

In low-energy reactions the W masses can be factored out – or integrated out –
giving an effective four-fermion interaction with the coupling

GF√
2

= g2

8M2
W

. (8.14)

The electroweak theory goes beyond the V–A theory and predicts the existence of
neutral currents mediated by the Z bosons, whose mass

MZ = 1

2
gv

1

cos θW
(8.15)
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68 The leptonic sector

is related to MW through (8.5). At low energies the neutral-current interaction also
reduces to an effective interaction, whose overall strength is determined by(

− ig

4 cos θW

)2 1

p2 − M2
Z

= g2

16M2
W

= GF

2
√

2
. (8.16)

The Lagrangian (8.11) defines the weak and electromagnetic interactions of elec-
trons and neutrinos. It contains four unknown quantities: g, sin2θW, and the masses
MW and MZ which occur in the propagators of the bosons. In addition there is the
mass of the electron, which is to be taken from experiment. All four quantities are
not independent, since three of them are related through (8.5). We can use three ex-
perimental quantities to determine them. Electromagnetic measurements determine
the fine-structure constant

α = e2

4π
= 1

137.036 . . .
. (8.17)

The muon decay is used to determine GF. Neutral-current measurements, discussed
in this and subsequent chapters, determine

sin2θW = 0.222 ± 0.010. (8.18)

From the three low-energy measurements we now determine the other parameters:

M2
W = πα√

2GF sin2θW

, M2
Z = M2

W

cos2θW
, (8.19)

and

v = 1(√
2GF

)1/2 = 246 GeV. (8.20)

8.2 Predictions in the leptonic sector

We have now a theory that enables us to compute many processes at the tree level.
In this chapter we compute three leptonic processes.

Boson decays Among the many predictions of the model, the decays of the gauge
bosons are simple to discuss. We begin with the decay

W− → e− ν̄. (8.21)

The diagram in Fig. 8.1 gives the amplitude

M = ig

2
√

2
ū(k−)γµ(1 − γ5)v(k+)εµ, (8.22)
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8.2 Predictions in the leptonic sector 69

W−
¯e

e−

Figure 8.1. The Feynman diagram for a W− decay.

with εµ being the polarization of the intermediate boson. For the decay rate we sum
over the polarization states with∑

Pol

ε∗
µεν = −gµν + qµqν

M2
W

. (8.23)

The contribution from qµqν is proportional to the masses of the leptons and can
be neglected. We also ignore terms proportional to lepton masses in the trace com-
putation. The mass of the neutrino being small or zero does not cause any dif-
ficulties, because in the spinor normalization ūu = 2m they simply do not occur
in the formulas. Had we used another normalization, i.e. ūu = 1, then we could
give a small mass to the neutrinos and proceed to calculate decay rates and cross
sections, but we will find in the end that the neutrino masses drop out of the
formulas.

The square of the matrix element summed over spins is

∑
Spins, Pol

MM∗ = g2

8
· 2 · Tr[γµ(1 − γ5)(k/+ + me)γν(k/− − mν)] · (−gµν)

= 2g2k+ · k−. (8.24)

The decay rate is given following standard rules:

� = 1

2MW

∫
g2k+ · k−(2π )4δ4(p − k+ − k−)

1

2Ee

d3k−
(2π )3

1

2Eν

d3k+
(2π )3

= g2

16π
MW = GF M3

W

2
√

2π
. (8.25)

We must still average over the initial polarizations of the gauge bosons and obtain

� = 1

(2s + 1)
� = GF M3

W

6
√

2π
, (8.26)

which gives 211.3 MeV for MW = 80 GeV (235.9 MeV for MW = 83 GeV).
The total width is obtained by adding the additional decays into µν̄µ, τν̄τ, and

quark pairs. We introduce the vertices of the gauge bosons to quarks in the next
chapter, but we mention here that the decay of W− into a quark pair of definite color
is also given by (8.26). Thus, for three generations of quarks and leptons the total
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70 The leptonic sector

width is obtained by multiplying the width by 12: (3 lepton families) + [(3 quark
families) × (3 colors)] = 12;

�total = 2GF M3
W√

2π
. (8.27)

In leptonic decays all that can be observed is the charged lepton. In hadronic decays
the W bosons are inferred by reconstructing the hadronic jets, which imitate to some
extent the kinematic characteristics of the original quarks.

