J. Austral. Math. Soc. 21 (Series A) (1976), 49-55.

FREE MODULES OVER SOME MODULAR GROUP RINGS

JON F. CARLSON

(Received 29 October 1973)

Communicated by G. E. Wall

1. Introduction

Let K be a field and G a finite group with subgroup H. We say that (G, H) is a K-free pair if whenever M is a finitely generated KG-module whose restriction $M_{\rm H}$ is a free KH-module, then M is a free KG-module. In this paper pairs of groups with this property will be investigated.

If K has characteristic p and G is a cyclic p-group then (G, H) is a K-free pair provided H is a non-trivial subgroup of G. Several other examples of such pairs are given. One of the major results is that if K has characteristic 2 and G is the quaternion group of order 8 then (G, H) is K-free for any non-trivial subgroup H of G. Several conditions on the existence of such pairs are included in this paper.

Almost all of the results in this paper concern cases where the field K has characteristic $p(\neq 0)$ and G is a p-group. There exist examples of K-free pairs (G, H) where G is not a p-group. But the results are incomplete and are not included here.

Throughout this paper all modules will be assumed to be finitely generated. If G is a group 1(G) will denote the identity KG-module. If U is a subgroup of G and M is a KU-module let $M^G = KG \otimes_{KU} M$. If L is a KG-module, L_U denotes the restriction of L to a KU-module. For $x, y \in G, x^y = yxy^{-1}$ and $U^x = xUx^{-1}$. The radical of KG is indicated by rad KG and $\tilde{G} = \sum_{g \in G} g$.

2. Generalities

In this section K is a field and H is a subgroup of group G.

PROPOSITION 2.1. Let T be a subgroup of G with $H \subseteq T \subseteq G$.

- (i) If (G, T) and (T, H) are K-free pairs then (G, H) is a K-free pair.
- (ii) If (G, H) is K-free then (G, T) is a K-free pair.

Jon F. Carlson

PROOF. (i) Let M be a KG-module such that $M_{\rm H}$ is a free module. Then $M_{\rm T}$ is a free module since $(M_{\rm T})_{\rm H} = M_{\rm H}$. So M is a free module.

(ii) Let M be a KG-module such that M_T is free. Then M_H is a free module. We shall need the following several times.

LEMMA 2.2. Let K have characteristic p > 0. Let G be a p-group. Suppose M is a KG-module. Then KG is a direct summand of M if and only if $\tilde{G}M \neq (0)$.

PROOF. It is well known that since G is a p-group $K\tilde{G}$ is the unique minimal ideal in KG. If $\tilde{G}M \neq (0)$ then there exists some $m \in M$ with $\tilde{G}m \neq 0$. So the annihilator of m in KG is the zero ideal. Hence the mapping $KG \rightarrow M$ by $\alpha \rightarrow \alpha m$ for $\alpha \in KG$ is a monomorphism. Since KG is an injective left KG-module [see Curtis and Reiner (1962; page 321)] this homomorphism must split.

PROPOSITION 2.3. Let K have characteristic p > 0 and let G be a p-group. Suppose E is a finite extension of K. If (G, H) is a K-free pair, it is an E-free pair.

PROOF. Let M be an EG-module such that M_H is a free EH-module. By restriction M is a finitely generated KG-module. Since $EH = E \otimes_K KH$, we have that M_H is free as a KH-module, hence it is free as a KG-module. So $\tilde{G}M \neq (0)$ and EG is a direct summand of M. By induction on the dimension of M we get that M is a free EG-module.

THEOREM 2.4. Suppose (G, H) is a K-free pair. Then there exists no subgroup C of G with $C \neq \{1\}$, and $C^x \cap H = \{1\}$ for all $x \in G$.

PROOF. Suppose there did exist such a subgroup. Then by the Mackey subgroup theorem [Curtis and Reiner (1962; page 324)]

$$(1(C)^G)_{\mathsf{H}} = \sum_{x} 1(C^x \cap H)^{\mathsf{H}}$$

where x runs through a set of representaives of the H-C double cosets. Since $C^x \cap H = \{1\}$ and $\mathbb{1}(\{1\})^H = KH$, $(\mathbb{1}(C)^G)_H$ is a free KH-module. But $\mathbb{1}(C)^G$ is not a free KG-module.

3. Some Examples

PROPOSITION 3.1. Let K be a field of characteristic p > 0. Let G be cyclic of order p^a . If H is any non-trivial subgroup of G then (G, H) is a K-free pair.

PROOF. Let $S = \langle x^p \rangle$ where x is a generator of G. If we show that (G, S) is a K-free pair an easy induction proves the proposition.

Let M be an indecomposible KG-module of K-dimension n. The Jordan canonical form of the matrix of x on M is

50

Relative to some basis for M this is the matrix for x. So x^p has matrix

where the non-zero entries occur along the diagonal and in the (i, i + p) positions for $i = 1, \dots, n-p$. The K-dimension of $M/(1 - x^p)M$ is p.

