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NORMAL FITTING CLASSES
AND HALL SUBGROUPS

ELsPeTH Cusack

It was shown by Bryce and Cossey that each Hall mw-subgroup of a
group in the smallest normal fitting class S, necessarily lies
in S, , for each set of primes 7 . We prove here that for each
set of primes T such that |ﬂ| =2 and 7' 4is not empty,
there exists a normal Fitting class without this closure
property. A characterisation is obtained of all normal Fitting

classes which do have this property.

Let F be a normal Fitting class closed under taking Hall

T-subgroups, in the sense of the paragraph above, and let S1T

denote the Fitting class of all finite soluble Tm-groups, for
some set of primes T . The second main theorem is a
characterisation of the groups in the smallest Fitting class

containing F and S1T in terms of their Hall mw-subgroups.

1. Introduction

Let F be a normal Fitting class of finite soluble groups and 7 a
set of primes. F is said to be closed under taking Hall w-subgroups if
each group in F possesses a Hall TW-subgroup which lies in F . Since
every normal Fitting class contains all finite nilpotent groups [3, Theorem

5.1]1, we avoid triviality by assuming that |%] > 2 and that 7' is not
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empty. Bryce and Cossey showed that the smallest normal Fitting class is
closed under taking Hall w-subgroups, for each set of primes 7 [6,
4.153}. This fact can be more easily deduced from a result of Hauck [§,
Chapter 6]. In Section 3 of this paper, we prove the following result.

THEOREM 1. Let w be a set of primes such that |n| =2 and w'
18 not empty. Then there exists a normal Fitting class which is not closed

under taking Hall mw-subgroups.

The concept of the join of two Fitting classes was introduced in [7].
The join of Fitting classes X and Y 1is defined to be the smallest

Fitting class containing their union. For each set of primes m , let S1T

denote the Fitting class of all finite soluble mw-groups, and recall that a
subgroup N of the direct product G X H of groups ¢ and H 1is said to
be subdirect in G x H if N(1 xH) =G xH = (G x 1L)N . Our second main

result is proved in Section 4.

THEOREM 2. Let T be a set of primes and F a normal Fitting class
closed under taking Hall mw-subgroups. Let H be a Hall m-subgroup of a
group G . Then G lies in Sn vF if and only if (G x H)F i8

subdirect tin G x H .

That many normal Fitting classes are closed under taking Hall
T-subgroups for a given set of primes ® 1is ensured by the character-

isation of these Fitting classes obtained in Theorem S of Section 3.

2. Preliminaries

A1l groups mentioned are finite and soluble. Basic definitions and
facts concerning Fitting classes and the #*-operation may be found in [3)
and [10]. The notation is standard and is described in [7]. We point out
that as a consequence of [10, Theorem 2.2¢)], the normal Fitting class S,
is contained in every normal Fitting class. We list the following results

for the reader's convenience.

I [7, Corollary 2.6]. Let X and Y be Fitting classes such that
Xc Y* . Then a group G lies in X v Y <if and only if there exists a
group K in X such that (G x K)Y is subdirect in G x K .

When X = Sﬂ , for a set of primes 7 , and Y is a normal Fitting
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class closed under taking Hall T-subgroups, Theorem 2 will allow us to
dispense with the arbitrary choice of the group K 1in I. The next result

can be deduced from I and Theorem 2.9 of [7].

1I. Let X, Y and Z be Fitting classes such that X c Y* .

1. If Xc 2z, then (XvY)nZ=Xv (Yn32).
2. If YcZ, then (XvY)nZ=(XnZ)vy.

We now introduce a notation of Hauck [8]. Let F be a Fitting class

and T a set of primes. Then YLSH, F) denotes the Fitting class of

groups in which each Hall TmT-subgroup lies in F . The following theorem

is a consequence of Hilfssatz 3 of [1].
ITI. Y(Sn’ Iﬂ 15 a normal Fitting class, for each set of primes ™
and normal Fitting class F .

Finally, we have a theorem collated from various sources, which will

be crucial to the proof of Theorem 1.

