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Abstract

We consider solutions to the algebraic differential equation f n f ′ + Qd(z, f ) = u(z)ev(z), where Qd(z, f ) is a
differential polynomial in f of degree d with rational function coefficients, u is a nonzero rational function
and v is a nonconstant polynomial. In this paper, we prove that if n ≥ d + 1 and if it admits a meromorphic
solution f with finitely many poles, then

f (z) = s(z)ev(z)/(n+1) and Qd(z, f ) ≡ 0.

With this in hand, we also prove that if f is a transcendental entire function, then f ′pk( f ) + qm( f ) assumes
every complex number α, with one possible exception, infinitely many times, where pk( f ), qm( f ) are
polynomials in f with degrees k and m with k ≥ m + 1. This result generalizes a theorem originating from
Hayman [‘Picard values of meromorphic functions and their derivatives’, Ann. of Math. (2) 70(2) (1959),
9–42].
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1. Introduction and main results

Let Λ = {(λ0, λ1, . . . , λµ) : λ j is a nonnegative integer and 0 ≤ j ≤ µ < ∞} be an index
set with a finite cardinal number and let

Qd(z, f ) =
∑
λ∈Λ

aλ(z) f λ0 ( f ′)λ1 · · · ( f (µ))λµ

be a polynomial of f and its derivatives with degree d and meromorphic function
coefficients aλ(z), where d := deg(Q(z, f )) = maxλ∈Λ

∑µ
j=0 λ j. In the sequel, we simply

call Qd(z, f ) a differential polynomial of f with degree d. We also assume that the
reader is familiar with the simple standard notation and results in Nevanlinna theory
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(see [3, 8]). The term S (r, f ) always has the property that S (r, f ) = o(T (r, f )) as r→∞,
possibly outside a set E of finite linear measure. The set E is not necessarily the same
at each occurrence. A meromorphic function a(z) is said to be a small function with
respect to f (z) if and only if T (r, a) = S (r, f ).

It is always an essential problem to find the structure of solutions to any differential
equation. In 1980, Gackstatter and Laine [6] conjectured that the algebraic differential
equation

( f ′)n = pm( f ),

where pm( f ) is a polynomial in f and n is a positive integer, does not possess any
admissible solution when m ≤ n − 1. In 1990, He and Laine [9] gave a positive answer
to the conjecture. Recently, Zhang and the first author [21] proved that if the algebraic
differential equation with polynomial coefficients

Qd(z, f ) = 0 (1.1)

has only one dominant term (highest-degree term), then (1.1) has no admissible
transcendental meromorphic solutions with a few poles. There are also many other
papers concerning the structure of solutions to various differential equations (for
example [1, 4, 10–14]). In this paper, we consider the algebraic differential equation

f n f ′ + Qd(z, f ) = u(z)ev(z), (1.2)

where Qd(z, f ) be a differential polynomial in f with n ≥ d + 1 and rational function
coefficients, u is a nonzero rational function and v is a nonconstant polynomial.
Clearly, f n f ′ is the only dominant term in (1.2) and its nonhomogeneous term is a
transcendental meromorphic function. Thus, we find a simple and neat expression for
meromorphic solutions to (1.2) if the solutions have a few poles. This also means
that the solution has finitely many zeros determined by the term uev in the differential
equation. Further, the result can be used to generalize a theorem of Hayman [7].

Hayman [7] proved that if f is a transcendental entire function, then f ′ f n assumes
every nonzero complex number infinitely many times, provided that n ≥ 2. Since
then, there are many research publications [2, 5, 15, 16, 20] regarding this type of
Picard-value problem. For example, Mues [15] extended the result, proving that if
p( f ) is a nonconstant polynomial in f , then p( f ) f ′ assumes every nonzero complex
number infinitely many times. Zhang and Li [20] proved that if f is a transcendental
meromorphic function with N(r, f ) = S (r, f ) and p a polynomial with degree ≥ 1, then
p( f ) f ′ takes every nonzero complex number infinitely many times. In this paper,
we also prove that if pk, qm are two polynomials with degrees k ≥ m + 1 and f a
transcendental entire function, then pk( f ) f ′ + qm( f ) assumes every complex number,
with possibly one exceptional value, infinitely many times. More interestingly, we
show that if pk( f ) f ′ + qm( f ) takes the exceptional value finitely many times, then
we can prove that qm has to be a constant polynomial and pn is a complete power
function, or f (z) = AeBz + C, where A, B,C are constant. Now we are ready to state
our theorems.
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Theorem 1.1. Let Qd(z, f ) be a differential polynomial in f of degree d with rational
function coefficients. Suppose that u is a nonzero rational function and v is a
nonconstant polynomial. If n ≥ d + 1 and the differential equation

