REFINEMENT-UNBOUNDED INTERVAL FUNCTIONS AND ABSOLUTE CONTINUITY

WILLIAM D. L. APPLING

1. Introduction. In this paper we prove the following characterization theorem (Section 3):

Theorem 1. If each of g and m is a real-valued non-decreasing function on the number interval $[a, b]$, then the following two statements are equivalent:
(1) If R is a real-valued, refinement-unbounded (Section 3) function of subintervals of $[a, b]$, then the integral (Section 2)

$$
\int_{[a, b]} \min \{d g, R(I) d m\}
$$

exists and is equal to $g(b)-g(a)$, and
(2) g is absolutely continuous with respect to m.
2. Preliminary theorems and definitions. Suppose $[a, b]$ is a number interval.

Throughout this paper all integrals discussed are Hellinger (1) type limits (with respect to refinements) of the appropriate sums. Thus, if H is a realvalued function of subintervals of $[a, b]$, then $\int_{[a, b]} H(I)$ exists if and only if for each subinterval I of $[a, b], \int_{I} H(J)$ exists, so that if for $a \leqslant c \leqslant b, \int_{[c, c]} H(I)$ denotes 0 , then, for $\mathrm{a} \leqslant p \leqslant q \leqslant r \leqslant b$,

$$
\int_{[p, q]} H(I)+\int_{[q, r]} H(I)=\int_{[p, r]} H(I) .
$$

We see that if each of x, y, z, and w is a number, then

$$
\min \{x, y\}+\min \{z, w\} \leqslant \min \{x+z, y+w\} .
$$

This implies that if each of u and v is a real-valued non-decreasing function on $[a, b]$ and E is a refinement of the subdivision D of $[a, b]$, then

$$
0 \leqslant \sum_{E} \min \{\Delta u, \Delta v\} \leqslant \sum_{D} \min \{\Delta u, \Delta v\}
$$

so that

$$
\int_{[a, b]} \min \{d u, d v\}
$$

exists.
We state a lemma whose proof follows by conventional methods.
Lemma A. If each of g and m is a real-valued non-decreasing function on $[a, b]$, and for $a \leqslant x \leqslant b$,

Received February 11, 1964.

$$
h(x)=\sup \int_{[a, x]} \min \{d g, K d m\}
$$

for $0<K$, then

$$
\int_{[a, b]}\left|d h-\int_{I} \min \{d g, K d m\}\right| \rightarrow 0 \quad \text { as } K \rightarrow \infty,
$$

and h is absolutely continuous with respect to m.
3. The characterization theorem. Suppose that $(a, b]$ is a number interval.

Definition. If R is a real-valued function of subintervals of $[a, b]$, then the statement that R is refinement-unbounded means that if K is a positive number, then there is a subdivision D of $[a, b]$ such that if I is an interval of a refinement of D, then $K<R(I)$.

We now prove Theorem 1, as quoted in the Introduction. We first show that (2) implies (1).

Suppose (2) is true and R is a real-valued, refinement-unbounded function of subintervals of $[a, b]$.

Suppose c is a positive number. There is a positive number k such that if E is a subset of a subdivision of $[a, b]$ and $\sum_{E} \Delta m<k$, then $\sum_{E} \Delta g<c$.

There is a subdivision D of $[a, b]$ such that if I is an interval of a refinement of D, then $(g(b)-g(a)+1) / k<R(I)$.

Suppose E is a refinement of D. Then

$$
\begin{aligned}
0 & \leqslant g(b)-g(a)-\sum_{E} \min \{\Delta g, R(I) \Delta m\} \\
& =\sum_{E}[\Delta g-\min \{\Delta g, R(I) \Delta m\}]=\sum_{E^{*}}[\Delta g-R(I) \Delta m] \\
& \leqslant \sum_{E^{*}} \Delta g,
\end{aligned}
$$

where E^{*} is the set (if any) of all I in E such that $R(I) \Delta m \leqslant \Delta g$. We see that

