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Abstract

We discuss the existence of finite critical trajectories connecting two zeros in certain families of quadratic
differentials. In addition, we reprove some results about the support of the limiting root-counting
measures of the generalised Laguerre and Jacobi polynomials with varying parameters.
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1. Introduction and main results
Quadratic differentials appear in many areas of mathematics and mathematical
physics such as orthogonal polynomials, moduli spaces of algebraic curves, univalent
functions and asymptotic theory of linear ordinary differential equations. One of the
most common problems in the study of a given quadratic differential is the existence
of its short trajectories. We address this question, under suitable assumptions. Lastly,
we present new proofs of the existence of short trajectories of quadratic differentials
related to generalised Laguerre and Jacobi polynomials with varying parameters.

Let Ω be a nonempty connected subset of C and Q(z) =
∏3

k=1(z − ak)mk be a
polynomial with simple or double zeros (that is, mk ∈ {1, 2}). Consider two continuous
functions a, b : Ω→ C \ {a1, a2, a3} such that

a(t) , b(t) for all t ∈ Ω. (1.1)

Consider the families of rational and polynomial functions Rt and Pt given by

Rt(z) =
(z − a(t))(z − b(t))

Q(z)
, Pt(z) = (z − a(t))(z − b(t))Q(z).

Denote by Ja(t),b(t) the set of all Jordan arcs in C \ {a1, a2, a3} joining a(t) and b(t) and
suppose that there exists a continuous function (in the Hausdorff metric)

Φ : Ω→Ja(t),b(t), t 7→ φt,
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where φt(τ), τ ∈ [0, 1], is a parametrised Jordan arc such that

φt(0) = a(t), φt(1) = b(t). (1.2)

We assume that for some choice of branches of the square roots
√

Rt(z) and
√

Pt(z), φt

satisfies the conditions

<

∫
φt

√
Rt(z) dz = 0, (1.3)

<

∫
φt

√
Pt(z) dz = 0, (1.4)

and we consider the quadratic differentials

$(Rt, z) = −Rt(z) dz2, $(Pt, z) = −Pt(z) dz2.

Then, the following results hold.

Proposition 1.1. Under assumptions (1.1)–(1.3), either, for every t in Ω, there exists
exactly one short trajectory of the quadratic differential $(Rt, z) connecting a(t) and
b(t) and homotopic to φt in C \ {a1, a2, a3} or there is no such trajectory for any t ∈ Ω.

Proposition 1.2. Under assumptions (1.1), (1.2) and (1.4), the set of all t ∈ Ω such that
$(Pt, z) has a short trajectory connecting a(t) and b(t) is a closed subset of Ω, but may
be empty.

2. Basics of quadratic differentials

We first present some basics for quadratic differentials.

Definition 2.1. A rational quadratic differential on the Riemann sphere C is a form
$ = ϕ(z) dz2, where ϕ is a rational function of a local coordinate z. If z = z(ζ) is a
conformal change of variables, then ϕ̃(ζ) dζ2 = ϕ(z(ζ))(dz/dζ)2 dζ2 represents $ in
the local parameter ζ.

The critical points of $ are its zeros and poles. A critical point is finite if it is a
zero or a simple pole; otherwise, it is infinite. All other points of C are called regular
points.

The horizontal trajectories (or just trajectories) are the zero loci of the equation

=

∫ z √
ϕ(t) dt = constant, (2.1)

or, equivalently,
ϕ(z) dz2 > 0.

The vertical (or orthogonal) trajectories are obtained by replacing = by < in the
equation above. The horizontal and vertical trajectories of $ produce two pairwise
orthogonal foliations of the Riemann sphere C. A critical trajectory is a trajectory
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Figure 1. Trajectories near a simple zero (left), simple pole (middle) and fourth-order pole (right).

passing through a critical point. A finite critical trajectory or short trajectory is a
critical trajectory connecting two finite critical points of $. It is called unbroken if
it does not pass through any finite critical points except its two endpoints; otherwise,
it is broken. The set of finite and infinite critical trajectories of $ together with their
limit points (critical points of $) is called the critical graph of $. If z(t), t ∈ R, is a
trajectory of (2.1), then the function

t 7→ =
∫ t √

ϕ(z(u)) z′(u) du

is monotone. For more details, we refer the reader to [11].
Trajectories have the following local properties.