f n f ′ + Qd(z, f ) = u(z)ev(z) (1.3)

admits a meromorphic solution f with finitely many poles, then f has the following
form:

f (z) = s(z)ev(z)/(n+1) and Qd(z, f ) ≡ 0,

where s(z) is a rational function with sn((n + 1)s′ + v′s) = (n + 1)u. In particular, if u
is a polynomial, then s is a polynomial, too.

Remark 1.2. The condition n ≥ d + 1 in the theorem is necessary. For example,
f (z) = ez + z solves the following differential equation:

f ′ f 2 − 2z f ′2 − z2 f ′ = e3z,

where n = d = 2.

Theorem 1.3. Let f be a transcendental entire function, qm( f ) = bm f m + · · · + b1 f + b0
a polynomial with degree m and n a positive integer with n ≥ m + 1. Then f ′ f n + qm( f )
assumes every complex number α infinitely many times, except for a possible value
b0 = qm(0). On the other hand, if f ′ f n + qm( f ) assumes b0 = qm(0) finitely many times,
then qm(z) ≡ b0, f and f ′ have only finitely many zeros.

Remark 1.4. The restrictive condition n ≥ m + 1 in the theorem is necessary. For
instance, if f (z) = ez + 1 and q2(z) = −2z2 + 3z, then f ′ f 2 − 2 f 2 + 3 f = e3z + 1 does
not assume 1 , q2(0).

Theorem 1.5. Let f be a transcendental entire function, pn( f ) = an f n + · · · + a0 a
polynomial with degree n, qm( f ) = bm f m + · · · + b0 a polynomial with degree m and
n ≥ m + 1. Then f ′pn( f ) + qm( f ) assumes every complex number α infinitely many
times, except for a possible value qm(−an−1/nan). On the other hand, if f ′pn( f ) +

qm( f ) assumes the complex value qm(−an−1/nan) finitely many times, then either:

(1) pn(z)=an(z + an−1/nan)n, qm(z) is a constant polynomial, which is qm(−an−1/nan);
and f + an−1/nan, f ′ have only finitely many zeros; or

(2) f (z) = AeBz + an−1/nan, where A, B are some constants, only when qm is
nonconstant and f is of finite order.

Remark 1.6. Theorem 1.3 is a special case of Theorem 1.5. But, we need Theorem 1.3
in the proof of Theorem 1.5. Otherwise, we think the proof will be too long if we
combine Theorems 1.3 and 1.5 together.

Remark 1.7. It is challenge to prove that Theorem 1.3 and/or Theorem 1.5 are valid
for meromorphic functions in the complex plane.

Example 1.8. If f (z) = ez, then f ′( f 3 − f ) + f 2 = e3z does not assume 0 = q2(0). If
g(z) = eez

+ 1, then g′(g − 1)n does not assume zero.
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2. Lemmas
Lemma 2.1 (Clunie lemma [5, 17]). Let f (z) be a transcendental meromorphic function
in the complex plane and satisfying

f n(z)P(z, f ) = Q(z, f ),

where P(z, f ),Q(z, f ) are differential polynomials with rational function coefficients.
If the degree of Q(z, f ) is at most n, then

m(r, P(z, f )) = O(log r) (r→∞),

if f is of finite order, and

m(r, P(z, f )) = O(log(rT (r, f ))) (r→∞),

possibly outside a set E of r with finite linear measure, if f (z) is of infinite order.