$$
[(g(b)-g(a)+1) / k] \sum_{E^{*}} \Delta m \leqslant \sum_{E^{*}} R(I) \Delta m \leqslant \sum_{E^{*}} \Delta g \leqslant g(b)-g(a),
$$

so that

$$
\sum_{E^{*}} \Delta m \leqslant[k /(g(b)-g(a)+1)][g(b)-g(a)]<k,
$$

and therefore $\sum_{E^{*}} \Delta g<c$. Therefore

$$
0 \leqslant g(b)-g(a)-\sum_{E} \min \{\Delta g, R(I) \Delta m\}<c .
$$

Therefore $\int_{[a, b]} \min \{d g, R(I) d m\}$ exists and is equal to $g(b)-g(a)$. Thus (2) implies (1).

We now show that (1) implies (2).
Suppose (1) is true. For $a \leqslant x \leqslant b$, let

$$
h(x)=\sup \int_{[a, x]} \min \{d g, K d m\} \quad \text { for } 0<K
$$

By Lemma A,

$$
\int_{[a, b]}\left|d h-\int_{I} \min \{d g, K d m\}\right| \rightarrow 0 \quad \text { as } K \rightarrow \infty
$$

and h is absolutely continuous with respect to m. Furthermore, $\Delta h \leqslant \Delta g$ for each subinterval I of $[a, b]$.

We see that if I is a subinterval of $[a, b]$ and $\Delta m=0$, then $\Delta g=0$. We let $\Delta g / \Delta m=0$ if $\Delta m=0$, and have the usual meaning otherwise.

If I is a subinterval $[p, q]$ of $[a, b]$, then we let Δx denote $q-p$.
We now state and prove a lemma.
Lemma B. If s is in $[a, b]$ and c is a positive number, then there is a segment T containing s such that if I is a subinterval of each of T and $[a, b]$, and s is an end number of I, then $\Delta g \leqslant \Delta h+c$.

Proof. We assume s to be a right end-number of the interval I. A similar argument holds in case s is a left end-number of I.

We first show that if $a<s \leqslant b$ and m is continuous from the left at s, then so is g. Suppose that $m(s)-m(p) \rightarrow 0$ as $p \rightarrow s$ for $a \leqslant p<s$, but that for some positive number $k, g(s)-g(p) \geqslant k$ for $a \leqslant p<s$.

$$
[g(s)-g(p)] /[m(s)-m(p)] \rightarrow \infty \text { as } p \rightarrow s \text { for } a \leqslant p<s
$$

There is a function R of subintervals of $[a, b]$ such that

$$
R(I)=\left\{\begin{array}{l}
(1 / 2)(\Delta g / \Delta m) \text { if } I \text { is }[p, s] \text { for } a \leqslant p<s, \\
1 / \Delta x \text { otherwise }
\end{array}\right.
$$

We see that R is refinement-unbounded.
If E is a subdivision of $[a, b]$ such that $[u, s]$ is in E, then

$$
\begin{aligned}
\sum_{E} \min \{\Delta g, & R(I) \Delta m\}=\left[\sum_{\{E-[u, s]\}} \min \{\Delta g, R(I) \Delta m\}\right]+[g(s)-g(u)] / 2 \\
& \leqslant\left[\sum_{\{E-[u, s]\}} \Delta g\right]+g(s)-g(u)-k / 2=g(b)-g(a)-k / 2
\end{aligned}
$$

so that

$$
g(b)-g(a)=\int_{[a, b]} \min \{d g, R(I) d m\} \leqslant g(b)-g(a)-k / 2
$$

a contradiction. Therefore g is continuous from the left at s.
Next, suppose that $a<s \leqslant b$ and m is not continuous from the left at s. Suppose c is a positive number. There is a number t and a positive number K such that $a \leqslant t<s$ and such that if $t \leqslant u \leqslant v<s$, then $g(v)-g(u)<c$ and $g(s)-g(v) \leqslant K[m(s)-m(v)]$.