(a) At any regular point, horizontal (respectively, vertical) trajectories behave locally
like simple analytic arcs passing through this point, and through every regular point of
$ there passes a uniquely determined horizontal (respectively, vertical) trajectory of
$. These horizontal and vertical trajectories are locally orthogonal at this point.
(b) From a zero of multiplicity r of $, there emanate (r + 2) horizontal (respectively,
vertical) trajectories. The angle between any two adjacent trajectories equals π/(r + 2).
(c) At a simple pole, there emanates only one trajectory (see Figure 1).
(d) At a double pole, the local behaviour of the trajectories depends on the vanishing of
the real or imaginary part of the residue and the trajectories have either radial, circular
or log-spiral form (see Figure 2).
(e) At a pole of order r greater than two, there are (r − 2) asymptotic directions (called
critical directions), equally spaced at angle 2π/(r − 2), and a neighbourhoodU, such
that each trajectory entering U stays in U and tends to this pole in one of the critical
directions (see Figure 1).

The main trouble in the global behaviour of trajectories comes from the so-called
recurrent trajectories which are dense in some domain in C. Jenkins’ three pole
theorem asserts that such a situation cannot happen for a quadratic differential that
has at most three poles.

A necessary condition for the existence of a short trajectory connecting two finite
critical points a and b of a quadratic differential ϕ(z) dz2 is the existence of a Jordan
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Figure 2. Trajectories near a double pole: circle (left), radial (middle) and log-spiral (right) forms.

arc γ connecting a and b in C \ {poles of ϕ}, such that

=

∫
γ

√
ϕ(t) dt = 0,

but this condition is not sufficient. Figure 3 illustrates the critical graph of the quadratic
differential Q(z) = −(z4 − 1) dz2; in particular, there is no short trajectory connecting
the zeros ±i. Suppose γ is an oriented Jordan arc joining ±i in C \ [−1, 1] and

√
z4 − 1

is chosen in C \ ([−1, 1] ∪ γ) with the condition
√

z4 − 1 ∼ z2, z→∞, then, from the
Laurent expansion

√
z4 − 1 = z2 + O(z−2) at ∞, the residue of

√
z4 − 1 at ∞ is zero.

For t ∈ [−1, 1] ∪ γ, we denote by (
√

t4 − 1)+ and (
√

t4 − 1)− the limits from the + and
− sides, respectively. (As usual, the + side of an oriented curve lies to the left and the
− side lies to the right, if one traverses the curve according to its orientation.) Let

I =

∫ 1

−1
(
√

t4 − 1)+ dt +

∫
γ

(
√

t4 − 1)+ dt.

Since (
√

t4 − 1)+ = −(
√

t4 − 1)−, for t ∈ [−1, 1] ∪ γ,

2I =

∫
[−1,1]∪γ

[(
√

t4 − 1)+ − (
√

t4 − 1)−] dt =

∮
Γ1∪Γ2

√
z4 − 1 dz,

where Γ1 and Γ2 are closed contours, respectively encircling the curve [−1, 1] and γ
once in a clockwise direction. Deform the contour to pick up the residue at z = ∞,
giving

I =
1
2

∮
Γ1∪Γ2

√
z4 − 1 dz = ±iπ res∞(

√
z4 − 1) = 0.

On the other hand,<
∫ 1
−1(
√

t4 − 1)+ dt = 0, which implies<
∫
γ
(
√

t4 − 1)+ dt = 0.
The quadratic differential ϕ(z) dz2 defines a ϕ-metric with the differential element√
|ϕ(z)||dz|. If γ is a rectifiable arc in C, then its ϕ-length is defined by

|γ|ϕ =

∫
γ

√
|ϕ(z)||dz|.
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Figure 3. Critical graph of the quadratic differential Q(z) = −(z4 − 1) dz2.

A trajectory of ϕ(z) dz2 is called finite if its ϕ-length is finite; otherwise it is infinite.
In particular, a critical trajectory is finite if and only if both its end points are finite
critical points.

The two Jordan arcs α, β : [0, 1] → C which join a point p1 to a point p2 in
C \ {poles of ϕ} are called homotopic if there exists a continuous function H mapping
[0, 1] × [0, 1]→ C \ {poles of ϕ} such that

H(t, 0) = α(t), H(t, 1) = β(t), t ∈ [0, 1].

Homotopy is an equivalence relation on the set Jp1,p2 of all Jordan arcs joining p1
to p2 in C \ {poles of ϕ}. If |{poles of ϕ}| = m, it is well known that C \ {poles of ϕ}
and the wedge of m circles have the same homotopy type. In particular, there are 2m

homotopy equivalence classes on Jp1,p2 .