Lemma 2.2 (Borel lemma [18]). Let a j(z) be entire functions of finite order ≤ ρ.
Let g j(z) be entire and gk(z) − g j(z) ( j , k) be a transcendental entire function or
polynomial of degree greater than ρ. Then

n∑
j=1

a j(z)eg j(z) = a0(z)

holds only when
a0(z) = a1(z) = · · · = an(z) ≡ 0.

Lemma 2.3. Let n ≥ 2 be an integer and Pd(z, f ) denote an algebraic differential
polynomial in f (z) of degree d ≤ n − 1 with small functions of f as its coefficients. If
p(z) is a small function of f , if α is a nonconstant polynomial and if f is a meromorphic
solution of the equation

f n(z) f ′(z) + Pd(z, f ) = p(z)eα(z)

and N(r, f ) = S (r, f ), then f is of finite order.

Proof. Clearly, any meromorphic function satisfying the equation in the lemma must
be transcendental. Denote k = degα. By the Clunie lemma and N(r, f ) = S (r, f ),

(n + 1)T (r, f ) = T (r, f n+1) = T
(
r,

1
f n+1

)
+ S (r, f )

= m
(
r,

1
f ′ f n

)
+ m

(
r,

f ′

f

)
+ N

(
r,

1
f ′ f n

)
+ N

(
r,

1
f

)
− N

(
r,

1
f ′

)
+ S (r, f )

≤ T (r, f ′ f n) + N
(
r,

1
f

)
+ S (r, f ) = m(r, f ′ f n) + N

(
r,

1
f

)
+ S (r, f )

≤ m(r, p(z)eα(z)) + m(r, Pd(z, f )) + N
(
r,

1
f

)
+ S (r, f )

≤ Ark + (d + 1)T (r, f ) + S (r, f ).

Of course, the assumptions that N(r, f ) = S (r, f ) and N(r, peα) = S (r, f ) have been
used here. Thus, (n − d)T (r, f ) ≤ Ark + S (r, f ) and f is of finite order. �
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Lemma 2.4. If f is a meromorphic function of infinite order, then there exists a sequence
{zk} with limk→∞ zk =∞ such that { f (zk + z)}∞k=1 is not normal at z = 0.

Proof. First, we claim that lim supz→∞ f #(z) =∞, where f #(z) = | f ′(z)|/(1 + | f (z)|2) is
the spherical derivative of f . Indeed, if it is not true, then there is a positive constant
C such that f #(z) ≤ C for z ∈ C. Therefore,

T (r, f ) =
1
π

∫ r

0

1
t

("
|z|≤t

( f #(z))2dx dy
)

dt ≤
C2

2
r2.

It follows that the order of f is not greater than two, which contradicts the assumption
that f is of infinite order. Hence, there exists a sequence {zk} with limk→∞ zk = ∞

such that limk→∞ f #(zk) = +∞. Set {gk(z) = f (zk + z)}∞k=1. Then g#
k(0) is unbounded.

Therefore, by Marty’s criterion, {gk(z) = f (zk + z)}∞k=1 is not normal at z = 0. �

Lemma 2.5 (Zalcman–Pang lemma [19]). Let F be a family of meromorphic functions
on D = {|z| < 1} and α a real number satisfying −1 < α < 1. Then F is not normal in
D if and only if there exist:

(i) a number r, 0 < r < 1;
(ii) a sequence of points zk, |zk| < r;
(iii) a positive sequence ρk, ρk → 0; and
(iv) a sequence { f }n∈N ⊂ F such that ραk fk(zk + ρkζ)→ g(ζ) spherically uniformly on

compact subsets of C, where g is a nonconstant meromorphic function of order
ρ(g) ≤ 2.