In contrast, the leptonic decays of Z bosons into charged leptons are identified
by the invariant mass of the pairs. By comparing the coupling constants we obtain
the partial decay widths

�(Z → νν̄) = GF M3
Z

12
√

2π
(8.28)

and

�(Z → e+e−) = GF M3
Z

12
√

2π

(
1 − 4 sin2θW + 8 sin4θW

)
. (8.29)

For the total width, we need in addition the decay width into quarks (see Problem 1).
Summing again over three generations,

�total(Z) = GF M3
Z

3
√

2π

(
21

4
− 10 sin2θW + 40

3
sin4θW

)
. (8.30)

It is worth noting that the total width is sensitive to the total number of quarks and
leptons lighter than MZ and precise measurements of �total could produce exotic
surprises. The width of the Z boson has been determined in the CERN experiments
to be

�Z = (2.490 ± 0.007) GeV.

The width in turn limits the number of neutrinos to

Nν = 3.09 ± 0.13,

which is very close to the number of neutrinos allowed by nucleosynthesis
arguments, Nν � 3–4.

8.3 Leptonic neutral currents

A striking piece of evidence for the electroweak theory was the discovery of neutral
currents. The Lagrangian in (8.11) describes both charged- and neutral-current
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interactions of neutrinos and electrons. All the couplings depend on the SU(2)
coupling constant g and the Weinberg angle θW. At low energies, the overall strength
of the neutral-current interaction is determined by GF through Eq. (8.16). Thus
all neutral-current interactions must depend on a single parameter, sin2θW. There
is a large number of neutral-current reactions that have been measured and the
agreement after two and a half decades of research is indeed impressive. This
section describes in detail leptonic neutral-current reactions. The reader will find
this section very useful also for the semileptonic interactions discussed in Chapters
10–12, since many of the formulas can be taken over. We consider first neutrino–
electron scattering. Six reactions of this type are shown in Fig. 8.2.

Reactions (1) and (2) can proceed only through neutral currents. Other reactions
like

νe(k) + e−(p) → νe(k ′) + e−(p′) (8.31)

involve both charged- and neutral-current diagrams. For low-energy reactions it is
convenient to write the Feynman amplitude in the form

M = −i
GF√

2

[
ν̄γµ(1 − εγ5)νēγ µ(gV − gAγ5)e

]
. (8.32)

In this form both vertices retain the charge of the lepton. Evidently, not all reactions
are of this form, because several of them include also charged-current reactions.
Charged- and neutral-current reactions have different propagators and in addition
the order of the spinors is different. Charged-current reactions can be transformed
into the charge-retaining form by Fierz’s reordering theorem. A special form of
the theorem states that, when at least one of the couplings is (1 ± γ5), then we can
interchange the first and the third (or second and fourth) spinors. All examples in
Fig. 8.2 involve a neutrino or antineutrino whose vertex is γµ(1 − εγ5) with ε = 1
for neutrinos and ε = −1 for antineutrinos. As an illustration, consider the reaction
(8.31) to which the two diagrams in Fig. 8.3 contribute. The amplitude is

M =
(

ig

4c

)2 −i

q2 − M2
Z + iε

ū(k ′)γµ(1 − γ5)u(k) · ū(p′)
[
γ µγ5 − (1−4s2)γ µ

]
u(p)

+
(

ig

2
√

2

)2 −i

q2 − M2
W + iε

ū(p′)γµ(1 − γ5)u(k) · ū(k ′)γ µ(1 − γ5)u(p)

q2�M2
W−→ −i

GF√
2

ū(k ′)γµ(1 − γ5)u(k) · ū(p′)
[(

1

2
+ 2s2

)
γ µ − 1

2
γ µγ5

]
u(p)

= −i
GF√

2
ū(k ′)γµ(1 − γ5)u(k) · ū(p′) (gVγ µ − gAγ µγ5) u(p). (8.33)
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72 The leptonic sector

W (6) e e− → µ µ−

W (5) µ e− → e µ−

Z +
W

(4) e e− → e e−

Z + W (3) νe e− → νe e−

Z (2) νµ e− → µ e−

Z (1) νµ e− → νµ e−

Neutral current Charged current Reaction

¯ ν̄

ν̄

ν̄

ν̄ ν̄

ν̄

ν̄

Figure 8.2. Diagrams for neutrino–electron scattering.

