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RESIDUAL FINITENESS OF COMMUTATIVE RINGS 
AND SCHEMES 

ARON SI M IS 

Introduction. This work grew out of a preliminary announcement (Notices 
of the Amer. Math. Soc. 18 (1971)). Here we modify the definition of residual 
finiteness given in [2]. This allows us, first of all, to consider a broader class of 
rings which are "essentially" residually finite and, secondly, to extend the 
notion to schemes. We then show that, for various topologies on the category 
of schemes, our notion of residual finiteness is local so that all relevant questions 
appear already at the ring level. 

The first section contains the basic definitions and results of the theory. They 
are, as one would expect, very elementary. In the second section we deal with 
quasifinite homomorphisms; these are clearly finite homomorphisms on the 
level of the residual extensions, so the role they play is apparent. We then use 
Zariski Main Theorem in order to characterize * 'essentially" residually finite 
domains of finite type over Z or over a finite field (Theorem 2.3). 

The third section centers around the behaviour of "essential" residual 
finiteness under completion and henselization. We show that the behaviour of 
residual finiteness in the sense of [2] is not as good and we produce counter
examples to a (false) statement in [2] — Corollary 5.3. In order that this 
statement remain true it suffices to use some sort of "unibranch" condition; 
in good cases, this condition is also necessary (Proposition 3.2 and Proposition 
3.3). 

In the fourth section we globalize most of the results for schemes. The last 
section is devoted to a brief report on residual finiteness at associated primes 
and at primes in the support of a module, a topic which seems to bear connec
tion with torsion theories. 

I wish to thank the Canada Council for support and my friend P. J. Cahen 
for helpful remarks. 

1. Definitions and basic results. Let (comm) denote the category of 
commutative rings. If A £ (comm), we let Are<1 stand for the reduced ring of 
A, i.e., y4red = A/N where N is the nilradical of A. It is immediate 
that a homomorphism <j> : A —» B canonically induces a homomorphism 
9red • A r e d > ^ r e d -

W7e know that the assignment A i—» spec A extends to a functor 
(comm) —> (top) where (top) stands for the category of topological spaces. 
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If p : (coram) —» (top) is a sub "mapp ing" (but not necessarily a subfunctor) 
of the functor spec, we say tha t a ring A £ (comm) is p-residually finite if the 
residue field of A a t every P £ p(A) is a finite field. Clearly, this happens if 
and only if the integral domain A/P has a finite number of elements for every 
P G p(A), in which case £ ( 4 ) C max A, where max 4̂ is the maximal spec
t rum of A. 

Examples. (1) p = spec. In this case we have the following result which 
completely characterizes a spec-residually finite ring: 

PROPOSITION 1.1. A ring A £ (comm) is spec-residually finite if and only if 
A red is a Von Neumann regular ring with finite residue field at every prime ideal. 

Proof. I t is well-known tha t for A g (comm), the Krull dimension of A 
(heretofore denoted dim A) is zero if and only if ATed is Von Neumann regular 
[1, Chapi t re I I , § 4, Exercice 16 d] . The result now follows from the fact t ha t 
A and ATed have homeomorphic spectra and the same residue field a t corres
ponding primes. 

Besides art inian local rings with finite residue field and rings with finitely 
many elements, other typical instances of spec-residually finite rings are: 

(a) the ring of global sections of the sheaf of locally constant mappings 
X —» k where X is a compact totally disconnected topological space and k is a 
finite field; a non-reduced non-noetherian example is given by 

(b) Let A be a non-discrete valuation ring of rank one having finite residue 
field a t its maximal ideal (e.g., the ring of a suitable inertial extension of a 
p-adic valuation of 0 ) - Choose non-zero elements a, ai, ai, . . . of A such t ha t 
the sequence of values v (a), v (#i), v (a2), . . . decreases indefinitely. Then A / (a) 
clearly satisfies all the requirements. 

(2) p = max. The class of max-residually finite rings is perhaps too broad 
to allow any interesting characterization. For instance, any ring of finite type 
over a finite field is max-residually finite. 

(3) p = esspec, where esspec(^4) = spec A — min(^4) with min(^4) s tand
ing for the space of minimal prime ideals of A. Clearly, if A is esspec-residually 
finite then dim A ^ 1. This is the type of residual finiteness which we will 
consider for the whole of this and the next three sections. 

A homomorphism <£ : A —•» B is said to be residually finite at P £ spec B if 
the residual extension k(<j>-l{P)) C k(P) is finite; if <j> is residually finite a t 
every P £ spec B outside min (B), we say t ha t <j> is an es s-residually finite 
homomorphism. 