3. Proofs of the theorems

3.1. Proof of Theorem 1.1. Let f be a meromorphic solution of (1.3) with finitely
many poles. It follows from Lemma 2.3 that the order of f is finite. If f has only
finitely many zeros, then f (z) = s(z)et(z), where s(z) is a rational function and t(z) is a
polynomial. By substituting f into (1.3) and using Lemma 2.2, we obtain Qd(z, f ) ≡ 0,
(n + 1)t(z) = v(z) and sn(s′ + t′s) = u, which also implies that s is a polynomial if u is
a polynomial. Thus, Theorem 1.1 is proved when f has only finitely many zeros. Now
we assume that f has infinitely many zeros. Denote Q = Qd(z, f ). Then

f n f ′′ + n f n−1( f ′)2 + Q′ = (u′ + v′u)ev(z). (3.1)

It follows from (1.3) and (3.1) that

(u f f ′′ + nu( f ′)2 − (u′ + v′u) f f ′) f n−1 = Q∗d(z, f ),

where Q∗d(z, f ) = uQ′ − (u′ + v′u)Q is a differential polynomial of f with degree d
and rational function coefficients. It follows from Lemma 2.1 that there is a rational
function ψ such that

u(z) f (z) f ′′(z) + nu(z)( f ′(z))2 − (u′(z) + v′(z)u(z)) f (z) f ′(z) = ψ(z). (3.2)
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If ψ(z) ≡ 0, then

u(z) f (z) f ′′(z) + nu(z)( f ′(z))2 = (u′(z) − v′(z)u(z)) f (z) f ′(z). (3.3)

Let z0 be a zero of f which is not a zero or pole of u(z) and v(z); then it follows from
(3.3) that f ′(z0) = 0. Thus, z0 is a zero of f with multiplicity n ≥ 2. By comparing the
multiplicities at z0 of both sides of (3.3), we have u(z0) = 0, which is a contradiction.
Hence, ψ(z) . 0.

By differentiating (3.2),

u f ′′′ f + (2n + 1)u f ′ f ′′ − (u′′ + v′′u + v′u′) f ′ f − v′u f ′′ f + ((n − 1)u′ + v′u)( f ′)2 = ψ′.
(3.4)

Multiplying (3.2) by ψ′ and (3.4) by ψ, and then subtracting the resulting equations,

(Q1 f ′ + Q2 f ′′ + Q3 f ′′′) f = f ′(B1 f ′ + B2 f ′′), (3.5)

where

Q1 = ψ(z)(u′′(z) + v′′(z)u(z) + v′(z)u(z)) − ψ′(z)(u′(z) + v′(z)u(z)),
Q2 = ψ′(z)u(z) + ψ(z)v(z)u(z),
Q3 = −ψ(z)u(z),
B1 = (n − 1)ψ(z)u′(z) − ψ(z)v′(z)u(z) − nψ′(z)u(z),
B2 = (2n + 1)ψ(z)u(z).

If z0 is a zero of f (z), but is not a zero or pole of u(z), v(z) and ψ(z), then f ′(z0)2 =

ψ(z0)/nu(z0) , 0 by (3.2). Hence, z0 is a simple zero of f and, consequently, (3.5)
gives

B1(z0) f ′(z0) + B2(z0) f ′′(z0) = 0.

Thus, (B1 f ′ + B2 f ′′)/ f has only finitely many poles and, by the logarithmic derivative
lemma,

T
(
r,

B1 f ′ + B2 f ′′

f

)
= m

(
r,

B1 f ′ + B2 f ′′

f

)
+ O(log r) = O(log r).

Therefore, A(z) := (B1 f ′ + B2 f ′′)/ f is a rational function and f satisfies the following
differential equation:

B2 f ′′ + B1 f ′ − A f = 0. (3.6)

If A ≡ 0, then

f ′′

f ′
= −

B1

B2
= −

( n − 1
2n + 1

u′

u
−

n
2n + 1

ψ′

ψ
−

1
2n + 1

v′
)
.

By integrating the above equation,

f ′(z) = β1(z)e(1/(2n+1))v(z), (3.7)

where β1(z) is a rational function. Substituting f ′ into (3.2),

β2(z)e(1/((2n+1)))v(z) f (z) = nu(z)β1(z)2e(2/((2n+1)))v(z) − ψ(z),
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where β2(z) is a nonzero rational function. Thus,

f = β3(z)e(1/((2n+1)))v(z) + β4(z)e−(1/((2n+1)))v(z), (3.8)

where β3(z) = nu(z)β2
1/β2 and β4(z) = −ψ/β2 are rational functions. It follows from

(3.7) and (3.8) that (
β1(z) − β′3(z) −

1
2n + 1

β3(z)v′(z)
)
e(1/((2n+1)))v(z)

=

(
β′4(z) −

1
2n + 1

β4(z)v′(z)
)
e−(1/((2n+1)))v(z).