IV. Let p and q be distinct primes. There exists a group

H(p, q) such that O_(H4(p, q)) = H(p, q)S and |H(p, q)/H(p, q)S | =¢q .
14 * *

If g|p-1 , then the existence of H(p, q) is established in [2].
The existence of H(p, q) when qlp—l is a consequence of the main
theorems of [5] and {9]. Details of the construction of a suitable group

H(p, q) may be found in [4, Chapter 3.7J.

3. Normal Fitting classes closed under taking Hall m-subgroups

Let 7m be a non-trivial set of primes, in the sense of Theorem 1.
Choose distinct primes p, g and r such that p and q are in 7 , and
r is in w' . Set K =H(p, q) , L = H(r, q) and denote by G the
normal subgroup (KS* x LS*)((k’ 1)) of KxL , where k and 1 are

elements of order q in K and L respectively. Set F = Fit{G} v S5, .
Certainly F 1is & normal Fitting class, since S,c Fc S5 [10].

Proof of Theorem 1. The candidate is F . Since G 1lies in F and
each Hall T-subgroup of G 1is isomorphic to X it is sufficient to prove

that X is not in F . We begin by examining G .
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If G is in S, , then G = (X x L)S . This implies that
*
K xL=(Kx1)(K x L)S and it follows from the definition of a Fitting
*
class that L 1lies in STr vS,. Let @ bve a Sylow g-subgroup of L .

Certainly @ is a Hall 7-subgroup of L , and so by Theorem 2, (L x Q)S
*

is subdirect in L X @ . Since & is nilpotent, & 1lies in S, , which
leads to the contradiction that L is in S, . We conclude that (G does
not lie in S, , and consequently that G, =K, X L, = (K x L) .

S S 4 Sy Sy

Suppose now that X lies in F . By [7, Corollary 2.5]1, G

possesses a characteristic subgroup N such that (K x N)S is subdirect
*

S

may therefore assume that NG, =G . It follows that (K x G)S is
* 4

subdirect in K X G . There exists, therefore, an element x of & , of

in K XN . If N=G , then X must lie in S, , a contradiction. We
*

order q , such that (k, x) is an element of (X x G)S . Each element
#

of order q¢ in G 1is a conjugate of (k, 2)" , for some integer #n lying
between 1 and q . Since G/GS is abelian, we have
*

xGS = (k, Z)nGb , for some integer n . The fact that G is a normal
* 4

subgroup of K X [ now establishes that (k, kn, Zn) is an element of

(k x K X L) By definition of the *-operation [10],

5%

(kxKkx1), = (K, xK, x1)¢(g7, g, 1) | g €

Sa Sy 54

We therefore have
(1, &, 2 = (7 ok, ) (R, K ) € (kx K x D) .
*

n+l’ Zn)

Certainly (l, k is an element of 1 X KX x [ , and so

n+l

(&, € (K xL)g . Since (KX L)g =Ky XL, , tpe choice of k
#* *

Sy 54
and [ implies that ¢q divides both n and n + 1 . This contradiction

leads us to conclude that K does not lie in F .

The characterisation of those normal Fitting classes closed under

taking Hall Tm-subgroups depends on the following two results.
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LEMMA 3. et 7 be a set of primes and F a normal Fitting class
which is closed under taking Hall m-subgroups. Let H be a Hall
n-subgroup of a group G in FS1T . Then G lies in Y(S", F] if and

only if G = HFGF .

Proof. Suppose that G is in Y(Sn’ Fj . Certainly G = HGF , and
H = HF . It is immediate that G = HE’GF . Conversely, suppose that
G = HFGF . Then H = HF(H n G%J , and by hypothesis H n GF lies in F .
Thus H = HF , ensuring that G 1is in YLSN, F]

THEOREM 4. 5_v Y(sﬂ, 5,) =8, for each set of primes w .

Proof. Let H ©be a Hall w-subgroup and X a Hall m'-subgroup of a

group ¢ in S§,5 , . Then G = KG , and so H =G . Since S, is
m S 4 S,

closed under taking Hall m7-subgroups, this ensures that H 1lies in S5, .