PROPOSITION 1.2. Let A be an esspec-residually finite ring and let <j> : A —» B 
be an es s-residually finite homomorphism. Suppose, moreover, that <j> satisfies any 
one of the following conditions: 
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(i) <j> is integral (not necessarily injective); 
(ii) a<t> : spec B —» spec 4̂ is injective; 

(hi) 0 is injective and B is a domain whose quotient field is an algebraic exten
sion of the quotient field of A. 
Then B is esspec-residually finite. 

Proof. Since <j> is an ess-residually finite homomorphism, it suffices to check 
that the contraction of a non-minimal prime of B is a non-minimal prime of A, 
which we easily do: 

(i) If P £ spec B is non-minimal, let Q be a proper generization of P. 
Then <jrl(Q) is a proper generization of (j>~l(P) since the homomorphism <j> is 
integral. 

(ii) The contention is trivial here since the non-empty fibres of <j> have only 
one point. 

(iii) There is a standard argument in this case, namely, if P £ spec B is 
non-zero pick b G P , b 9e 0, and write an algebraic equation of minimal degree 
for b over A, say, anb

n + . . . + a0 = 0. Then a0 9^ 0 and it is clear that 
a^ P r\A. 

In the opposite direction, we have: 

PROPOSITION 1.3. Let B be an esspec-residually finite ring and let <j> : A —» B 
be a homomorphism satisfying any of the following conditions: 

(i) <f> is fiat; 
(ii) ker <f> is a nilideal (i.e., a4> is dominant) and spec B is irreducible; 

(iii) <f> is injective and integral. 
Then A has finite residue field at every non-minimal prime p such that the fiber of 
(j) over p is non-empty. 

Proof. It suffices to show that if P £ spec B has a non-minimal contraction 
<t>~1(P) then the fiber of P contains a non-minimal prime of B. We proceed 
to do so: 

(i) A flat homomorphism satisfies the going-down property [5, Chapter 2, 
(5.D)]. Therefore, given a proper generization q of 0 - 1 (P ) , there exists a proper 
generization of P lying over q. Thus, in this case, P itself is a non-minimal 
prime. 

(ii) Since B (respectively A) is residually finite at a given prime if and only 
if its reduced ring is residually finite at the corresponding prime and since the 
canonical homeomorphism spec BTeû ^ spec B preserves the fibres of $, we 
may — by passing to 0re(i — assume that B is a domain and <f> is injective. The 
result is now clear since the generic point of spec B maps onto the generic 
point of spec A. 

(iii) Let q G spec A be a minimal generization of <p~1(P). Since <t> is injective, 
there exists a minimal prime QoiB lying over q [1, Chapitre II, § 2, Proposition 
16]. But <t> is also integral; therefore, by the going-up property, there exists a 
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prime M of B, a specialization of Q, lying over $ - 1 (P) . Such an M clearly 
answers our problem. 

Remark. In all three conditions of Proposition 1.3 the kernel of </> was assumed 
to be "small"; more precisely, ker 0 C U P with p running through min (A). 
To see that such a hypothesis is essential it suffices to consider a surjection 
A -+A/q with q a maximal non-minimal prime of A having infinite residue 
field. On the other hand the remaining hypotheses are not at all necessary; thus, 
if dim B = 1 and if the prime ideals of A have finite height (say, dim A < co ), 
Proposition 1.3 goes through solely under the assumption that </> is infective 
(or even that ker 0 is a nilideal). For, by starting with a minimal prime ideal, 
one can work up a chain of primes in B of length one. It is essential, however, 
that dim B = 1 as the injective epimorphism A -^K X k shows, where A is a 
discrete valuation ring with infinite residue field k and quotient field K. 

COROLLARY 1.4. Let A be a domain with quotient field K, let L\K be a finite 
field extension and let B be a subring of L containing A. 

(a) If A is no ether ian and esspec-residually finite then B is esspec-residually 
finite. 

(b) If A is integrally closed and if B is integral over A then A is esspec-residual
ly finite if and only if B is so. 

Proof, (a) Since A is esspec-residually finite, dim A ^ 1. By a result of 
Krull-Akizuki [1, Chapitre IV, § 2, Proposition 5], for every non-zero prime 
P of B, B/P is a finite A -module and, a fortiori, a finite A/P C\ A -module. 
Therefore the injection A C B is an ess-residually finite homomorphism and 
the conclusion follows from Proposition 1.2 (iii). 