Hence, Lemma 2.2 implies that

β′4(z) −
1

2n + 1
β4(z)v′(z) ≡ 0.

If β4(z) . 0, then β4(z) = Ce(1/((2n+1)))v(z), which contradicts the fact that β4(z) is a
rational function. If β4(z) ≡ 0, then ψ(z) ≡ 0, a contradiction again. Hence, A . 0.

By a similar argument as we have used above, A1(z) := (Q1 f ′ + Q2 f ′′ + Q3 f ′′′)/ f ′

is a rational function. Thus, f satisfies the following differential equation:

Q3 f ′′′ + Q2 f ′′ + (Q1 − A1) f ′ = 0. (3.9)

By differentiating (3.6), we obtain

B2 f ′′′ + (B′2 + B1) f ′′ + (B′1 − A) f ′ − A′ f = 0. (3.10)

By eliminating f ′′′ from (3.9) and (3.10),

[(2n + 1)Q2 + B′2 + B1] f ′′ + [(2n + 1)(Q1 − A1) + B′1 − A] f ′ − A′ f = 0. (3.11)

It follows from (3.6) and (3.11) that

R1 f ′ + R2 f = 0,

where

R1 = B1[(2n + 1)Q2 + B′2 + B1] − B2[(2n + 1)(Q1 − A1) + B′1 − A],
R2 = A′B2 − A[(2n + 1)Q2 + B′2 + B1].

If R1 ≡ 0, then R2 ≡ 0. Hence,

A′

A
=

(2n + 1)Q2 + B′2 + B1

B2
=
ψ′

ψ
+

B′2
B2

+
n − 1
2n + 1

u′

u
+

v
2n + 1

+
v′

2n + 1
.

Thus,
v

2n + 1
+

v′

2n + 1
=

A′

A
−
ψ′

ψ
−

B′2
B2
−

n − 1
2n + 1

u′

u
.

This is impossible, since the left-hand side tends to infinity and the right-side tends to
zero as z tends to infinity. This shows that R1 . 0 and

f ′

f
= −

R2

R1
.
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Since f ′/ f has only simple poles, so does R2/R1; therefore, f (z) = s(z)ev∗(z), where s(z)
is a rational function and v∗(z) is a polynomial. By substituting f into (1.3) and using
Lemma 2.2, we obtain Qd(z, f ) ≡ 0, (n + 1)v∗(z) = v(z) and sn(s′ + v′∗s) = u, which also
implies that s is a polynomial if u is a polynomial.

3.2. Proof of Theorem 1.3. If f has finite order and f ′ f n + qm( f ) assumes a
complex number a , b0 finitely many times, then f satisfies the following differential
equation:

f ′ f n + qm( f ) − a = u(z)ev(z), (3.12)

where u(z) and v(z) are polynomials. Thus, it follows from Theorem 1.1 that there is a
polynomial s such that f (z) = s(z)ev(z)/(n+1) and qm( f ) − a ≡ 0, from which Lemma 2.2
implies b0 − a = 0. This is a contradiction.

If f has infinite order and f ′ f n + qm( f ) assumes a complex number α finitely
many times, then we get from Lemma 2.4 that there exists a sequence {zk} with
limk→∞ zk =∞ such that {gk(z) = f (zk + z)}∞k=1 is not normal at z = 0. By Lemma 2.5,
there exist a sequence of {wk}

∞
k=1 with |wk| < 1 and a positive sequence of ρk with

ρk → 0 such that

hk(z) = ρ−1/(n+1)
k gk(wk + ρkz) = ρ−1/(n+1)

k f (wk + zk + ρkz)→ g(z)

spherically uniformly on any compact subset of C, where g(z) is a nonconstant entire
function and its order satisfies ρ(g) ≤ 2. Thus,

Fk(z) := f ′(wk + zk + ρkz) f (wk + zk + ρkz)n + qm( f (wk + kzk + ρkz))
= h′k(z)hk(z)n + (bmρ

m/(n+1)
k hm

k + · · · + b1ρ
1/(n+1)
k hk + b0)

converges to g′(z)g(z)n + b0 spherically uniformly on any compact subset of C. We
now consider two cases.

