Seventh Meeting, 14th June 1901.

J. W. BUTTERS, Esq., M.A., B.Sc., President, in the Chair.

An Extension of Abel's Theorem on the Continuity of a Power Series.

By Professor GIBSON.

When the series

 $s = a_0 + a_1 + \dots + a_n + \dots$ (1)

is convergent, then Abel's Theorem shows that

if
$$f(x) = \sum a_m x^m$$
, $\lim_{x \to 1} f(x) = \sum a_m = s$.

Series of the form

$$f(t) = \sum_{0}^{\infty} a_m e^{-a_m t} \qquad (2)$$

are of frequent occurrence in the Analytical Theory of Heat and in other branches of Mathematical Physics, and the conditions to which f(t) is subject usually require that as t tends to zero the function f(t)should tend to the value s.

The necessity for the proof of Abel's Theorem may be shown by the consideration of particular cases. Thus the two functions, defined by series,

$$f_1(x) = \sum_{m=1}^{\infty} (-1)^{m-1} \frac{x^m}{m}$$

$$f_2(x) = \sum_{m=1}^{\infty} \left(\frac{x^{4m-2}}{4m-3} + \frac{x^{4m-1}}{4m-1} - \frac{x^{2m}}{2m} \right)$$

are each equal to log(1+x) for the range -1 < x < 1. Hence by the very definition of a limit

$$\underset{x=1}{\operatorname{Limit} f_1(x)} = \log 2 = \underset{x=1}{\operatorname{Limit} f_2(x)}.$$

The value $f_1(1)$ is $\log 2$; but the value $f_2(1)$ is $\frac{3}{2}\log 2$ and

$$\operatorname{Limit}_{x=1} f_2(x) \ \pm \sum_{m=1}^{\infty} \left(\frac{1}{4m-3} + \frac{1}{4m-1} - \frac{1}{2m} \right).$$

So far as I know, not much attention has been paid to series of the form (2), though the corresponding limit theorems for definite integrals are of course well known. It is obvious, however, that the method that applies to Abel's Theorem can be extended to many other cases, and on account of the frequent occurrence of these series in mathematical physics, it may not be out of place to refer to some of these cases.

Suppose then that f(t) is defined by equation (2), the series $\sum a_m$ being convergent and having s as its sum.

First, let a_1 , a_2 , a_3 be an infinite *increasing* sequence of positive numbers having an upper limit a, that is

 $0 < a_m < a_{m+1} < a$ for every integer m;

then, manifestly f(t) is a continuous function for every positive value of t. We have to prove

$$\lim_{t\to 0} f(t) = \sum_{0}^{\infty} a_m = s \quad . \quad . \quad (3).$$

When a_m is a positive integer for every value of m, we of course have Abel's Theorem $(e^{-i}=x)$.

Let
$$f(t) = \phi(t) + \psi(t)$$
 - (4)

 $\phi(t) = \sum_{n=1}^{n} a_{m} e^{-a_{m}t}$

where

$$\psi(t) = \sum_{n+1}^{\infty} a_n e^{-a_n t} = \operatorname{Limit}_{p=\infty} {}_{p} \mathbf{R}_n$$

where ${}_{p}\mathbf{R}_{n} = a_{n+1}e^{-a_{n+1}t} + a_{n+2}e^{-a_{n+2}t} + \dots + a_{n+p}e^{-a_{n+p}t}$.

Let $s_n = \sum_{0}^{n} a_m$ so that

$$a_{n+1} = s_{n+1} - s_n, \ a_{n+2} = s_{n+2} - s_{n+1}, \dots,$$

then

$${}_{p}\mathbf{R}_{n} = (s_{n+1} - s_{n})e^{-a_{n+1}t} + (s_{n+2} - s_{n+1})e^{-a_{n+2}t} + \dots + (s_{n+p} - s_{n+p-1})e^{-a_{n+p}t}$$

= $-s_{n}e^{-a_{n+1}t} + s_{n+p}e^{-a_{n+p}t}$
+ $s_{n+1}(e^{-a_{n+1}t} - e^{-a_{n+2}t}) + \dots + s_{n+p-1}(e^{-a_{n+p-1}t} - e^{-a_{n+p}t}) \cdot (5).$