(b) Under these assumptions, the fibers of the injection A C B are all 
finite [1, Chapitre IV, § 2, no. 3, Corollaire 2(i)]. Therefore, by a standard 
argument, the injection A C B is ess-residually finite and we conclude from 
Proposition 1.2(i) and from Proposition 1.3(iii). 

COROLLARY 1.5. Let <j> : A —> B be an epimorphism. If A is esspec-residually 
finite, so is B. In particular, rings of fractions and affine open sets of esspec-
residually finite rings are esspec-residually finite. 

Proof. It follows immediately from Proposition 1.2 (ii) because the mapping 
a<t> corresponding to an epimorphism </> : A —> B is injective and admits only 
trivial residual extensions [4, Proposition 1.5]. 

COROLLARY 1.6. If A is an esspec-residually finite Prûfer domain and if B is 
a subring of the quotient field of A containing A, then B is esspec-residually 
finite. 

Proof. Since B is A -torsion free and A is Prufer, B is ^4-flat. It follows that 
the injection A C B is an epimorphism [7, Compl. au texte, Corollaire 1]. 

We may remark that if A is a domain which is neither noetherian nor of 
arithmetic type, we do not know whether esspec-residual finiteness is preserved 
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under a dominant birational homomorphism A —> B ; the first to look at is the 
case of a non-noetherian integrally closed local domain A which is not a valua
tion ring. 

2. C h a r a c t e r i z a t i o n of a c lass of e s spec -res idua l ly finite r i n g s . Le t us 
recall a stronger concept than t h a t of a residually finite homomorphism — this 
concept has part ial ly been met along the first section. 

A homomorphism <f> : A —> B is said to be quasifinite at a prime P £ spec B 
if 

(1) 4> is of finite type ; 
(2) P is isolated in its fiber (i.e., in the fiber of a<j> over <frl(P)). 

I t can be shown t h a t if condition (1) holds then condition (2) is equivalent to 
(2') BP/<t>~l(P)BP is a finite k{<t>~l(P))-module. 

From this one easily deduces t h a t a homomorphism <j> : A —» B of finite type 
is quasifinite (meaning quasi-finite a t every prime of B) if and only if, for every 
p G spec A, the fiber B (x)A k(p) is a finite &(^)-module. 

T h e following result is certainly pa r t of the mathemat ica l folklore: its 
geometrical counterpar t is given in [3, Chapi t re I I , Corollaire 7.4.4] and our 
proof follows closely the proof there. 

P R O P O S I T I O N 2.1. Let A and B be noetherian domains of dimension one and let 
<t> : A —» B be a homomorphism of finite type. 

(a) If B is not semilocal and if <j> is quasifinite then $ is infective. 
(b) If 4> is infective then it is quasifinite. 

Proof. Clearly, any non-zero ideal / of a noetherian domain D of dimension 
one is contained in only finitely many primes of D. Indeed, let D' be the integral 
closure of D in its quot ient field ; D' is noetherian [1, Chapi t re V I I , § 2, Proposi
tion 5], hence a Dedekind domain, therefore ID' is contained in only finitely 
many primes of D' and so I is contained in only finitely m a n y primes of D. 
In other words, we have shown t h a t the proper closed sets of spec D are the 
finite subsets of spec D not containing the generic point ; in part icular , every 
infinite subset of spec D is dense everywhere. Now, the proof of the Proposi
tion proper: 

(a) Suppose <f> is not injective. Then a4> (spec B) is not dense in spec A. 
By the preceding remarks , a#(spec B) is a finite set. On the other hand, by 
assumption, the fibers of a<j> are finite (possibly e m p t y ) sets. I t follows t h a t 
spec B is a finite set, which contradicts the hypothesis . 