Case 1. When g′(z)g(z)n + b0 − a has a zero, say ζ0. Then, by Hurwitz’s theorem,
there are a sequence of complex numbers {ζk} and a sufficiently large integer N such
that Fk(ζk) − a = 0 (k ≥ N) and ζk → ζ0. Hence,

f ′(ξk) f (ξk)n + qm( f (ξk)) − a = 0,

where ξk = wk + zk + ρkζk. Since |wk| < 1, zk →∞, ρk → 0 and ζk → ζ0 as k→∞, we
can choose subsequences {zk j}, {wk j} and {ρk j} such that

|zk j − zkl | > 3 when k j , kl, |wk j | < 1 and |ρk jζk j | <
1
2 .

Thus, ξk j = wk j + zk j + ρk jζk j ( j = 1,2, . . .) are distinct zeros of f ′ f n − qm( f ) − a, which
is a contradiction.

Case 2. When g′(z)g(z)n + b0 − a does not have a zero. Thus, g(z) must be a
transcendental entire function of finite order and is a solution of the differential
equation

g′gn + b0 − a = ev(z),
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where v(z) is a polynomial. It follows from Theorem 1.1 that a − b0 = 0. This means
that f ′ f n + qm( f ) takes any complex number α , b0 = qm(0) infinitely many times.
Thus, the first part of the theorem is proved.

On the other hand, if f ′ f n + qm( f ) assumes b0 = qm(0) finitely many times, then

f ′ f n + qm( f ) − qm(0) = f ( f ′ f n−1 + bm f m−1 + · · · + b1)

has only finitely many zeros. It follows that f and f ′ f n−1 + bm f m−1 + · · · + b1 have
only finitely many zeros. That is, f ′ f n−1 + bm f m−1 + · · · + b1 assumes the value 0
finitely many times. By similar arguments as we have done with f ′ f n + bm f m + · · · +

b1 f + b0 and α = 0 above, we have b1 = α = 0. Continuing the arguments, we have
b1 = b2 = · · · = bm = 0. Hence, qm(z) ≡ b0 and f ′ f n has only finitely many zeros; so
do f and f ′. We have completed the proof.

By the proof of Theorem 1.3, we obtain the following result.

Corollary 3.1. Let F be a family of holomorphic functions in a domain D. Suppose
that f ′ f n + qm( f ) does not assume a complex number α , qm(0) for every function
f ∈ F, where n ≥ 1, qm(z) is a polynomial with degree m and m ≤ n − 1. Then F is a
normal family in the domain D.

In fact, if F is not normal at z0, then it follows from Lemma 2.5 that there is
a nonconstant entire function g of order ρ(g) ≤ 2 such that g′gn does not assume
qm(0) − α , 0. This is impossible.

3.3. Proof of Theorem 1.5. We first discuss the case that f is a transcendental
entire function of finite order. If n = 1, then let p1( f ) = a1 f + a0 with a1 , 0. Since
n ≥ m + 1 = 0, qm( f ) is a constant, say b0. If f ′p1( f ) + b0 assumes α finitely many
times, then there are a polynomial s and a nonconstant polynomial v such that

f ′(z)p1( f (z)) + b0 − α = s(z)ev(z).

Set g(z) = f (z) + a0/a1. Then

g′g =
f ′

a1
(a1 f + a0) =

f ′p1( f )
a1

.

Therefore, g is a transcendental entire solution of

w′w +
b0 − α

a1
=

s(z)
a1

ev(z).

It follows from Theorem 1.1 that (b0 − α)/a1 = 0; therefore, α = b0 = qm(0). This is a
contradiction.

