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1. Introduction
In (8) Todd and Coxeter described an algorithm for enumerating the cosets

of a finitely generated subgroup of finite index in a finitely presented group.
Several authors ((1), (2), (5), (6), (7)) have discussed a modification of the
algorithm to give also a presentation of the subgroup in terms of the given
generators.

In particular, Mendelsohn (7) gives an algorithm requiring two coset
enumerations to find such a presentation together with an example to show
that one enumeration is insufficient. W. O. J. Moser has conjectured that one
enumeration is sufficient and it is the purpose of this note to prove this and to
extend the results to subgroups of countable index.

The algorithm to be described is essentially the same as that described by the
above authors but is included here in the form in which it has been implemented
on the I.B.M. 360/44 computer of the University of St Andrews Computing
Laboratory.

We describe the algorithm in two parts, the classical and the additional
algorithms. Section 2 describes the algorithms and Section 3 contains proofs
of the validity of their operation.

2. The algorithms
Suppose a group is generated by a set of elements {xt \ i e / } , / a finite

set, and suppose that {ak\ ke K} is a set of words in the generators xt and their
inverses; then we will use the notation G = <xf \ <rk = 1, i e I, k e K} to mean
the group F/L, where L is the normal closure of the group L = (ok\ k e Ky
in the free group F = <xf | i e />.

If H = (coj | j e /> is a subgroup of countable index in G, there are only a
countable number of cosets of H in G. We first give a systematic method for
finding these cosets. We construct a multiplication table for the cosets in
which the rows are indexed by the cosets and the columns by the generators
of G and their inverses and proceed in the following way:

(i) Denote by the integer 1 the subgroup H. Apply the subgroup generators
coj to the coset 1 defining new cosets as necessary to obtain 1 .GO,- = 1, for all

eJ.
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(ii) Next, for each coset m in turn in the sequence 1, 2, 3, ...,

(a) define the cosets mxt and mx,"1 for each i e / unless these have
already been denned or found,

(b) apply the relations to the coset m, defining any new cosets which are
necessary, to obtain m<rk = m for all k e K.

Note that any new coset defined in (i) and (ii) must be defined as a previously
defined coset multiplied either by a generator xt or the inverse of a generator.
Also the relation mx* = n implies nxfe = m, where e e { — 1, 1}.

(iii) In addition, a coincidence (sometimes called collapse) may occur.
Suppose a relation is xf'x|2...x1

e' = 1 and we apply that relation to the coset n,
then coincidence occurs if we obtain nx\lx^...xy = p, where 1 ^j ^ i, and
we also have nx^e'x['J'1-

1---xI+[+1 = <1< t n a t >s nx^xf.-.x)1 = q, for the labels
p and q are both attached to the same coset.

Having discovered a coincidence (q>p say) the pth and qth rows of the
multiplication table are compared possibly giving further coincidences and then
q is replaced everywhere it occurs by p. These further coincidences are processed
in the same manner. At the end of the algorithm the cosets can be relabelled
by the first available integers.

Suppose the subgroup generator co,- = x{'x2
2---x?' and we consider l.coj,

then coincidence may again occur, for we may discover that 1. x\lxc^...xl" = p,
where 1 :£ k ^ i whereas 1. xf c'x,~_c{"1...xfc~+i+1 = 1- Thus p and q are both
attached to the same coset and we then process the resulting coincidences as
above.

Finally, the label chosen for an unknown coset should be the first available
natural number. This completes the classical algorithm.

We next give the additional algorithm:
(iv) Define the identity element of the subgroup H to be the coset representa-

tive of the coset 1. Whenever a coset n is defined as mx\, define the coset
representative xn to be rmxf, where xm is the coset representative of the coset m,
and note that %mx\x~^ = 1.

(v) If, in consideration of a generator co of H of the form sxt, where s and t
are words in the generators of G and x is either a generator or the inverse of a
generator of G, it is found that mx = n, where m is the coset Is and n is the
coset 11 ~i, then note that xmxi~1 = a.~lcofi~x, where a is a word in the generators
of H calculated as i.xl'r^1Tilx

e
2
2...tik_^xf."-:'1, where s = x^x^-.-x^ and where

P is calculated in a similar way.
(vi) If, in consideration of a relation of G of the form st = 1, it is found that

mx = n, then note that T ^ T " 1 =<X~1/?"1, where <x and j3 are words in the
generators of H calculated as in (v).

(vii) If, in consideration of a generator co ofH, no new cosets are defined and
no new information about coset multiplication is found, then
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is a relation between the generators of H, where co = Yl xV,l\-
i = o

(viii) If, in consideration of a relation a applied to a coset m, no new cosets
are defined and no new information about coset multiplication is found, then

r
IT (JijXVjVjTjld = 1 is a relation between the generators of H, where

j = o

a = Y[ xlitl anc* T*o = Tir+i *s t n e coset representative of coset m.
j = 0

(ix) The last occurrence to be considered is the discovery of a coincidence.
If, in consideration of a generator of the subgroup, o}1 say, it is found that coy

is of the form st, where Hs = m and Ht~l = n, then this gives T ^ = cosxm

and xj~l = a>,xn from which xn = (co,"1©^1^)^. This gives the relationship
between the coset representatives and again only involves words in the
generators of H.