(b) If 4> is injective, the generic point of spec B maps onto the generic point 
of spec A. Therefore, if p G spec A is non-generic, ( a 0) _ 1 (^ ) ls a closed set 
not including the generic point of spec B, hence it is in fact a finite set by the 
above remarks. Since spec B ®A^{p) is homeomorphic to (a<t>)~l(p), we have 
shown t h a t every P Ç spec B lying over p is isolated in its fiber. Thus , we are 
left with the case of a point of spec B lying over the generic point of spec A : 
suppose the fiber over the generic point of spec A had infinitely m a n y points . 
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By the preceding remarks, this fiber would be an everywhere dense subset of 
spec B. Let now P Ç spec B be a point outside the generic fiber; by Zariski 
Main Theorem [6, Chapi t re IV, Theorem 1], there is an affine open neighbour
hood U oî \j/~l(P) in spec A' such tha t U is isomorphic to (a^)~1(^r)> where A' 
is the integral closure of A in B and \p is the canonical injection A' C B. On 
the other hand, ( V ) - 1 ( ^ ) contains a point Q of the generic fiber of 0; since A' 
is integral over A, Q belongs to the generic fiber of ^ as well. But ( V ) _ 1 ( ^ ) is 
irreducible and its generic point is the generic point of spec B; therefore, there 
would be a t least two points of (a4/)~l(U) lying over the generic point of U and 
this contradicts the above isomorphism. (N.B.—we have shown t h a t the 
generic fiber of <j> has finitely many points. Pushing the reasoning one s tep 
further, we see t ha t the generic fiber is in fact reduced to the generic point of 
spec B; indeed, since </> is of finite type, a s tandard argument — implicit in 
our preliminary remarks on quasifinite homomorphisms — shows t h a t B (x)A K 
is a finite K-module, where K is the quotient field of A. I t easily follows t ha t 
the quot ient field of B is a finite extension of K, therefore the generic point of 
spec B is the only point of spec B lying over the generic point of spec A (cf., 
e.g., the proof of Proposition 1.2(iii)), as desired). 

T h e following example shows tha t Proposition 2.1(b) is no longer true in 
general if B has proper zero-divisors: let A = Zv s tand for the localization of 
the ring of integers a t a prime ideal (p) and let B — A[X]/(p(pX — 1) ) , 
where X is an indeterminate. I t is clear t h a t B c^Z/(p)[X] X 0 and tha t 
dim B — 1. T h e canonical homomorphism <j> : A —> B has two fibers; the fiber 
over the generic point is reduced to the prime Z/(p)[X] X (0), while the fiber 
over the non-generic point consists of the minimal prime (0) X 0 and all of 
its infinitely many especializations ( / ) X Q, w h e r e / is an irreducible monic 
polynomial in Z/(p)[X]. 

Incidentally, the same example as above shows tha t , in contras t to the case 
of a quasifinite homomorphism, the set of points where a homomorphism is 
residually finite is not necessarily open — here this set is spec B — {(0) X 0 } » 
which is not open since (0) X 0 is not a closed point. 

COROLLARY 2.2. Let A and B be noetherian domains of dimension one and let 
<l) : A —» B be an infective homomorphism of finite type. Then 4> factors through 
an infective finite homomorphism A —> C and an open immersion C —» B. 

Proof. This follows from Proposition 2.1(b) and one of the variat ions of 
Zariski Main Theorem. 

As an easy consequence, we obtain the following s t ructural result: 

T H E O R E M 2.3. Let B be a domain finitely generated over its prime ring. Then B 
is esspec-residually finite if and only if exactly one of the following conditions is 
satisfied: 

(a) spec B is an open subset of a finite Z-algebra; 
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(b) spec B is an open subset of a finite k[X]-algebra, where k is a finite field 
and X is a transcendental. 

Proof. Sufficiency is clear from Proposition 1.2 (i) and Corollary 1.5. For 
necessity, we note that if char 5 ^ 0 then B contains a finite field k} in which 
case, except for one exception — namely, when B is a finite field containing 
k — B also contains a transcendental element x over k; clearly, B is finitely 
generated over k[X]. In any case, Corollary 2.2 is immediately applicable. 

Typical instances of case (b) above are k[x, y] with xy = 1 and y2 = xz 

respectively; in both examples the inclusion k[x] C k[xy y] corresponds, of 
course, to a projection onto the x-axis parallel to the 3>-axis. However, the first 
projection is a birational homomorphism while the second one is a double 
covering of the line. 

3. Residual finiteness under henselization and completion. A pair 
{A, I) consists of a ring A (comm) and an ideal I of A. Pairs form a category, 
a morphism / : (A, I) —» (A', F) consisting of a homomorphism /' : A —> A' 
such tha t / ( J ) C I'. A pair {A, I) is called a Hensel pair if A satisfies the usual 
Hensel lemma for monic polynomials relative to I. To any pair {A, I) one can 
assign a Hensel pair (hA, hI) and a morphism (A, I) —> (hA, hI), called * 'canon
ical", which are universal for morphisms from (̂ 4, I) to Hensel pairs. For the 
main properties of the pair (hA, hI), the henselization of (A, 7), we refer to 
[6, Chapitre XI] . 

Also, given a pair (A, I), we can consider its (separated) completion (Â, Î) 
defined by 

A = limA/P, / = liml/r. 

For properties of the completion we will refer to [5, Chapter 9]. 

PROPOSITION 3.1. Let (A, I) be a pair such that I C rad A and let (Â, Î) and 
(hA, hI) be as above. 

