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1. Introduction. In this paper we prove the following characterization 
theorem (Section 3) : 

THEOREM 1. If each of g and m is a real-valued non-decreasing function on the 
number interval [a, b], then the following two statements are equivalent: 

(1) If R is a real-valued, refinement-unbounded (Section 3) function of sub-
intervals of [a, b], then the integral (Section 2) 

/[af&] min{dg, R(I)dm} 

exists and is equal to g(b) — g (a), and 
(2) g is absolutely continuous with respect to m. 

2. Preliminary theorems and definitions. Suppose [a, b] is a number 
interval. 

Throughout this paper all integrals discussed are Hellinger (1) type limits 
(with respect to refinements) of the appropriate sums. Thus, if H is a real-
valued function of subintervals of [a, b], then j[a,b] H (I) exists if and only if for 
each subinterval I of [a, b], J*/ H (J) exists, so that if for a < c < b, J[c,c] H (I) 
denotes 0, then, for a < p < q < r < b, 

j[p,s] H{I) + J[8ifl H(I) = j[p,r] H{I). 

We see that if each of x, y, z, and w is a number, then 

min{x, 3>} + minjs, w} < min{x + z, y + w}. 

This implies that if each of u and v is a real-valued non-decreasing function 
on [a, b] and E is a refinement of the subdivision D of [a, b], then 

0 < J^E minj Au, Av} < ^D min{ Au, Av}, 

so that 
J[a>b] minfdw, dv] 

exists. 
We state a lemma whose proof follows by conventional methods. 

LEMMA A. / / each of g and m is a real-valued non-decreasing function on [a, b], 
and for a < x < b, 
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h(x) = supj[a>x] minfdg, Kdrn) 

for 0 < K, then 

j[a,b]\dh — J 7 mm{dg, Kdm}\ —•> 0 as K-* œ, 

awd /̂  is absolutely continuous with respect to m. 

3. The characterization theorem. Suppose that (a, 6] is a number 
interval. 

Definition. If i? is a real-valued function of subintervals of [a, 6], then the 
statement that R is refinement-unbounded means that if K is a positive number, 
then there is a subdivision D of [a, 6] such that if I is an interval of a refinement 
of £>, then K < R(I). 

We now prove Theorem 1, as quoted in the Introduction. We first show that 
(2) implies (1). 

Suppose (2) is true and R is a real-valued, refinement-unbounded function 
of subintervals of [a, b]. 

Suppose c is a positive number. There is a positive number k such that if 
£ is a subset of a subdivision of [a, b] and YE Am < k, then YE Ag < c. 

There is a subdivision D of [a, Z>] such that if I is an interval of a refinement 
of D, then (g(J) - g (a) + l)/k < R(I). 

Suppose E is a refinement of D. Then 

0 < g (J) - g(a) - £*min{Ag,l?(/)Aro} 

= HE [Ag ~ mm{Ag,R(I)Am}] = YE* [Ag ~ R(I)Am] 

< YE* Ag, 

where E* is the set (if any) of all I in E such that R(I)Am < Ag. We see that 

l(g(b) - g(a) + l ) / £ ] 2 > Am < ! > * ( / ) Am < £ > A£ < g(6) - g(a), 

so that 

I > Am < [k/(g(b) - g{a) + l)][g(b) - g(a)] < *, 

and therefore YE* Ag < c. Therefore 

0 < gib) - g(a) - Z smin{Ag,i?COAw} < c. 

Therefore J[a,b] min{dg, R(I)dm} exists and is equal to g(b) — g(a). Thus 
(2) implies (1). 

We now show that (1) implies (2). 
Suppose (1) is true. For a < x < b, let 

h{x) = supj[aa] mm {dg, Kdm] for 0 < K. 

By Lemma A, 

J[o,&] \dh — $! m'm{dg, Kdm}\ —» 0 as i£ —» oo 
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and h is absolutely continuous with respect to m. Furthermore, Ah < Ag for 
each subinterval / of [af b]. 

We see that if 7 is a subinterval of [a, b] and Am = 0, then Ag = 0. We let 
Ag/Am = 0 if Am = 0, and have the usual meaning otherwise. 

If I is a subinterval [p, q] of [a, b], then we let Ax denote q — p. 
We now state and prove a lemma. 

LEMMA B. If s is in [a, b] and c is a positive number, then there is a segment T 
containing s such that if I is a subinterval of each of T and [a, b], and s is an end 
number of 7, then Ag < Ah + c. 