Suppose that $t \leqslant r<s$ and D is a subdivision of $[r, s]$ such that $[u, s]$ is in D.

$$
\begin{aligned}
g(s)- & g(r)=g(s)-g(u)+g(u)-g(r) \leqslant g(s)-g(u)+c \leqslant g(s) \\
& \quad-g(u)+c+\sum_{\{D-[u, s]\}} \min \{\Delta g, K \Delta m\} \\
= & \min \{g(s)-g(u), K[m(s)-m(u)]\}+c+\sum_{\{D-[u, s]\}} \min \{\Delta g, K \Delta m\} \\
= & c+\sum_{D} \min \{\Delta g, K \Delta m\},
\end{aligned}
$$

so that

$$
g(s)-g(r) \leqslant \int_{[r, s]} \min \{d g, K d m\}+c \leqslant h(s)-h(r)+c
$$

This proves Lemma B.

There is an increasing unbounded sequence $\left\{K_{i}\right\}_{i=1}^{\infty}$ of positive numbers such that for each positive integer n,

$$
\int_{[a, b]}\left|d h-\int_{I} \min \left\{d g, K_{n} d m\right\}\right|<1 / n .
$$

There is a sequence $\left\{D_{i}\right\}_{i=1}^{\infty}$ of subdivisions of $[a, b]$ such that for each positive integer n,
(1) every interval of D_{n+1} is a proper subset of an interval of D_{n},
(2) if I is in D_{n}, then $\Delta x<1 / n$, and
(3) $\sum_{D_{n}}\left[\min \left\{\Delta g, K_{n} \Delta m\right\}-\int_{I} \min \left\{d g, K_{n} d m\right\}\right]<1 / n$.

There is a real-valued function R of subintervals of $[a, b]$ such that for each subinterval I of $[a, b]$,

$$
R(I)=\left\{\begin{array}{l}
K_{n} \text { if } I \text { is in } D_{n} \text { for some } n \\
1 / \Delta x \text { otherwise }
\end{array}\right.
$$

We see that R is refinement-unbounded.
Suppose j is a positive number. Suppose D is a subdivision of $[a, b]$. Let W denote the number of intervals in D. By Lemma B there is a positive integer V such that
(1) $2 / V<j / 2$,
(2) if I is in D_{V}, then no interval of D is a subset of I, and
(3) if I is an interval of a refinement of D_{V} containing an end number of an interval of D, then $\Delta g \leqslant \Delta h+j /[8(W+1)]$.

There is a common refinement E of D and D_{V} such that every end number of an interval of E is an end number of an interval of D or D_{V}.

Letting E^{*} denote the set (if any) of all I in E and D_{V}, we see that

$$
\begin{aligned}
& \sum_{E} \min \{\Delta g, R(I) \Delta m\}=\sum_{E^{*}} \min \{\Delta g, R(I) \Delta m\}+\sum_{\left\{E-E^{*}\right\}} \min \{\Delta g, R(I) \Delta m\} \\
& \leqslant \sum_{E^{*}} \min \left\{\Delta g, K_{V} \Delta m\right\}+\sum_{\left\{E-E^{*}\right\}}[\Delta h+j /[8(W+1)] \\
& \leqslant\left[\sum_{E^{*}} \Delta h\right]+2 / V+\left[\sum_{\left\{E-E^{*}\right\}} \Delta h\right]+j / 4 \\
& \leqslant \sum_{E} \Delta h+j / 2+j / 4=h(b)-h(a)+3 j / 4
\end{aligned}
$$

Therefore

$$
g(b)-g(a)=\int_{[a, b]} \min \{d g, R(I) d m\} \leqslant h(b)-h(a)+3 j / 4,
$$

so that $g(b)-g(a)=h(b)-h(a)$, which implies that $\Delta g=\Delta h$ for each subinterval I of $[a, b]$. Therefore g is absolutely continuous with respect to m. Hence (1) implies (2).

Thus (1) and (2) are equivalent.

Reference

1. E. Hellinger, Die Orthogonalinvarianten quadratischer Formen von unendlichvielen Variablen, Diss. (Göttingen, 1907).

North Texas State University, Denton, Texas