If, in consideration of a relation of G, a coincidence occurs, then a similar
result is obtained. A relation of the form %ng = COT, becomes xmg = CO^'C^OVWT,.

If the result mg = / is already known then this gives a further relation in H.
Otherwise this is new information resulting from the coincidence. If it is already
known that mg = k with xmg = a>'xk so that the coincidence / = k is obtained,
then x, = co~1co~1coilcotco'xk so that the /'s can be replaced by k's and the
T,'S by this expression involving xk and a word in the generators of H.

3. Proofs of results
Lemma 1. Let F be a free group and H a finitely generated subgroup

<C0y \jejy of countable index in F. If {xt \ iel) is a set of generators of F,
then the identities Hcoj = H and Hdx'xfe = HO, for all cosets HO, are sufficient
to enumerate the cosets of H in F.

Proof. Suppose that the coset Hfi = Hv, where \i and v are words in the
generators of F. Then nv~1eH, that is /xv"1 = (o)\(o)\...a>)n

n for some
{ji,j2, •••,jn} ^ / a n d for some {e1; s2, ..., £„} ^ { - 1 , 1}. Note that because F
is free this equality is an identity apart from words of the form rjrj'1 on either
side of the equation.

Now for each sequence xf,1, xf2
2, ..., x^ define the coset #,?';£'.;;;•> to be the

coset fJxf1
1xf2

2...xfn". If we now calculate Hfiv'1, we find that this is H provided
lf0xfx,~£ = Hd for all cosets HO and all generators x; and provided Hcoj = H
for all jeJ (this implies Hcoj1 = H). Thus to find all the equalities between the
cosets it is sufficient to check that HOx-x^ = HO and that Hcoj = Hfor all the
generators coj of H.

If we next ask what is the index of the group generated by a set of words
{coj | y e / } in the group G = <xf | i e /, ak = 1, k e K}, then the corresponding

https://doi.org/10.1017/S0013091500015790 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500015790


76 M. J. BEETHAM AND C. M. CAMPBELL

question about free groups is that of finding the index of the subgroup generated
by the set {coj \ je J} and the normal closure of the group (ok \ k e K.y in the
free group <x,-1 ieiy. The subgroup is not necessarily given as a finitely
generated group since the only set of generators we have is

{coj \jeJ}<j{co~lcrkG> | k e K, a> e <xf | iel}}.

However, if G is finitely generated and finitely presented, that is if the sets
/ and K are both finite, and so the subgroup H is of countable index and finitely
generated, then it is sufficient to consider a countable number of relations of the
type given in Lemma 1.

Lemma 2. Let H be a finitely generated subgroup <ctf,- \jeJ~) of countable
index in a finitely generated finitely presented group

G = <xt \ak = l,ieI,keK>.

Then the identities Hcoj = H, H6ak = HO and HQx$x^° = HO, e = ±1 are
sufficient to enumerate all the cosets of H in G.

Proof. A typical generator co~ 1okco is equivalent to the relation H0ak — HO,
where HQ is the coset \co~1. Thus we have reduced the problem to investigating,
for each coset HO, the relation HQak = HO, for each of the given relations
ak = 1 of G. Therefore, on adding the identities H0ak = HO to the identities
in Lemma 1, we are now able to enumerate all the cosets of H in G.

So far we have only shown that given a finitely generated finitely presented
group we can find the index of a finitely generated subgroup in a countable
number of steps. We next show that when the index of the subgroup is finite,
then a finite number of steps is sufficient.

Theorem 3. Let H be a finitely generated subgroup (coj \jeJ)> of finite
index in a finitely generated finitely presented group

G = <Xi\ak= \,ieI,keKy.

Then the classical algorithm terminates in a finite number of steps.

Proof. If HO is any coset of H, then we can choose a representative of HO,
g say. Expressingg as a word in the generators of G, we have HO = l.g and
step (ii) (a) of the algorithm ensures that HO is given at least one label in the
above process in a finite number of steps. As H is of finite index in G we can
then find an integer m such that each coset has a label less than m.

We must now show that, again in a finite number of steps, we can identify
the cosets ng and ng~l among those m for all non-redundant n ^ m and all g
in the generating set. As the number of such cosets is finite we need only show
that ng can be identified in a finite number of steps, where g is either a generator
or the inverse of a generator. By the choice of m, ng is equal to some coset k
say, with k ^ m. n is defined as \G for some a in G and similarly k is defined
as Ico for some co in G.
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Now ng = k is equivalent to agco~1 e H. However, <rgco~1 e H if and only
if it can be written as a product Ufih where fit is either a generator of H, the
inverse of a generator of H, a conjugate of a relation of G or the inverse of such
a conjugate.