Proof. We assume s to be a right end-number of the interval / . A similar 
argument holds in case 5 is a left end-number of / . 

We first show that if a < s < b and m is continuous from the left at s, then 
so is g. Suppose that m(s) — m(p) —•> 0 as p —* 5 for a < p < s, but that for 
some positive number k, g(s) — g(p) > k for a < p < s. 

[gOO — g(p)]/[w>(s) — m(p)] —> oo as p —> 5 for a < p < s. 

There is a function R of subintervals of [a, b] such that 

R(I) =((1/2)(A£/Aw)if J is [£> sîfor a < P < 5> 
\l/Ax otherwise. 

We see that R is refinement-unbounded. 
If £ is a subdivision of [a, b] such that [u, s] is in E, then 

ZEmm{Ag}R(I)Am} = l£{B^UtiUmin{Ag9R(I)àm}] + [g(s) - g(u)]/2 

< [£<*-[«..]) Ag] + g(s) - g{u) - k/2 = g(b) - g(a) - k/2, 

so that 

*(*) - g(a) = / [a,6] min{^g, iî(/)dw} < g(b) - g{a) - k/2, 

a contradiction. Therefore g is continuous from the left at s. 
Next, suppose that a < s < b and m is not continuous from the left at s. 

Suppose c is a positive number. There is a number t and a positive number K 
such that a < t < s and such that if t < w < v < s, then g(v) — g(u) < c 
and g (s) — g(v) < i£[m(s) — m(v)\. 

Suppose that / < r < s and D is a subdivision of |V, s] such that [w, s] is 
in D. 

g0) - g(r) = g0) - gO) + gO) - g(r) < g0) - gO) + c < g(s) 
- g(u) + c + T,{D-[U,S]} min{Ag, KAm] 

= minjgO) - g(u), K[m{s) - m(u)]\ + c + Y,ID-[U,S]} min{Ag, KAm} 

= c + E D min {Ag, KAm}, 

so that 

g(s) — g(r) < J"[r,,] minj^g, Kdm) + c < A(5) — A(r) + ^. 

This proves Lemma B. 
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There is an increasing unbounded sequence {Ki}^i of positive numbers 
such that for each positive integer n, 

J[a,6] \dh - J j min{dg, Kndm}\ < l/n. 

There is a sequence {Z^j^i of subdivisions of [a, b] such that for each positive 
integer n, 

(1) every interval of Dn+1 is a proper subset of an interval of Dn, 
(2) if / is in Dn, then Ax < l/n, and 
(3) T.Dn [mm{Ag, i£„Am} - jf7 min{dg, Kndm)] < l/n. 
There is a real-valued function R of subintervals of [a, 6] such that for each 

subinterval I of [a, b], 

r,/r\ _ / ^ » if ^ *s i n Ai f° r some n, 
(1/Ax otherwise. 

We see that R is refinement-unbounded. 
Suppose j is a positive number. Suppose D is a subdivision of [a, 6]. Let FT 

denote the number of intervals in D. By Lemma B there is a positive integer V 
such that 

(l)2/V<j/2, 
(2) if I is in D F , then no interval of D is a subset of / , and 
(3) if I is an interval of a refinement of Dv containing an end number of an 

interval of D, then Ag < Ah +j/[S(W + I)]. 
There is a common refinement £ of D and ZV such that every end number 

of an interval of E is an end number of an interval of D or Dv. 
Letting £* denote the set (if any) of all / in E and Dv, we see that 

Y<E min{Ag, R(I)Am} = £ s * min{Ag, R(I)Am} + £{#-#*} min{Ag, R{I)Am) 

< Y.E*mm{Ag,KvArn} + £,*_**, [Ah + j/[S(W + 1)] 

< [E E* Ah] + 2/V+ [ZIE-E*} Ah] + j / 4 

< HE àh + j/2 +J/4: =h(b) - h(a) + 3J/4. 

Therefore 

g(à) - g(a) = J[a,b] mm{dg, R(I)dm] < h(b) - h (a) + 3//4, 

so that g (b) — g(a) = &(6) — h (a), which implies that Ag = Ah for each 
subinterval / of [a, £]. Therefore g is absolutely continuous with respect to m. 
Hence (1) implies (2). 

Thus (1) and (2) are equivalent. 
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