Thus S5 is contained in Y[Sﬂ, S*)

-n-l
Suppose now that H is a Hall 7-subgroup of a group G in S*Sn .
Then G X H is in S*Sn , and it follows from Lemma 3 that

(H x H), (G x H) is the Y(S_, S,)-radical of G x H . Since
S, S, T

. -1
(H x H)S*(G X H), contains (HS*GS* x HS*)( (W, n) | nem , ana

S

G = HGg , the Y(S_, §)-radical of G X H is subdirect in G X H . We
*
conclude from I that 5,5 is contained in S_v ¥(S , 5,) . It follows

from [7, Theorem 2.1] that S48,V S*Sn' = 5§ , and consequently
S,V ¥(s., 8 =5 .

THEOREM 5, Let F be a nmormal Fitting class and T a set of
primes. Then F <is closed under taking Hall m-subgroups if and only if
F= (s, nF) v (¢(s, 8,) nF

Proof. IF. Certainly STT n F and Y(Sn’ S*] are contained in

Y(S", F] . Thus F 1is contained in Y[S", F) , and so is closed under

taking Hall w-subgroups.
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ONLY IF. Suppose that F 1is closed under taking Hall mw-subgroups.
In other words, F’S}Y(Sn, Fj . Since Y(S", S*] E.Y(S“, F) , it follows

from II and Theorem U4 that

v(s., F) = (s, v ¥(5;, S4)) n'Y(sn, F)

= (5, n¥ls, F)) vr(s,s)=_(s nF) vir(s,s,

A further application of II yields that
F=Fny(s,F) =Fn((s, nF)vi(s,s,))

= (Sn n F) v (Y(Sﬂ, S*] n F)

4. The proof of Theorem 2

LEMMA 6. et m be a set of primes and F a normal Fitting class
closed under taking Hall mw-subgroups. Let H be a Hall mw-subgroup of a
group G in STT v F. Then GF contains HF .

Proof. Certainly STr v F gFSTr , and so Lemma 3 implies that HFGF
is the Y(Sﬂ, Fﬂ—radical of G . Since F E,YLSH, Fﬂ , we may apply II to
obtain (S v F) ny(s ,F) = (s nx(s,F)vF=F. Tus #G, lies
in F , establishing the result.

Proof of Theorem 2. IF. This follows immediately from I.

ONLY IF. Both F and Sn are contained in FSTr , SO Sn vV F is
contained in FSTT . Let T denote the set of groups (G 1in FS" such

that for some Hall Tm-subgroup H of ¢, (G x H)F is subdirect in

G xH . Since F 1is closed under taking Hall m-subgroups, Fc T , and

by definition of the *-operation § < T . That T €S, VF is ensured
by I, and it is thus sufficient to show that T 1is a Fitting class.

Let H be a Hall mw-subgroup of a group G in T . Certainly G x H
is in S_V F , and it follows from Lemma 6 that (G x H)p contains
(H % H)F . The definition of the *-operation, and the fact that
_ . _ -1
G = HG, , allov us to write (G x H)F = (GF x HfJ((h s ) | hoem

Suppose now that N is a normal subgroup of ¢ . Then N = (N n H)NF and
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@x@nm),=@x@nm)a {[GF x HF)<(h‘1, h) | noe H)]

-1
=@ x Wom (T, 8) [ heram

Thus N lies in T .

If ¥ and M are normal subgroups, and H 1is a Hall m-subgroup, of
a group G , such that N and M are in T and G = NM , then certainly
H=(HnN)(HnM . Let % be an element of H . Then there exist
elements n of N and m of M such that h = mwm . By hypothesis,

(L, n) e W x (wn H))p and (mL, m) € (M x (M nB)) Since G/Gp

P

is abelian, — Gp . Thus

B o) = it ) = Y, ) (7 m) e, 1) (6 x ),

ensuring that G lies in T . This completes the proof that T is a

Fitting class.
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