Next, if n ≥ 2 and if f ′pn( f ) + qm( f ) assumes α finitely many times, then there are
a polynomial u and a nonconstant polynomial v such that

f ′(z)pn( f (z)) + qm( f (z)) − α = u(z)ev(z).
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Let g(z) = f (z) + an−1/nan. Therefore, g is a transcendental entire function. Noting
that the polynomial pn(w − an−1/(nan)) does not contain the term wn−1,

f ′pn( f ) + qm( f ) = g′pn

(
g −

an−1

nan

)
+ qm

(
g −

an−1

nan

)
= ang′gn + g′A(g) + gB(g) + qm

(
−

an−1

nan

)
, (3.13)

where A, B are two polynomials, say,

A(z) = a∗n−2zn−2 + · · · + a∗0 and B(z) = bmzm−1 + b∗m−1zm−2 + · · · + b∗1.

Hence, g is a transcendental entire solution of the equation

w′wn + w′
A(w)

an
+

wB(w)
an

+
qm(−an−1/nan) − α

an
=

u
an

ev.

It follows from Theorem 1.1 that there is a polynomial s such that g(z) = s(z)ev(z)/(n+1)

and, for all z ∈ C,

g′(z)
A(g(z))

an
+

g(z)B(g(z))
an

+
qm(−an−1/nan) − α

an
≡ 0. (3.14)

It is clear that every nonconstant term in (3.14) is in the form of u(z)ev(z), where u
is a polynomial and v is a nonconstant polynomial. Consequently, Lemma 2.2 gives
qm(−an−1/nan) − α = 0, which contradicts the assumption that α , qm(−an−1/nan).

Now we consider the case that f is of infinite order. It follows from Lemma 2.4
that there exists a sequence {zk} with limk→∞ zk =∞ such that { fk(z) = f (zk + z)}∞k=1 is
not normal at z = 0. By Lemma 2.5, there exist a sequence of {wk}

∞
k=1, |wk| < 1, and a

positive sequence of ρk, ρk → 0, such that

hk(z) = fk(wk + ρkz) = f (wk + zk + ρkz)→ h(z)

spherically uniformly on any compact subset of C, where h(z) is a nonconstant entire
function and its order satisfies ρ(h) ≤ 2. Thus,

Fk(z) := ρk( f ′(wk + zk + ρkz)(an f (wk + zk + ρkz)n + · · · + a0))
+ ρk(bm f (wk + zk + ρkz)m + · · · + b0 − α)

= h′k(z)(anhk(z)n + · · · + a0) + ρk(bmhm
k (z) + · · · + b0 − α)

converges to h′(z)pn(h(z)) spherically uniformly on any compact subset of C.
We claim that h′(z)pn(h(z)) does not assume zero if f ′pn( f ) + qm( f ) assumes α

finitely many times. In fact, if h′(z)pn(h(z)) has a zero, say ζ0, then, by Hurwitz’s
theorem, there are a sequence of complex numbers {ζk} and a sufficiently large integer
N such that Fk(ζk) = 0 (k ≥ N) and ζk → ζ0. Hence,

f ′(wk + zk + ρkz)(an f (wk + zk + ρkz)n + · · · + a0)
+ bm f (wk + zk + ρkz)m + · · · + b0 − α = 0,
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where ξk = wk + zk + ρkζk. Since |wk| < 1,

lim
k→∞

zk =∞, lim
k→∞

ρk = 0 and lim
k→∞

ζk = ζ0;

we can choose subsequences {zk j}, {wk j} and {ρk j} such that

|zk j − zkl | > 3 when k j , kl, |wk j | < 1 and |ρk jζk j | <
1
2 .

Thus, ξk j = wk j + zk j + ρk jζk j ( j = 1, 2, . . .) are distinct zeros of f ′pn( f ) + qm( f ) − a.
This is a contradiction.

Hence, we have proved that if f ′pn( f ) + qm( f ) assumes a complex value a finitely
many times, then h′(z)pn(h(z)) , 0 for all z ∈ C. Consequently, h is a transcendental
entire function of finite order and there is a nonconstant polynomial v such that

h′pn(h) = h′(anhn + an−1hn−1 + · · · + a0) = ev(z). (3.15)

Let H(z) = h(z) + an−1/nan. Then

Qn(h) =

n∑
j=0

a j

(
H −

an−1

nan

) j
= anHn + A(H), (3.16)

where A(H) is a polynomial of H with degree not greater than n − 2. Hence, (3.15)
turns out to be

H′Hn +
1
an

A(H)H′ =
1
an

ev(z).