(i) If A is noetherian then A is esspec-residually finite if and only if A is so; 
(ii) If A is noetherian or local with I = rad A then nA is es spec-residually 

finite as soon as A is. The converse holds with no assumptions on A. 

Proof, (i) Since the canonical homomorphism A —> Â is flat [5, Chapter 9, 
Corollary 1 of Theorem 55], we deduce one implication by using Proposition 
1.3(i). Conversely, if A is esspec-residually finite then dim A S 1, so dim 
Â ^ 1 [5, Chapter 9 (24..D) (i')] ; therefore we need only to check the maximal 
ideals of A. But the residual extension at a maximal ideal is trivial [5, Chapter 
9, Corollary to Theorem 56], hence the conclusion. 

(ii) The canonical homomorphism A —> hA is flat because (hA, hI) is a direct 
limit of étale neighbourhoods of (A, I) [6, Chapitre XI , § 2, Theorem 2]. There
fore, as before, we have that A is esspec-residually as soon as hA is. Conversely, 
suppose that A is esspec-residually finite. As in the proof of (i), it suffices to 
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show tha t the dimension of hA is no greater than one. Now dim hA = dim A 

if A is local and / = rad A [6, Chapitre V I I I , 4, Exercice]; or else, if A is 

noetherian then A and hA have the same separated completion, hence there is 

a faithfully flat homomorphism hA —> A. Therefore, p re t ty generally, dim hA ^ 

dim A and so, dim hA ^ 1. 

This seems to be a good place to mention the relation between the present 
work and [2]. A ring A is residually finite in the sense of [2] — heretofore 
designated simply as residually finite — if A/I has a finite number of elements 
for every non-zero ideal / . For noetherian domains our notion of esspec-residual 
finiteness coincides with residual finiteness. Since esspec-residual finiteness 
disregards what happens a t the residue field of a minimal prime ideal, Proposi
tion 3.1 is, so to say, a mechanical checking procedure. Not so residual finite
ness; in fact, Corollary 5.3 of [2] is false in general and counterexamples are 
easily obtained. Thus , let A be the local ring of the nodal curve 
k[X, Y]/(Y2 - X2(X + 1)) a t the origin, where k is a finite field of char ^ 2. 
I t is easy to check tha t A is residually finite while its completion (or henseliza-
tion for t ha t ma t t e r ) , as it is well-known, has two distinct minimal prime ideals, 
hence, a fortiori, cannot be residually finite. 

Thus , things go wrong for residual finiteness as soon as the completion (or 
henselization) "branches off". This is, however, the only evil as we now see. 

First recall t ha t a local ring A is unibranch if ATed is a domain whose integral 
closure is a local ring; the formal fibers of A are the fibers of the canonical 
homomorphism A —> A. If A —» B is an arbi t rary homomorphism and if p is 
a prime ideal of A then the fiber over p, B ®A k(p), is geometrically normal if 
B (g)A k is a normal ring for every field extension k\k(p). 

PROPOSITION 3.2. Let {A, I) be a pair such that I C rad A and suppose that 
the formal fibers of each stalk Am are geometrically normal. Consider the following 
conditions: 

(i) A is residually finite, spec (A/I) is connected and for every m £ max A, 
Am is unibranch; 

(ii) A is residually finite. 
Then (i) implies (ii). If, moreover, A is local then (ii) implies (i). 

Proof. In order to show tha t (i) implies (ii) it suffices, by the results of 
Proposition 3.1, to see t ha t A is a domain under the present conditions. Now, 
generally, if M G max A then m = MC\ A G max A and (Am)A ~ (ÂM)A [5, 
Chapter 9 (24.D)] and note t ha t A is noetherian since it is residually finite. 
Therefore, using the assumption tha t Am is unibranch and has geometrically 
normal formal fibers, we have t ha t (Am) is a domain [3, Chapter IV, Corollary 
(7.6.3)]. I t follows t ha t (AM) , hence AM, is a domain. Thus , we have shown 
t h a t A is "s ta lkwise" a domain. Fur thermore A/I c^Â/î and (A, I) is a 
Hensel pair; therefore, by the "lifting idempotents" form of Hensel lemma, 
spec A is connected. Finally, A is noetherian since A is; by a s tandard argu
ment , A is a domain. 
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Conversely, if A is residually finite, it is necessarily noetherian as remarked 
above, hence A is noetherian and the canonical homomorphism A —> A is flat. 
By Proposition 1.3(i), A is esspec-residually finite. On the other hand, 
I C rad A by hypothesis, therefore A —> A is in fact faithfully flat [5, Chapter 
9, Theorem 56], hence, in particular, injective. Consequently, A is a domain 
and, a fortiori, residually finite. So far for residual finiteness; if, moreover, A is 
local then it is necessarily unibranch [3, Ibid.]. 