Since, $a_{n+1} < a_{n+2}$, etc., the differences $(e^{-a_{n+1}t} - e^{-a_{n+2}t})$, etc., are all *positive*. Hence if A is the greatest and B the least of the values of s_m where m is any integer whatever greater than n,

This cho e series (1)

is converg consists of 'N) 4(4) a finite number of terms, can clearly by taking t small enough be made less than $\frac{1}{2}\epsilon$. Hence we can choose t so near zero that

 $|f(t)-s| < \epsilon$ Limit f(t) = s. that is

The part of the proof that brings in the restriction on the a's is that which leads to equations (6), (9); the differences

$$(e^{-a_{n+1}t} - e^{-a_{n+2}t})$$
, etc.,

must be positive, or at least all of the same sign.

the sum of those terms in (5) that contain the differences
$$(e^{-a_{n+1}t} - e^{-a_{n+2}t})$$
, etc., will lie between

$$A(e^{-\alpha_{n+1}t}-e^{-\alpha_{n+p}t})$$
 and $B(e^{-\alpha_{n+1}t}-e^{-\alpha_{n+p}t})$.

If M be some mean value between A and B, we may therefore $M(e^{-a_{n+1}t} - e^{-a_{n+p}t}) - (6)$ write

for the sum of the terms in (5) that contain the differences. A, B, M are functions of n but not of p.

It is to be noted that the limit for n increasing indefinitely of each of the quantities A and B and therefore of M is s, that is

$$\underset{n=\infty}{\text{Limit }} \mathbf{M} = s - \cdots (7).$$

Equation (5) may now be written

and

$$_{p}\mathbf{R}_{n} = (\mathbf{M} - s_{n})e^{-\alpha_{n+1}t} + (s_{n+p} - \mathbf{M})e^{-\alpha_{n+p}t} - (8)$$

$$\psi(t) = \underset{p=\infty}{\operatorname{Limit}} {}_{p}\mathbf{R}_{n} = (\mathbf{M} - s_{n})e^{-\alpha_{n+1}t} + (s - \mathbf{M})e^{-\alpha t} \quad - \quad (9)$$

where a =in this case $\psi(t)$ would r

Again let
$$s = s_n + r_n$$
; then

$$f(t) - s = (\phi(t) - s_n) + (\mathbf{M} - s_n)e^{-\alpha_{n+1}t} + (s - \mathbf{M})e^{-\alpha t} - r_n \quad (10)$$

It is easy now to see that equation (3) is true. First, choose
$$n$$
 so great, say $n = N$, that for that and all greater values

$$(\mathbf{M}-s_n)e^{-a_{n+1}t}+(s-\mathbf{M})e^{-at}-r_n\Big|<\tfrac{1}{2}\epsilon$$

s easy now to see that equation (3) is true. First,
t, say
$$n = N$$
, that for that and all greater values

$$|(\mathbf{M} - s_n)e^{-\alpha n+10} + (s - \mathbf{M})e^{-\alpha n} - r_n| < \frac{1}{2}\epsilon$$
.
ice is possible from (7) and from the fact that the egent. Next, the difference $|\phi(t) - s_n|$, since it

$$-s = (\phi(t) - s_n) + (\mathbf{M} - s_n)e^{-a_{n+1}t} + (s - \mathbf{M})$$

sy now to see that equation (3) is true.

= Limit
$$a_{n+p}$$
. Usually a is infinite, so that i
d reduce to the first term

Next, instead of $e^{-a_m t}$ take a function $\phi_m(t)$ such that

(i) Limit
$$\phi_m(t) = 1$$
 for every m_t

which caincides with the condition $\phi_m(0) = 1$ if $\phi_m(t)$ is continuous up to t = 0 inclusive.

(ii)
$$\phi_1(t), \phi_2(t), \ldots$$

is an increasing (or a decreasing) sequence with a *finite* upper (or lower) limit, $\Phi(t)$.

(iii)
$$f(t) = \sum a_m \phi_m(t)$$
 is convergent for $0 < t$;
then $\lim_{t \to 0} f(t) = s$.

The proof is the same as before. Instead of (6) we have

and instead of (9)

$$\psi(t) = (\mathbf{M} - s_n)\phi_{n+1}(t) + (s - \mathbf{M})\Phi(t)$$