But after a finite number of steps the algorithm provides sufficient information
to give 1/ij = 1 and so \ogco~1 = 1. Thus all the cosets ng can be identified
in a finite number of steps and so the process must terminate for it is then
possible to complete the coset enumeration tables without defining further cosets.

Notice that we cannot restrict our attention only to the first m cosets. In
fact, there is no upper bound to the number of cosets needed to complete the
process in terms of the index, the lengths of the generators and relations and
the number of generators and relations.

Theorem 4. Let H be a finitely generated subgroup <eoj \jeJ} of countable
index in a finitelygeneratedfinitelypresentedgroup G = <x( | crfc = l,ieI,keKy.
Then the additional algorithm provides a presentation of H. Moreover, if the
index of H in G is finite, this presentation is finite.

Proof. Suppose h'lh%...h% = 1 is a relation between the generators of H.
Then, as this is a consequence of the relations of G, h^h-^...he^ is freely equal
to Tlfip where Hj is either a conjugate of a relation of G or the inverse of a
conjugate.

\fij = 1 modulo the relations of H discovered during the process, that is
lfij = lorl/ij- = w.l, where w = 1 is one of the relations. Therefore l.II/i,- = 1
modulo the relations of H discovered during the coset enumeration. On the
other hand the initial consideration of generators of H shows that 1 .ht = ht. 1
modulo any later changes brought about by using relations of H discovered in
consequence of coincidences occurring during the algorithm. Thus, as required,
the relation hffhf*...h% = 1 is a consequence of the relations discovered by the
algorithm.

4. Applications
The theorems of Section 3 find application in (3), (4) and (7). In (3, Theorem

4), for example, it is shown that the subgroup H = <<z, 62> is of countable index
in the group

G = <fl> b | [a2, ft"1] = a-'b^a, [b2, a"1] = j r V f e )

and using Theorem 4 of this paper a presentation for H is found.
To show the difference between the above algorithm and that of Mendelsohn

(7), the following example shows that four relations are produced by this version
of the algorithm instead of the one produced in (7). This same group is also
considered in (6).

We consider the subgroup <x, a8> in the group <x, a\ x~1a2x = a3}.
Denoting the subgroup generators by a and J? respectively we find that it is
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necessary to define eight cosets before a coincidence is discovered. At this stage
the tables have the following form:

x 1 a a x = a a a
1 2 3 4 1 2 3 4
3 4 5 7 4 5 6 7
5 6 7 2 7 8 1 2
7 8 1 1 2 3 4 5

The multiplication table for the coset representatives is la = 2, 2a = 3, 3a = 4,
4a = 5, 5a = 6, 6a = 7, 7a = 8, 8a = 01, lx = al, 3x = a4, 5x = a7 and
7x = a/!2. The coincidence obtained from the last line of the table gives
5 = [fi, a] 1. Substitution in the multiplication table now gives the multiplication
table la = 2, 2a = 3, 3a = 4, 4a = [/?, a]l, lx = al, 3x = a4, the collapses
6 = [j?, <x]2, 7 = [0, a]3, 8 = [fi, a]4 and, by further substitution,
[fi, a]al = afjS, a]3 and [/?, a]a4 = a/?2 and finally from 8a = /?1 we obtain
the relation [fi, a]2 = p.

Substitution in the multiplication table for 3 and 4 now gives

la = 2, 2a = [[/J, a], a]l, 1* = al

as the multiplication table, two more relations, [[fi, a], a] = [a, PfP and
[a, PYP[[P, a], a] = [fi, a], and the coincidence [[fi, a], a]al = [a, £]aj32 which
reduces to 2 = /S" 1 ^ , a]"2l.

A final substitution now gives la = p~l[P, a]a2l, lx = al and the relation

CTM& a]"*)2 = [[/*. «].«]•
Thus we have shown that <x, a8> = <x, a> and in terms of the new

generators the group is
<«, P I [fi, «]2 = P, [[fi, «]. «] = [«. W = P~l[P, a]«[0, a] = OS^IJS, a]*2)2>.
From la = P~l[fi, a]a2l we obtain the expression for a in terms of a and P,

Substituting [i?, a]2 for the final p in [fj!, a], a] = [a, p]"P, we obtain
[fi, a ] = [[)?, a]a]2. Using this new relation and substituting for the initial p~l

in P~l[P, oi]"[P, a], we find this reduces immediately to [[fi, a], a]. Thus the
set of relations obtained is in this case redundant. It should be noted that the
adaptation of the Reidemeister-Schreier process using two coset enumerations
will provide a presentation of the group.

(Note that in the above hand calculation we have not worked through the
algorithm systematically but have constructed the tables in a way which avoids
introducing more redundant cosets than necessary.)
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