There is an exact analog of Proposition 3.2 for the henselization; here, more
over, the condition on the formal fibers is no longer needed [3, Chapitre IV, 
Proposition (18.6.12)]. We close the section with a result that globalizes 
Theorem 5.2 of [2]. 

PROPOSITION 3.3. Let {A, I) be a pair such that I C rad A. Suppose that A is 
an infinite residually finite ring. Then there exists a bisection between the irreducible 
components of A (respectively hA ) and the isomorphism classes of pairs B, 6 with B 
a residually finite ring and 6 : A —> B an injective homomorphism that factors 
through the canonical homomorphism A —> A (respectively A —>nA) and a sur-
jective homomorphism A—+B (respectively hA —> B). 

Proof. Let P be a minimal prime ideal of A (respectively hA). Since the 
canonical homomorphism A —> A (respectively A —> hA ) is flat, P C\ A is a 
minimal prime ideal of A (this is essentially the going-down property). There
fore P P i i = (0) because, as remarked before, a residually finite ring is 
necessarily a domain. It follows that the composition A —> A —> A/P (respec
tively A —> hA —> hA/P) is injective and also that Â/P (respectively hA/P) is 
residually finite. Conversely, let B, S be a pair as in the statement of the pro
position; since A is infinite by hypothesis, so is B, hence B ~ A/P (respectively 
B c^ hA/P) for some prime ideal P of A (respectively nA) and P H A = (0). 
On the other hand, dim ^ 4 ^ 1 (respectively, dim hA ^ 1), hence P is neces
sarily minimal. 

4. Globalization. Most of the definitions and results of the preceding 
sections can be easily extended for schemes (conceivably, for locally ringed 
spaces as well). In order to indicate some of them, we recall the concept of cover
ing families. 

Let C be a class of morphisms of schemes. A surjective covering family in 
C — here designated simply as covering family in C or C-covering family — is a 
family {Xi —-» Y] ie T of morphisms in C such that for every y G F there exists 
an i G I such that the fiber over y of the morphism X i —» F is non-empty. A 
property of schemes is said to be local for C if whenever Xt —-> F is a covering 
family in C, then F has the property if and only if each X t has the property. 
In particular, by letting C be the class of open immersions, we retrieve the 
usual notion of a local property for a scheme. 

We now mimic the definition given at the beginning of Section 1. Let (Sch) 
be the category of schemes and let P : (Sch) —» (top) be a submapping of the 
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forgetful functor Spec — by definition, Spec assigns to a scheme its underlying 
topological space. A scheme 5 is P-residually finite if the residue field a t each 
point 5 £ P(S) is finite. The main examples here again are P = Spec and 
P = ESSpec, where ESSpec (S) = Spec (S) — Min(S) and M in (5) is the space 
of generic points of the irreducible components of S. 

If 5 is a scheme and U an open subscheme of S, 0UtX ~ 0StX for any x ^ U. 
Therefore Spec-residual finiteness is a local proper ty for the Zariski topology. 
In a similar way, we have: 

L E M M A 4.1 . ESSpec-residual finiteness is a local property for the Zariski 
topology. 

Proof. I t suffices to show t h a t if U C -5 is an open immersion and if x Ç U 
then x is the generic point of an irreducible component of U if and only if it is 
the generic point of an irreducible component of S. But this is an easy conse
quence of [1, Chapi t re II § 4, Proposition 7]. 

The above lemma is basic for all the following results. Firstly, the analog of 
Corollary 1.4: 

PROPOSITION 4.2. Let f : X —> Y be a dominant morphism of integral schemes 
(i.e., irreducible and reduced ones). Let K(X) (respectively K(Y)) be the function 

field of X (respectively Y) and suppose that the extension K(X)\K(Y) is finite. 
(a) If Y is locally noetherian and ESSpec-residually finite then X is ESSpec-

residually finite; 
(b) If Y is a normal scheme and if, moreover, the morphism f is integral, then Y 

is ESSpec-residually finite if and only if X is ESSpec-residually finite. 