Definition 2.2. A locally rectifiable (in the spherical metric) curve γ0 is called a
ϕ-geodesic if it is locally shortest in the ϕ-metric. It is called a critical geodesic it
passes through a critical point of the quadratic differential ϕ(z) dz2.

Proposition 2.3 [11, Theorem 16.2]. Let γ be a ϕ-geodesic arc joining p1 to p2 in
C \ {poles of ϕ}. For every γ1 ∈ Jp1,p2 which is homotopic to γ on C \ {poles of ϕ},
|γ1|ϕ ≥ |γ|ϕ, with equality if and only if γ1 = γ.

We finish this section with the so-called Teichmuller lemma.

Definition 2.4. A domain in C bounded by segments of ϕ-geodesics and/or horizontal
and/or vertical trajectories of the quadratic differential ϕ(z) dz2 (and their endpoints) is
called a ϕ-polygon.

Lemma 2.5 (Teichmuller). Let Ω be a ϕ-polygon, let z j be the singular points of ϕ(z) dz2

on the boundary ∂Ω of Ω, with respective multiplicities n j, and let θ j ∈ [0, 2π] be the
interior angle at the vertex z j. Then∑(

1 − θ j
n j + 2

2π

)
= 2 +

∑
ni, (2.2)

where the ni are the multiplicities of the singular points inside Ω.
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3. Proofs

Lemma 3.1. In the notation of Proposition 1.2:

(a) there exists at most one unbroken short trajectory of the quadratic differential
$(Pt, z) connecting a(t) and b(t); and

(b) if there exist two short trajectories of the quadratic differential $(Rt, z)
connecting a(t) and b(t), then they are not homotopic in C \ {a1, a2, a3}.

Proof. (a) Suppose that γ1 and γ2 are two unbroken short trajectories of $(Pt, z)
connecting a(t) and b(t) and let Ω be the $-polygon with vertices a(t) and b(t) and
edges γ1 and γ2. From Lemma 2.5, the left-hand side of (2.2) is smaller than two,
whereas the right-hand side is clearly at least two, which is a contradiction.

(b) Let γ1 and γ2 to be two short trajectories of $(Rt, z) connecting a(t) and b(t). If
they are homotopic in C \ {a1, a2, a3}, then there is no pole of Rt inside Ω and, again,
we reach a contradiction, by Lemma 2.5. �

Remark 3.2. The number of unbroken short geodesics of $P(t, z) can be any integer
between deg(Pt(z)) − 1 and

(deg(Pt(z))
2

)
. We refer the reader to [9] for the proof.

Remark 3.3. Note that Ja(t),b(t) consists of Jordan curves. One can easily observe that
there exist eight homotopy classes of curves inJa(t),b(t). Using the same approach as in
the proof of Lemma 3.1 together with Proposition 2.3, we see that there exist at most
eight unbroken short geodesics of $(Rt, z) joining a(t) and b(t).

Proof of Proposition 1.1. Let Λ be the subset of Ω of all t for which there exists a
short trajectory of $(Rt, z) homotopic to φt in C \ {a1, a2, a3}.

Assume that Λ is nonempty and choose t0 ∈ Λ. By the continuity of the quadratic
differential $(Rt, z), for every ε > 0 there exists δ > 0 such that, for any t ∈ Ω with
|t − t0| < δ, there exists a trajectory of $(Rt, z), say, γt, emanating from a(t) and
intersecting the ε-neighbourhood Uε of b(t). If γt does not pass through b(t), we
may assume that δ > 0 is small enough so that γt intersects an orthogonal trajectory
σt emanating from b(t) at some point c(t). Denote by ϕt the path that follows the arc
of γt from a(t) to c(t) and then continues to b(t) along σt. Clearly, the arcs φt and
ϕt are homotopic in C \ {a1, a2, a3} and, by the definition of orthogonal trajectories,
the real part of the integral along ϕt of

√
Rt(z) cannot vanish. This contradiction

shows that there is a whole small neighbourhood of t0 in Λ and so Λ is an open subset
of Ω.