In this way we can write all reactions in the form (8.32). The explicit values for
ε, gV, and gA for five reactions are given in Table 8.1. We can now calculate the cross
section for the amplitude (8.32) and obtain the specific reaction by substituting the
values from Table 8.1.
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Table 8.1. Effective couplings for several reactions

Electroweak theory V–A theory

Reaction ε gV gA gV gA

νµ+ e− → νµ+ e− +1 − 1
2 + 2s2 − 1

2 0 0

ν̄µ+ e− → ν̄µ+ e− −1 − 1
2 + 2s2 − 1

2 0 0

νe + e− → νe + e− +1 + 1
2 + 2s2 + 1

2 1 1

ν̄e + e− → ν̄e + e− −1 + 1
2 + 2s2 + 1

2 1 1

νµ+ e− → µ− + νe +1 1 1 1 1

e−, p e−, pe−, p e−, p

Z + W

νe, k νe, kνe, k νe, k

Figure 8.3. Z and W exchange in neutrino–electron scattering.

We begin with the amplitude in (8.32) and compute the differential cross section.
For simplicity, for the moment we set ε = 1 and the mass of the electron to zero
(whenever allowed). At the end we give the complete formula with ε and a small
term proportional to the electron mass. The square of the amplitude summed over
final spins and averaged over initial spins is

|M2| = 1

2

∑
Spins

MM∗

= G2
F

4
Tr

[
γµ(1 − γ5)k/γν(1 − γ5)k/′]

× Tr
[
γ µ(gV − gAγ5)(p/ + m)γ ν(gV − gAγ5)(p/′ + m)

]
. (8.34)

Averaging over initial spins brings in a factor of 1/2 because the neutrinos are
always left-handed. Evidently the expression factorizes into two tensors,

|M2| = G2
F

2
Lµν�

µν, (8.35)

with

Lµν = Tr
[
γµ(1 − γ5)k/γνk/′]

= 4(kµk ′
ν + kνk ′

µ − k · k ′gµν + iεµναβkαk ′β) (8.36)
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and

�µν = Tr
[
(g2

V + g2
A)γ µ p/γ ν p/′ + 2gVgAγ5γ

µ p/γ ν p/′], (8.37)

where we neglected terms proportional to m2
e . The computation of the �µν tensor

is similar to that of Lµν. In contracting the two tensors, we observe that products
with different symmetries in µ and ν vanish:

|M|2 = 16G2
F

[
(gV + gA)2(k · p)(k ′ · p′) + (gV − gA)2(k · p′)(k ′ · p)

]
. (8.38)

We choose to compute the cross section in the laboratory frame, where the initial
electron is at rest:

dσ = 1

2me

1

2Eν
|M|2(2π )4δ4(k + p − k ′ − p′)

1

2E ′
ν

d3k ′

(2π )3

1

2E ′
e

d3 p′

(2π )3
. (8.39)

We perform the d3 p′ phase-space integration with the help of the δ4-function. The
last integration over the scattering angle involves the integral∫

d3k ′ δ
[
m2

e − (k − k ′ + p)2
] = π

(
E ′

ν

Eν

)
dE ′

ν. (8.40)

The δ-function gives the relation between the scattering angle and the energy
transfer:

1 − cos θ = (E − E ′)me

E E ′ . (8.41)

Since the average value for 〈E ′〉 ≈ Eν/2, we can estimate the average scattering
angle θ ≈ 2◦/

√
E with E measured in GeV. The scattered electron comes out at

very small forward angles and provides a unique signature for the experiments.
From (8.38) and (8.40) we obtain the final result

dσ

dE ′ = G2
Fme

2π

[
(gV + gA)2 + (gV − gA)2

(
E ′

ν

Eν

)2
]
. (8.42)

Had we used the amplitude (8.32) and retained the mass of the electron, the final
result would have been

dσ

dE ′ = G2
Fme

2π

[
(gV + εgA)2 + (gV − εgA)2

(
E ′

ν

Eν

)2

+ meν

E2
ν

(
g2

A − g2
V

)]
. (8.43)

The last term, which is proportional to the electron mass, is small, so it can be
neglected at accelerator energies. The variable ν = Eν − E ′

ν denotes the energy
transfer.
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Formula (8.43) is useful in describing all reactions shown in Fig. 8.2 that include
charged-current reactions. For instance the reaction

νµ + e− → µ− + νe (8.44)

reduces after substitution to

dσ

dE ′ = 2G2
Fme

π
. (8.45)

The same result holds for the semileptonic reaction

νµ + d → µ− + u, (8.46)

which we rewrite in terms of the inelasticity y = (E − E ′)/E and the square of the
center-of-mass energy, s = 2M Eν, as

dσν

dy
= G2

Fs

π
. (8.47)

For both of the reactions

ν̄µ + u → µ+ + d, (8.48)

νµ + ū → µ− + d̄ (8.49)

the differential cross section is

dσν̄

dy
= G2

Fs

π
(1 − y)2. (8.50)

We see that, when both vertices are left-handed or both are right-handed, then dσ/dy
is independent of y as in (8.47). On the other hand, when one vertex is left-handed
and the other right-handed, then dσ/dy is proportional to (1 − y)2 as in (8.50).