Proof, (a) Let x £ ESSpec (X). Pick affine open neighbourhoods U and V 
of x and f(x) respectively such t h a t / ( f / ) C V. Consider the homomorphism 
A = r ( V , 0F) —> r ( U , 0X) = B corresponding to the res t r i c t ion / \U : U —> V; 
the lat ter is dominant , hence A —> B is injective. Since the quotient field of A 
(respectively of B) is isomorphic to K(Y) (respectively to K(X)), A is esspec-
residually finite (Lemma 4.1) and noetherian (Y is locally noether ian) , we 
deduce, via Corollary 1.4(a), t ha t B is esspec-residually finite. Since x G U 
and x is an arbitrari ly given non-generic point of X, we get the desired con
clusion. 

(b) Since the morphism / : X —» Y is integral, we can cover Y by affine 
open sets Ua such t h a t / - 1 (£/<*) is affine (actually, any affine covering will do) 
and such t ha t the induced homomorphism 

Aa = T(Ua, Oy) -> T(f-i(Ua), Ox) = Ba 

is integral. T h e ^4a's are integrally closed since Y is normal; therefore, a use of 
Corollary 1.4(b) and Lemma 4.1 finishes the proof. 

PROPOSITION 4.3. ESSpec-residual finiteness is a local property for the dominant 
monomorphisms whose source is an irreducible scheme. 
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Proof. Let { ft : Xt —> Y} iel be a covering family in the class of the dominant 
monomorphisms with irreducible source. Suppose that Y is ESSpec-residually 
finite and let i £ I be an arbitrary index. Take affine open coverings X = U Uj 
and Y = \J Vj such that fi(Uj) C V j', the restriction ft\Uj : £/, —> F, is 
clearly a monomorphism as composite of the open immersion Uj ~^fi~l(Vj) 
and the fiber morphism/i - 1(Fj) —» V j . Therefore, the corresponding homomor-
phism T(Vjt 0Y) —> T(Ujy 0Xi) is an epimorphism; it then follows from Lemma 
4.1 and Corollary 1.5 that Xt is ESSpec-residually finite. Conversely, let 
y £ ESSpec(F) and let i £ / be such that the fiber of/* over y is non-empty; 
pick x G Xi in this fiber and let U C_ Xt and F C Y be affine open neighbour
hoods of x and J, respectively. Since dominancy is a local property on both Y 
and Xi {Xi is irreducible !), the restriction ft\ U : U —> F is dominant, which 
means that the kernel of the homomorphism T(V, 0Y) —* r([7, 0Xî) is a 
nil-ideal. Since U is irreducible too, we can apply Proposition 1.3 (ii) and 
Lemma 4.1 to obtain the desired conclusion. 

PROPOSITION 4.4. ESSpec-residual finiteness is a local property for the class of 
flat monomorphisms. 

Proof. By examining the proof of Proposition 4.3, one sees that it suffices to 
show that flatness localizes well and then use Proposition 1.3(i). But this is 
indeed so because if U C X and V C Y are affine open neighbourhoods of x 
and f(x) respectively, then the restriction/ \U : U —•> V is flat as composite of 
the open immersion U —>f~l{V) and the fiber morph i sm/ _ 1 (F) —* V. 

Recall that a morphism / : X —» Y of schemes is locally quasifinite if, for 
every x £ X, there exist affine open neighbourhoods U and V of x and f(x) 
respectively such that/(£7) C V and such that the induced homomorphism 
r ( F , Oy) -> T(U, 0X) is quasifinite. 

PROPOSITION 4.5. ESSpec-residual finiteness is a local property for the class of 
flat locally quasifinite morphisms (respectively dominant locally quasifinite mor-
phisms whose source is an irreducible scheme). In particular, ESSpec-residual 
finiteness is a local property for the étale morphisms {respectively the unramified 
dominant morphisms whose source is an irreducible scheme). 

Proof. From the proofs of Proposition 4.3 and Proposition 4.4 we see that it 
is enough to show that if/ : X —» F is a locally quasifinite morphism and if Y is 
ESSpec-residually finite, then X is ESSpec-residually finite. This is in turn a 
consequence of Zariski Main Theorem; indeed, if x G X, there exist open neigh
bourhoods U of x and F of f(x) such that f(U) C F and such that the restric
tion morphism f \U : U —> F factors through an open immersion U —* V' and 
a finite morphism Vf —> F. By Lemma 4.1, Z7 is ESSpec-residually finite as 
soon as V is. On the other hand, V is ESSpec-residually finite as soon as F is: 
indeed, the question is purely local in which case it follows from Proposition 
1.2(i). 
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As in the ring case, we can characterize ESSpec-residually finite schemes 
t h a t are of "good" type over a "good" ground ring. More precisely: 

T H E O R E M 4.6. Let R be an esspec-residually finite noetherian domain of dimen
sion one and let f : X —» spec R be a dominant morphism locally of finite type, 
where X is an integral scheme. Then X is ESSpec-residually finite if and only if 
f factors locally through an open immersion U —> V and a finite morphism 
V —» spec R. 