Suppose M is a free KS-module. Then M_s is isomorphic to the sum of t copies of KS. Thus $n = p^{a-1}t$ and t is the K-dimension of $M_s/(\operatorname{rad} KS \cdot M_s)$. Since

rad
$$KS = (1 - x^p)KS$$

we must have t = p. Therefore $n = p^a$ and $M \cong KG$.

We can develop more examples using the following.

THEOREM 3.2. Let K be a field of characteristic p > 0 and G a p-group.

[3]

Suppose T, H are subgroups of G with $T \triangle G$ and $T \subseteq H \subseteq G$. If (G/T, H/T) is a K-free pair so is (G, H).

PROOF. Let M be a KG-module such that M_H is a free KH-module. Let $\tilde{T} = \sum_{g \in T} g$. The set $L = \tilde{T}M$ is a submodule of M since $T \triangle G$. For all $g \in T$, $g \tilde{T} = \tilde{T}$. So we can regard L as a G/T-module. We claim that $L_{(H/T)}$ is a free module. This follows from the fact that M_H is a direct sum of copies of KH and $\tilde{T}(KH) \cong 1(T)^H$ while $1(T)^H \cong K(H/T)$ as K(H/T)-modules.

Hence L is a free K(G/H)-module. Let x_1, \dots, x_n be a compete set of coset representatives of T in G. If $X = \sum_{i=1}^{n} x_i$, by Lemma 2.2 there exists an element $l \in L$ with $Xl \neq 0$. But $l = \tilde{T}m$ for some $m \in M$. So $Xl = X\tilde{T}m = \tilde{G}m \neq 0$. Lemma 2.2 says that KG is a direct summand of M. An easy induction proves the theorem.

COROLLARY 3.3. Let K have characteristic p > 0 and let G and S be p-groups. If H is a subgroup of G with (G, H) a K-free pair then $(G \times S, H \times S)$ is a K-free pair.

PROOF. $G \times S/S \cong G$ so $((G \times S)/S, (H \times S)/S)$ is a K-free pair.

COROLLARY 3.4. Let K have characteristic p and let $G = A_m(p) = \langle x, y | x^{p^{m-1}} = y^p = 1, x^y = x^{1+p^{m-2}} \rangle$ where m is an integer $m \ge 4$. Let $H = \langle x^{p^{m-2}}, y \rangle$. If T is any subgroup of G with $H \subseteq T \subseteq G$ then (G, T) is a K-free pair.

PROOF. By Proposition 2.1 it is sufficient to show that (G, H) is a K-free pair. Let $S = \langle x^{p^{m-3}}, y \rangle \cong \langle x^{p^{m-3}} \rangle \times \langle y \rangle$. By Corollary 3.3 and Proposition 3.1 (S, H) is a K-free pair. Now $H \triangle G$ and G/H is cyclic. So (G/H, S/H) is a K-free pair. Hence (G, S) is K-free. By Proposition 2.1, (G, H) is a K-free pair.

COROLLARY 3.5. Let K be a field of characteristic p > 0 and let $G = B_m(p) = \langle x, y, z | x^{p^{m-2}} = y^p = z^p = 1$, xy = yx, yz = zy, $x^z = xy \rangle$ where $m \ge 4$. Let $H = \langle x^{p^{m-2}}, y, z \rangle$. Then if T is any subgroup with $H \subseteq T \subseteq G$, (G, T) is a K-free pair.

PROOF. We need only note that $\langle y \rangle \triangle G$ and $(G/\langle y \rangle, H/\langle y \rangle)$ is a K-free pair.

4. The Quaternion Group

THEOREM 4.1. Let K be a field of characteristic 2. Let G be the quaternion group of order 8, i.e. $G = \langle x, y | x^4 = y^4 = 1, x^2 = y^2 = (xy)^2 \rangle$. If H is any non-trivial subgroup of G then (G, H) is a K-free pair.

PROOF. Let $T = \langle x^2 \rangle$. Since all non-trivial subgroups of G contain T, it will be sufficient to prove that (G, T) is K-free.

Throughout this proof we suppose M is a KG-module such that M_{T} is a free

Free modules

KT-module, but M is not free as a KG-module. It will be shown that this leads to a contradiction. Assume further that M has minimal K-dimension among such modules.

Let $L = (1 + y^2)M$. Then L is a submodule of M. Let N = M/L. Since the elements of T act trivially on L and on N, these modules may be regarded as $K\bar{G}$ -modules where $\bar{G} = G/T$. We can write $\bar{G} = \langle \bar{x}, \bar{y} \rangle$ where $\bar{x} = xT$, $\bar{y} = yT$. Since $M_{\langle x \rangle}$, $M_{\langle x \rangle}$, $M_{\langle x \rangle}$, are free modules, $L_{\langle \bar{x} \rangle}$, $L_{\langle \bar{x} \rangle}$, $N_{\langle \bar{x} \rangle}$, $N_{\langle \bar{y} \rangle}$, and $N_{\langle \bar{x} \bar{y} \rangle}$ are free modules.

We shall need the following

LEMMA 4.2. Let $S = \langle y \rangle$. Let $m_1, \dots, m_t \in M$ such that $\{m_i + (\operatorname{rad} KS)M_S\}$ is a K-basis for $M_S/(\operatorname{rad} KS)M_S$. Then m_1, \dots, m_t is a KS-basis for M_S .