Suppose now that (tn) is a sequence of points in Λ converging to t ∈ Ω, so that
a(tn) and b(tn) converge, respectively, to a(t) and b(t). For each tn, there exists a
unique short trajectory γn joining a(tn) and b(tn) and each γn is homotopic to φtn in
C \ {a1, a2, a3}. It is obvious that the limit set of the sequence γn (in the Hausdorff
metric) is either another short trajectory connecting a(t) and b(t) or a union of two
infinite critical trajectories γa and γb emanating, respectively, from a(t) and b(t). Each
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of these trajectories diverges to some pole of the quadratic differential $(Rt, z). If γa
and γb do not diverge to the same pole, or if one of them diverges to a simple pole,
then

inf
x∈γa, y∈γb

|x − y| = dist(γa, γb) > 0,

which contradicts the fact that limn→∞ γn = γa ∪ γb.
Now let c ∈ {a1, a2, a3} ∪ {∞} be a double pole which is the common pole of

divergence of γa and γb. We assume, first, that the residue of the quadratic differential
$(Rt, z) at the pole c is not real, so that γa and γb diverge to c as a log-spiral. Let
σ be an orthogonal trajectory that diverges (also in log-spiral form) to c. Then σ
intersects γa and γb an infinite number of times. Considering three consecutive points
of intersection, it is obvious that we can construct two paths, γ and γ′, joining a(t) and
b(t), formed by three parts from γa, σ and γb. Clearly, γ and γ′ are not homotopic in
C \ {c} and, by continuity of the family φtn , one of them must be homotopic to φtn for
all n ≥ n0 sufficiently large. But then

<

∫
γ

√
Rt(z) dz , 0 and <

∫
γ′

√
Rt(z) dz , 0,

which contradicts (1.3). Thus, the limit set of the sequence γn is a short trajectory
joining a(t) and b(t) which implies that Λ is a closed subset of Ω. The cases when the
residues at c are real (positive or negative) can be treated in the same way.

Finally, since Ω is a connected subset of C which is both open and closed in C,
either Λ = Ω or Λ = ∅.

Proof of Proposition 1.2. Denote by Γa(t) and Γb(t) the union of the three critical
trajectories that emanate, respectively, from a(t) and b(t) and consider the Euclidean
distance

dist(Γa(t),Γb(t)) = inf
x∈Γa(t), y∈Γb(t)

|x − y|.

We claim that the quadratic differential $(Pt, z) has a short trajectory connecting
a(t) and b(t) if and only if dist(Γa(t), Γb(t)) = 0. Indeed, there are n + 2 asymptotic
directions, equally spaced at angle 2π/(n + 2), along which almost any horizontal
(respectively, vertical) trajectory of the quadratic differential $(Pt, z) diverges to
infinity. The asymptotic directions of the vertical trajectories are obtained from
those of the horizontal trajectories by a rotation through an angle π/2. Obviously, if
dist(Γa(t), Γb(t)) > 0, then there is no short trajectory connecting a(t) and b(t). Assume
that dist(Γa(t), Γb(t)) = 0 and there is no short trajectory connecting a(t) and b(t). Since
Γa(t) ∩ Γb(t) = ∅, there exist two horizontal trajectories γa(t) and γb(t) that emanate from
a(t) and b(t) and diverge to infinity in the same direction D; letσ be a vertical trajectory
(not critical) diverging to infinity in the two directions adjacent to D. Obviously, σ
intersects γa(t) and γb(t) at exactly two points, Pa(t) and Pb(t). Let γ ∈ Ja(t),b(t) be the
union of the part of γa(t) from a(t) to Pa(t), the part of σ from Pa(t) to Pb(t) and the part
of γb(t) from Pb(t) to b(t). Integrating along γ and using

<

∫ Pa(t)

a(t)

√
Pt(z) dz =<

∫ b(t)

Pb(t)

√
Pt(z) dz = 0,
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we find that

<

∫
γ

√
Pt(z) dz =<

∫ Pb(t)

Pa(t)

√
Pt(z) dz , 0,

which violates (1.4). By continuity of the function t 7→ dist(Γa(t), Γb(t)), it follows that
the set of all t ∈ Ω such that the quadratic differential $(Pt, z) has no short trajectory
connecting a(t) and b(t) is an open subset of Ω.

Notice that Proposition 1.2 remains valid for polynomials Q of higher degree or
with larger multiplicities of the zeros.

4. Connection with Laguerre and Jacobi polynomials

The rescaled generalised Laguerre polynomials LnC
n (nz) with varying parameter nC

and the Jacobi polynomials P(nA,nB)
n (z) with varying parameters nA and nB are given

explicitly by (see [12])

LnC
n (nz) =

n∑
k=0

(
n + nC
n − k

)
(−z)k

k!
,

P(nA,nB)
n (z) = 2−n

n∑
k=0

(
n + nA
n − k

) (
n + nB

k

)
(z − 1)k(z + 1)n−k.