Neutral-current reactions have a mixed y dependence. As an illustrative example,
consider the neutral-current reaction

νµ + e− → νµ + e−, (8.51)

for which the cross section is

dσ

dy
= G2

Fme Eν

2π

[
(1 − 2 sin2θW)2 + 4 sin θW(1 − y)2

]
. (8.52)

This reaction has been studied in several experiments. When the existence of neutral
currents was still in doubt, a few events of this type were observed in the Gargamelle
experiment. In spite of many attempts, one could not attribute them to any other
origin. This evidence was gradually reinforced by information from semileptonic
neutral-current reactions until their existence was accepted. Today there are exper-
imental results from a few hundred events for reaction (8.51). The average slope
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from all the experiments is

σ

Eν
= (1.6 ± 0.4) × 10−42 cm2 GeV−1,

yielding a Weinberg angle given by

sin2θW = 0.222 ± 0.010.

Data for the other neutrino reactions are also available. In the gV versus gA plane
each of the above total cross sections limits the physical region to an elliptical band.

8.4 Weak effects in electron–positron annihilation

An interesting and very important reaction occurs in electron–positron collisions,

e+e− → µ+µ−,

which can be mediated by the exchange of a photon, as well as by the heavy boson Z0.
At low energies relative to the mass of the Z boson the photon diagram dominates.
On the other hand, at a center-of-mass energy close to the Z boson’s mass, the
gauge boson dominates and exhibits a resonance behavior. At intermediate energies
there is an interference term between electromagnetic and weak interactions, which
modifies the angular distribution.

The amplitude for the process has two diagrams producing two amplitudes:

M = Mγ + MZ;

Mγ = −e2

s
v̄(k+)γµu(k−) v̄(p+)γ µu(p−),

MZ = − g2

4 cos2 θW

1

q2 − M2
Z + iMZ�

× v̄(k+)γµ(gV + gAγ5)u(k−)v̄(p+)γ µ(g′
V + g′

Aγ5)u(p−). (8.53)

We consider energies high enough that one can ignore the masses of the electron
and muon. We also included the width of the Z particle in the propagator, which
will lead to a cross section with a Breit–Wigner formula. In field theory the width
is generated by summing the decays to all possible final states. For the couplings of
the Z boson to electrons we introduced general coupling constants gV and gA; their
dependence on the Weinberg angle follows from the Feynman rules. Similarly, g′

V

and g′
A are couplings to muons, which are equal to the couplings of electrons.
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At intermediate energies, such as
√

s = 30–50 GeV, the well-known electromag-
netic formula is modified by the presence of the interference term

dσ

d�
= α2

4s

[
(1 + cos2θ )

(
1 + ε(s)g2

V

) + 2 ε(s)g2
A cos θ

]
, (8.54)

with s the square of the center-of-mass energy and

ε(s) =
√

2Gs

4πα
. (8.55)

The new feature is the cos θ term, with the consequence that the differential cross
section is not symmetric in the forward–backward direction. The new term arises
from the neutral current but is not parity–violating. It has a new angular dependence
typical of the γ5 coupling. We define a forward–backward asymmetry

A(θ ) = dσ (θ ) − dσ (π − θ )

dσ (θ ) + dσ (π − θ )
= ε(s)

2 cos θ

1 + cos2θ
g2

A . (8.56)

The asymmetry was measured in many experiments and gave values for gA = − 1
2

consistent with the standard model.
At higher energies the interference term becomes larger. As the center-of-mass

energy approaches the mass

MZ = 91.188 ± 0.002 GeV/c2,

the weak term dominates and produces the cross section

dσ

d�
=

(
g2

8c2

)2
s(

s − M2
Z

)2 + M2
Z�2

[(
g2

V + g2
A

)2
(1 + cos2θ ) + 8g2

Vg2
A cos θ

]
,

(8.57)

where c = cos θW. The resonance was observed at CERN and was studied carefully
to give precise values for the mass and the width of the gauge boson quoted in this
chapter.

In addition to the muons, electron–positron collisions also produce qq̄ pairs,
which are analyzed with the same formulas. The values for g′

V and g′
A are now

replaced by couplings appropriate for quarks.

Problem for Chapter 8

1. Compute for each generation the decay width of the Z boson for decays to neutrinos,
charged leptons, and quark pairs separately. Then estimate the total decay width.
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