Proof. If / factors in the stated way, it is clear t ha t X is ESSpec-residually 
finite according to Proposition 1.2 (i) and Lemma 4.1 . Conversely, let X be 
ESSpec-residually finite; if U C X is an affine open set, then T(U, Ox) is an 
esspec-residually finite domain endowed with an injective homomorphism 
R-^> T(U, Ox) of finite type. If dim r ( [ 7 , 0X) = 0, this homomorphism is 
clearly quasifinite; otherwise, we can apply Proposition 2.1(b) to get the same 
conclusion. Therefore, / is a locally quasifinite morphism and an application of 
Zariski Main Theorem closes the proof. 

5. T h e f u n c t o r Ass(—(Af)) a n d t h e f u n c t o r S u p p ( M 0 A - ) . Let 
A G (comm) and let M be an A -module. Recall t ha t a prime p G spec A is 
said to be associated to M if there exists an x G M such t ha t p is minimal 
among the prime ideals containing the annihilator of x in A. T h e set of as
sociated primes to M is denoted Ass^(ikT). If A (comm), we let (-+A) denote 
the category of homomorphisms in (comm) whose target is A ; a morphism 
in (—>A) is a homomorphism B —> C in (comm) such tha t the following 
diagram is commuta t ive : 

Bz KC 

y 
If A is besides noetherian, we denote N(—>A) the full subcategory of (—>A) 
whose objects are the morphisms with noetherian source. This is a remarkable 
category for one has: 

PROPOSITION 5.1. Let A G (comm) be noetherian and let N(~^A) be as above. 
Let M be an A-module. For each <j> : B —» A in N(-*A) we set 

Ass_(-*(ikO)(<£ : B-+A) = AssB(0*(ikO) 

where 4>*(M) is the direct image of M under </> {urestriction of scalars"). Then 
Ass_ ( — * (M) ) extends to a subfunctor of the restriction of spec to N(-^A). 

Proof. Since Ass_ ( — * (M) ) is a t any ra te a submapping of spec, it suffices to 
check t ha t a m o r p h i s m / : B —> C in N(-^A ) gives rise to a map in the opposite 
way A s s _ ( - * ( M ) ) ( / ) : Ass c ( (0 c )*(Jkf) ) -> Ass5((<£*)*(M)) induced by 
af : spec C —» spec B. Now, since B and C are noetherian, af induces a m a p 

A s s c ( ( 0 c ) * ( M ) ) - > A s s B ( ( / ) * ( 0 c ) * ( i k T ) ) 
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[5,Prop. (9.4)]. On the other hand, (0*).(Af) = ( 0 c o / ) * ( M ) = (/*)(*c)*(M) 
by the very definitions, hence the desired result. 

COROLLARY 5.2. Let A £ (comm) &e noetherian and let M be an A-module. 
Then Ass_ ( — * (M) ) — residual finiteness is a local property for the residually 
finite morphisms in N(—*A). 

Proof. It readily follows from Proposition 5.1 and the fact that, for/ : B —> C 
in7V(->4) ,onehas (af ) (Ass c(fo c)*(M))) = Ass*((**).(M)). 

Recall that if A £ (comm) and if ikf is an 4-module, one defines 
SuppA(M) = {p 6 spec 4|M^ = M ®AAP ^ 0}. Let {A—>) denote the cate
gory of commutative 4 — algebras; then 

Supp*(M ®AB) C m - ' S u p p U i t f ) ) 

for/ : 4 - > 5 in (4—>) [1, Chapitre II, § 4, Proposition 19], so Supp_(AT ®A - ) 
is a functor on (4—>). 

PROPOSITION 5.3. Supp_(ikf ®A — ) — residual finiteness is a local property 
for the residually finite homomorphisms in (A—*), provided M is of finite type 
over A. 

Proof. Let (C\) be a covering family with source B in (A—>). If B is 
Supp (M (x)A — ) — residually finite then so is Ct for every i because of func-
toriality. Conversely, if p £ Supp(ikf ®AB), let P £ spec(Ci) (for some i) 
be such that it lies over p; since ilf is of finite type over A, M (x)A 5 is of finite 
type over B, therefore, P belongs to Supp ((M (x)A B) (g)B Ct) [1, Ibid.]. 
Since (M (g)A B) (x)B CiC^ M ®A Cu the proof is finished. 
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