It follows from Theorem 1.1 that A(H)H′ ≡ 0; therefore, A(H) ≡ 0. Hence, (3.16)
gives

pn(z) = an

(
z +

an−1

nan

)n
.

Let g(z) = 1/x( f (z) + an−1/nan), where x is a complex number such that xn+1an = 1.
Thus,

f ′pn( f ) + qm( f ) = xg′pn

(
xg −

an−1

nan

)
+ qm

(
xg −

an−1

nan

)
= anxn+1g′gn + qm

(
xg −

an−1

nan

)
= g′gn + qm

(
xg −

an−1

nan

)
(3.17)

assumes α finitely many times. On the other hand, Theorem 1.3 shows that

g′gn + qm

(
xg −

an−1

nan

)
,

which is the right-hand side of (3.17), assumes every α , qm(−an−1/(nan)) infinitely
many times. This is impossible. Therefore, f ′pn( f ) + qm( f ) takes every α ,
qm(−an−1/(nan)) infinitely many times.

Furthermore, if f ′pn( f ) + qm( f ) takes qm(−an−1/(nan)) finitely many times and f
is of infinite order, then, by (3.17), g′gn + qm(xg − an−1/nan) takes qm(−an−1/(nan))
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finitely many times. It follows from Theorem 1.3 that the polynomial qm(xg −
an−1/nan) is the constant qm(−an−1/nan). Therefore, (3.17) becomes

pn( f ) =
gn

x
= an

(
f (z) +

an−1

nan

)n
,

since f ′ = xg′ and qm( f ) = qm(−an−1/(nan)). This means that pn(z) = an(z + an−1/nan)n,
that is, a complete power function.

If f ′pn( f ) + qm( f ) takes qm(−an−1/(nan)) finitely many times and f is of finite order,
then we consider two cases: qm(z) is a constant polynomial and qm(z) is a nonconstant
polynomial.

When qm(z) is a constant, then α = qm(−an−1/nan) = b0 and B(z) ≡ 0, where B(z) is
defined in (3.14). Therefore, (3.14) gives A(z) ≡ 0. Thus, (3.13) becomes

pn( f ) = angn = an

(
f +

an−1

nan

)n
,

since f ′ = g′ and qm( f ) = qm(−an−1/(nan)). Therefore, pn is a complete power
function.

When qm(z) is a nonconstant polynomial with degree m ≥ 1 or bm , 0, then,
substituting g(z) = s(z)ev(z)/(n+1) into (3.14) and by Lemma 2.2, α = qm(−an−1/nan) and

a∗m−1

(
s′(z) + s(z)

v′(z)
n + 1

)
+ bms(z) ≡ 0,

which is the coefficient of the term emv(z)/(n+1), since n ≥ m + 1. If a∗m−1 = 0, then
bm = 0, which is a contradiction. Hence, a∗m−1 , 0 and(a∗m−1v′(z)

n + 1
+ bm

)
s(z) + a∗m−1s′(z) ≡ 0.

Thus, a∗m−1v′(z)/(n + 1) + bm ≡ 0 and s′(z) ≡ 0. It follows that s(z) is a constant, say
C′, and v(z) is a linear polynomial, say Dz + D′, that is, g(z) = CeDz for some constants
C,D. Hence, f (z) = CeDz + an−1/nan. Thus, the proof of the theorem is complete.

By Theorem 1.5, we have the following results.

Corollary 3.2. Let f be a transcendental entire function and pn(z) a polynomial with
degree, n ≥ 1, as in the theorem. Then f ′pn( f ) assumes every nonzero complex number
α infinitely many times. On the other hand, if f ′pn( f ) takes 0 finitely many times, then
pn(z) = an(z + an−1/nan)n, f + an−1/nan and f ′ have only finitely many zeros.

Corollary 3.3. Let F be a family of holomorphic functions in a domain D. Suppose
that f ′Qn( f ) does not assume a complex number a , 0 for every function f ∈ F, where
Qn( f ) is a polynomial with degree n ≥ 1. Then F is a normal family in the domain D.
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