Mathematical Notes.

Review of Elementary Mathematics and Science.
published by

THE EDINBURGH MATHEMATICAL SOCIETY

Edited by G. D. C. STOKES, M.A., D.Sc.

No. 17.
January 1915.

Trigonometric Survey.-The object of this note is to show how various problems commonly occurring in Elementary Trigonometry may be classified as particular cases of trigonometric survey. The general case may be stated first, and certain well-known particular cases appended.

General Case (Fig. 1).-Let $A B C D$ be a quadrilateral, where $A B(=d)$ is a measured base, and angles $B A C(=\alpha), A B C(=\beta)$,

.FIG 1.
$C B D(=\gamma), B C D(=\delta)$ are measured by theodolite, the first pair from the ends of the base $A B$, the second pair from the ends of the derived base $B C$; to determine the length of $C D$. Put $C D=x, B C=y$.

Then

$$
\begin{align*}
\frac{x}{d} & =\frac{x}{y} \cdot \frac{y}{d}=\frac{\sin \gamma}{\sin (\gamma+\delta)} \cdot \frac{\sin \alpha}{\sin (\alpha+\beta)} \\
\text { or } \quad x & =\frac{d \sin \alpha \sin \gamma}{\sin (\alpha+\beta) \cdot \sin (\gamma+\delta)} . \tag{191}
\end{align*}
$$

MATHEMATICAL NOTES.

FIG. 2.

FIG. 4.

FIG. 6

fig. 3.

FIS. 5

FIG. 7.

First Case (Fig. 2). -Let $C D$ be a tower of unknown height, and let $A B C$ be a horizontal road, where $A B C D$ is a vertical (192)
plane; let $A B=d, \widehat{C A D}=\alpha, \widehat{C B} D=\beta$; to determine the height $C D$ or x, say, we regard $\triangle A B D$ as determined by trigonometric survey from the base $A B$, and the known angles $B A D, A B D$. Next we regard $B D$ as a derived base and $\triangle B C D$ as determined from the base $B D$ and the base angles $D B C, B D C$. Put $B D=y$; then

$$
\begin{aligned}
\frac{x}{d}=\frac{x}{y} \cdot \frac{y}{d} & =\frac{\sin \beta}{\sin \frac{\pi}{2}} \cdot \frac{\sin \alpha}{\sin (\beta-\alpha)} \\
x & =\frac{d \sin \alpha \sin \beta}{\sin (\beta-\alpha)}
\end{aligned}
$$

If $B C$ or z is required, we have, similarly,

$$
\begin{gathered}
\frac{z}{d}=\frac{z}{y} \cdot \frac{y}{d}=\frac{\sin \left(\frac{\pi}{2}-\beta\right)}{\sin \frac{\pi}{2}} \cdot \frac{\sin \alpha}{\sin (\beta-\alpha)} \\
z=\frac{d \sin \alpha \cos \beta}{\sin (\beta-\alpha)}
\end{gathered}
$$

Second Case (Fig. 3). -In an acute-angled triangle $A B C$, let $C D$ be the height; to express $C D$ or x, say, in terms of $A B(=d)$ and angles $B A C, A B C$.

Regard $\triangle A B C$ as determined by trigonometric survey from base d and angles A and B, and then $\triangle A C D$ as determined from the derived base $A C$ and angles A and $D C A$. Put $C D=x, A C=y$ Then

$$
\begin{aligned}
\frac{x}{d}=\frac{x}{y} \cdot \frac{y}{d} & =\frac{\sin A}{\sin 90^{\circ}} \cdot \frac{\sin B}{\sin (A+B)} \\
x & =\frac{d \sin A \sin B}{\sin (A+B)}
\end{aligned}
$$

Third Case (Fig. 4).-Consider the problem of finding the unknown height of a vertical projection $C D$, by deduction from the known height d of a tower $A B$ and from the angles of elevation of D as seen from A and B. Trigonometric survey determines triangle $A B D$, and a repetition of the process determines $\triangle A C D$ from the derived base $A D$. Put $C D=x, A D=y$.

Then

$$
\begin{aligned}
\frac{x}{d}=\frac{x}{y} \cdot \frac{y}{d} & =\frac{\sin D A C}{\sin 90^{\circ}} \cdot \frac{\sin A B D}{\sin A D B} \\
\text { or } \quad x & =\frac{d \sin D A C \cdot \sin A B D}{\sin A D B}
\end{aligned}
$$

Fourth Case (Fig. 5). -To express $A D$, the length of the bisector of angle A of triangle $A B C$, in terms of base $B C$ and base angles B, C.

Trigonometric survey determines $\triangle A B C$ from a, B, C, and then determines $A D$ from the derived base $A B$ and the known base angles $A B D$ and $D A B$. Put $A D=x$; then

$$
\begin{aligned}
& \frac{x}{a}=\frac{x}{c} \cdot \frac{c}{a}=\frac{\sin B}{\sin \left(\frac{A}{2}+B\right)} \cdot \frac{\sin C}{\sin A} \\
& \therefore \quad x=\frac{a \sin B \sin C}{\sin A \sin \left(\frac{A}{2}+B\right)}=\frac{a \sin B \sin C}{\sin (B+C) \cos \frac{1}{2}(B-C)} .
\end{aligned}
$$

Fifth Case (Fig. 6).-To express r, the in-radius of $\triangle A B C$, in terms of a, B, C.

Let I be the in-centre and $I D$ the perpendicular from I to $B C$. Trigonometric survey determines $\triangle B 1 C$ from base $B C$ and base angles $\frac{1}{2} B, \frac{1}{2} C$, and then determines $I D$ or r from the derived base $I B$ and the base angles $I B D$ and $B I D$. Put $I B=y$.

Then

$$
\begin{aligned}
& \frac{r}{a}=\frac{r}{y} \cdot \frac{y}{a}=\frac{\sin \frac{B}{2}}{\sin 90^{\circ}} \cdot \frac{\sin \frac{C}{2}}{\sin \left(\frac{B}{2}+\frac{C}{2}\right)} \\
& \text { or } \quad r=\frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\sin \left(\frac{B}{2}+\frac{C}{2}\right)} .
\end{aligned}
$$

Sixth Case (Fig. 7).-If $D E F$ be the pedal triangle of $\triangle A B C$, to express $E F$ in terms of a, B, C.

We may suppose a trigonometric survey made of $\triangle B E C$ from base $B C$, and then a survey made of $\triangle C E F$ from the derived base $C E$.

A DIRECT READING HYGROMETER.

$$
\begin{aligned}
& \text { Then } \begin{aligned}
\frac{E F}{a}=\frac{E F}{E C} \cdot \frac{E C}{a} & =\frac{\sin E C F}{\sin E F C} \cdot \frac{\sin E B C}{\sin B E C}=\frac{\cos A}{\cos C} \cdot \frac{\cos C}{1} \\
\text { or } & E F
\end{aligned} . \\
& a \cos A=-a \cos (B+C) .
\end{aligned}
$$

P. Pinkerton.

A Direct Reading Hygrometer.-The instrument is an ordinary dry and wet bulb hygrometer adapted to give a direct