Jacobi or Laguerre polynomials with (real) parameters, depending on the degree n
appear naturally as polynomial solutions of hypergeometric differential equations or in
the expressions of the wave functions of many classical systems in quantum mechanics
(see [2]).

With each polynomial pn, we associate its normalised zero-counting measure µn,

µn = µ(pn) =

∑
pn(z)=0 δz

n
.

For a compact subset K in C,∫
K

dµn =
number of zeros of pn in K

n
,

where the zeros are counted with their multiplicities.
Following Gonchar–Rakhmanov [3] and Stahl [10], it was shown that the sequence

µn converges (as n→∞) in the weak-* topology to a measure, supported on short
trajectories of related quadratic differentials (for the case of Laguerre polynomials, see
[1, 6, 7], and for the case of Jacobi polynomials, see [4, 5, 8]).

The related quadratic differential for Laguerre polynomials is

$C = −
DC(z)

z2 dz2, (4.1)

where
DC(z) = z2 − 2(C + 2)z + C2.
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The zeros of DC(z) are

a(C) = C + 2 + 2
√

C + 1, b(C) = C + 2 − 2
√

C + 1.

The related quadratic differential for Jacobi polynomials is

$A,B = −
DA,B(z)

(z2 − 1)2 dz2, (4.2)

where

DA,B(z) = (A + B + 2)2z2 + 2(A2 − B2)z + (A − B)2 − 4(A + B + 1).

The zeros of DA,B(z) are

a(A, B) =
−A2 + B2 + 4

√
(A + 1)(B + 1)(A + B + 1)

(A + B + 2)2 ,

b(A, B) =
−A2 + B2 − 4

√
(A + 1)(B + 1)(A + B + 1)

(A + B + 2)2 .

Proposition 4.1 [1]. Assume that C ∈ C+, and that γ is a Jordan arc connecting the
zeros of DC(z) in the punctured plane C \ {0}. Denote by

√
DC(z) the single-valued

branch of this function in C \ γ determined by the condition√
DC(z) ∼ z, z→∞,

and let (
√

DC(z))+ stand for its boundary values on the +-side of γ. Then∫
γ

(
√

DC(t))+

t
dt ∈ ±2πi{1,C + 1}. (4.3)

Moreover, the integral on the left-hand side of (4.3) takes the value ±2πi if and only if
γ is such that it can be continuously deformed in C \ {0} to an arc not intersecting the
positive real axis.

Write Ω = {C ∈ C : =C ≥ 0} and RC(z) = −DC(z)/z2. Then conditions (1.1), (1.2)
and (1.3) are fulfilled. For C ∈ (−1,+∞), the zeros a(C) and b(C) satisfy

0 < b(C) < a(C)

and the segment [b(C), a(C)] is a short trajectory of the quadratic differential (4.1)
(see Figure 4). The short trajectory exists for any C ∈ Ω.

Proposition 4.2 [4, 8]. Assume that A, B satisfy

A + 1 , 0, B + 1 , 0, A + B + 1 , 0, A + B + 2 , 0, (4.4)

that γ is a Jordan arc in C \ {−1, 1} joining the zeros of DA,B and that
√

DA,B is the
single-valued branch in C \ γ fixed by the condition√

DA,B(z) ∼ (A + B + 2)z, z→∞.
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(a) (b)

Figure 4. Critical graphs of $−0.95 (a) and $−0.95+0.1i (b).

Figure 5. Critical graph of $10,10.

Then ∫
γ

(
√

DA,B(t))+

t2 − 1
dt ∈ ±2πi{1, (A + 1), (B + 1), (A + B + 1)}, (4.5)

where (
√

DA,B(t))+ is the boundary value on one of the sides of γ.
Moreover, if, in addition to (4.4), B > 0, then the integral on the left-hand side of

(4.5) takes the value ±2πi if and only if γ is such that√
DA,B(1) = 2A and

√
DA,B(−1) = −2B.

For B > −1, write Ω = {A ∈ C : A + 1 , 0, A + B + 1 , 0, A + B + 2 , 0} and
RA(z) = −DA,B(z)/(z2 − 1)2. Then conditions (1.1)–(1.3) are satisfied. Since, for
A ∈ R ∩ Ω, there exists a short trajectory of the quadratic differential (4.2), the short
trajectory exists for any A ∈ Ω. By repeating the reasoning, we reach the conclusion
for any A and B satisfying (4.4) (see Figures 5 and 6).
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Figure 6. Critical graph of $10+i,10.
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