PROOF. Clearly the KS-dimension of M_s is t since M_s is a free module. Let $M' = \sum_{i=1}^{t} KSm_i$. Then

$$M_S = M' + (rad KS)M_S$$

Nakayama's lemma [see Bass (1968; page 85)] says that $M_s = M'$. A simple dimension argument proves the lemma.

Let b_1, \dots, b_t be a $K\langle \bar{y} \rangle$ -basis for N. If $b_{t+i} = (1 + y)b_i$ then b_1, \dots, b_{2t} is a K-basis for N. Let a_1, \dots, a_t be a set of coset representatives of b_1, \dots, b_t , respectively' in M. That is, for each $i, a_i \to b_i$ under the quotient map $M \to N = M/L$. Since this quotient map induces an isomorphism

$$M_{\rm s}/({\rm rad}\ KS \cdot M_{\rm s}) \cong N_{\rm s}/({\rm rad}\ K\overline{S} \cdot N_{\rm s}),$$

the elements a_1, \dots, a_t are a KS-basis for M_S . For each $i = 1, \dots, t$, let $a_{t+i} = (1 + y)a_i$, $a_{2t+i} = (1 + y^2)a_i$ and $a_{3t+i} = (1 + y + y^2 + y^3)a_i$. Then a_1, \dots, a_{4t} is a K-basis for M.

LEMMA 4.3. There exists no $K\bar{G}$ -free submodules of N.

PROOF. Write $N = N_1 \oplus \cdots \oplus N_S$ where each N_i is indecomposable. Suppose one of these, say N_1 , is a free $K\bar{G}$ -module. We can assume without loss of generality that b_1, b_1 are a $K\langle \bar{y} \rangle$ basis for N_1 . Since one of these must be a $K\bar{G}$ -basis for N_1 , we lose nothing by assuming that $N_1 = K\bar{G} \cdot b_1$ and $b_2 = xb_1$. But then

$$\tilde{G}a_1 = (1 + y + y^2 + y^3)a_1 + (1 + y + y^2 + y^3)a_2 \neq 0.$$

So M has a KG-free direct summand, by Lemma 2.2. This contradicts the minimality of the K-dimension of M.

Write $N = N_1 \oplus N_2 \oplus \cdots \oplus N_s$ where each N_i is indecomposable. Each N_i is free as a $K\langle \bar{x} \rangle$ -module and as a $K\langle \bar{y} \rangle$ -module but not as a $K\bar{G}$ -module. Basev (1961) and Heller and Reiner (1961) [see Conlon (1964)] have given a complete list of representations of \bar{G} . The above requirements on each N_i dictate that each

Jon F. Carlson

 N_i is a $C_n(\pi)$, in Conlon's notation. That is, there exists a basis for N such that, relative to this basis, x and y have matrices

$$y \leftrightarrow \begin{bmatrix} I & O \\ & \\ I & I \end{bmatrix}, \qquad x \leftrightarrow \begin{bmatrix} I \\ & \\ A & I \end{bmatrix}$$

where $I = I_t$ is the $t \times t$ identity matrix and A is non-singular. In fact if the field K is large enough we can assume that A is triangular.

If these matrices are given relative to the basis b_1, \dots, b_{2t} for N $(b_{t+i} = (1 + y)b_i)$, then as before we can construct a K-basis a_1, \dots, a_{4t} for M. With respect to this basis x and y have matrices

where B, C, D, E are to be determined. Now $x^2 = y^2$. This implies that AC = I and $E = ABA^{-1}$. Furthermore $xy = y^3x$. By computing the matrices for this element it is easily seen that I + A = C and I + A + B = E. Hence $I + A + A^2 = 0$, and the minimum polynomial for A has at most two distinct roots.

Let F be an extension of K which contains the roots p, p^2 of the polynomial $1 + x + x^2$. In F, A is similar to the matrix

$$A' = \begin{bmatrix} pI_r & O \\ & \\ O & p^2I_s \end{bmatrix}.$$

For convenience assume A = A'. But then

$$I + A = A^{2} = B + E = B + ABA^{-1}.$$
 If

$$B = \begin{bmatrix} W & X \\ Y & Z \end{bmatrix},$$

$$A^{2} = B + ABA^{-1} = \begin{bmatrix} 0 & p^{2}X \\ pY & 0 \end{bmatrix}$$

which is impossible. This contradiction proves the theorem.

References

V. A. Basev (1961), 'Representations of the group $Z_2 \times Z_2$ in a field of characteristic 2' (Russian), Dokl. Akad. Nauk. SSSR 141 1015-1018.

Hyman Bass (1968), Algebraic K-Theory (Benjamin, New York, 1968.)

S. B. Conlon (1964), 'Certain representation algebras', J. Austral. Math. Soc. 4 83-99.

Charles W. Curtis and Irving Reiner (1962), Representation theory of finite groups and associative algebras (Interscience, New York, 1962.)

A. Heller and I. Reiner (1961), 'Indecomposable representations', Illinois J. Math. 5 314-323.

University of Georgia Athens, Georgia 30602 U. S. A.