FREE MODULES OVER SOME MODULAR GROUP RINGS
 JON F. CARLSON

(Received 29 October 1973)

Communicated by G. E. Wall

1. Introduction

Let K be a field and G a finite group with subgroup H. We say that (G, H) is a K-free pair if whenever M is a finitely generated $K G$-module whose restriction M_{H} is a free $K H$-module, then M is a free $K G$-module. In this paper pairs of groups with this property will be investigated.

If K has characteristic p and G is a cyclic p-group then (G, H) is a K-free pair provided H is a non-trivial subgroup of G. Several other examples of such pairs are given. One of the major results is that if K has characteristic 2 and G is the quaternion group of order 8 then (G, H) is K-free for any non-trivial subgroup H of G. Several conditions on the existence of such pairs are included in this paper.

Almost all of the results in this paper concern cases where the field K has characteristic $p(\neq 0)$ and G is a p-group. There exist examples of K-free pairs (G, H) where G is not a p-group. But the results are incomplete and are not included here.

Throughout this paper all modules will be assumed to be finitely generated. If G is a group $1(G)$ will denote the identity $K G$-module. If U is a subgroup of G and M is a $K U$-module let $M^{G}=K G \otimes_{K U} M$. If L is a $K G$-module, L_{U} denotes the restriction of L to a $K U$-module. For $x, y \in G, x^{y}=y x y^{-1}$ and $U^{x}=x U x^{-1}$. The radical of $K G$ is indicated by $\operatorname{rad} K G$ and $\tilde{G}=\Sigma_{\eta \in G} g$.

2. Generalities

In this section K is a field and H is a subgroup of group G.
Proposition 2.1. Let T be a subgroup of G with $H \subseteq T \subseteq G$.
(i) If (G, T) and (T, H) are K-free pairs then (G, H) is a K-free pair.
(ii) If (G, H) is K-free then (G, T) is a K-free pair.

Proof. (i) Let M be a $K G$-module such that M_{H} is a free module. Then M_{T} is a free module since $\left(M_{\mathrm{T}}\right)_{\mathrm{H}}=M_{\mathrm{H}}$. So M is a free module.
(ii) Let M be a $K G$-module such that M_{T} is free. Then M_{H} is a free module.

We shall need the following several times.
Lemma 2.2. Let K have characteristic $p>0$. Let G be a p-group. Suppose M is a $K G$-module. Then $K G$ is a direct summand of M if and only if $\widetilde{G} M \neq(0)$.

Proof. It is well known that since G is a p-group $K \tilde{G}$ is the unique minimal ideal in $K G$. If $\tilde{G} M \neq(0)$ then there exists some $m \in M$ with $\tilde{G} m \neq 0$. So the annihilator of m in $K G$ is the zero ideal. Hence the mapping $K G \rightarrow M$ by $\alpha \rightarrow \alpha m$ for $\alpha \in K G$ is a monomorphism. Since $K G$ is an injective left $K G$-module [see Curtis and Reiner (1962; page 321)] this homomorphism must split.

Proposition 2.3. Let K have characteristic $p>0$ and let G be a p-group. Suppose E is a finite extension of K. If (G, H) is a K-free pair, it is an E-free pair.

Proof. Let M be an $E G$-module such that M_{H} is a free $E H$-module. By restriction M is a finitely generated $K G$-module. Since $E H=E \otimes_{K} K H$, we have that $M_{\mathbf{H}}$ is free as a $K H$-module, hence it is free as a $K G$-module. So $\tilde{G} M \neq(0)$ and $E G$ is a direct summand of M. By induction on the dimension of M we get that M is a free $E G$-module.

Theorem 2.4. Suppose (G, H) is a K-free pair. Then there exists no subgroup C of G with $C \neq\{1\}$, and $C^{x} \cap H=\{1\}$ for all $x \in G$.

Proof. Suppose there did exist such a subgroup. Then by the Mackey subgroup theorem [Curtis and Reiner (1962; page 324)]

$$
\left(1(C)^{G}\right)_{H}=\sum_{x} 1\left(C^{x} \cap H\right)^{H}
$$

where x runs through a set of representaives of the $H-C$ deuble cosets. Since $C^{\boldsymbol{x}} \cap H=\{1\}$ and $1(\{1\})^{\text {II }}=K H,\left(1(C)^{G}\right)_{I I}$ is a free $K H$-module. But $1(C)^{G}$ is not a free $K G$-module.

3. Some Examples

Proposition 3.1. Let K be a field of characteristic $p>0$. Let G be cyclic of order p^{a}. If H is any non-trivial subgroup of G then (G, H) is a K-free pair.

Proof. Let $\left.S=<x^{p}\right\rangle$ where x is a generator of G. If we show that (G, S) is a K-free pair an easy induction proves the proposition.

Let M be an indecomposible $K G$-module of K-dimension n. The Jordan canonical form of the matrix of x on M is

Relative to some basis for M this is the matrix for x. So x^{p} has matrix

where the non-zero entries occur along the diagonal and in the $(i, i+p)$ positions for $i=1, \cdots, n-p$. The K-dimension of $M /\left(1-x^{p}\right) M$ is p.

Suppose M is a free $K S$-module. Then M_{S} is isomorphic to the sum of t copies of $K S$. Thus $n=p^{a-1} t$ and t is the K-dimension of $M_{S} /\left(\operatorname{rad} K S \cdot M_{S}\right)$. Since

$$
\operatorname{rad} K S=\left(1-x^{p}\right) K S
$$

we must have $t=p$. Therefore $n=p^{a}$ and $M \cong K G$.
We can develop more examples using the following.
Theorem 3.2. Let K be a field of characteristic $p>0$ and G a p-group.

Suppose T, H are subgroups of G with $T \Delta G$ and $T \subseteq H \subseteq G . I f(G / T, H / T)$ is a K-free pair so is (G, H).

Proof. Let M be a $K G$-module such that M_{H} is a free $K H$-module. Let $\tilde{T}=\Sigma_{g \in \tau} g$. The set $L=\tilde{T} M$ is a submodule of M since $T \triangle G$. For all $g \in T$, $g \tilde{T}=\tilde{T}$. So we can regard L as a G / T-module. We claim that $L_{(\mathrm{H} / \mathrm{T})}$ is a free module. This follows from the fact that $M_{\mathbf{H}}$ is a direct sum of copies of $K H$ and $\tilde{T}(K H) \cong 1(T)^{\mathrm{H}}$ while $1(T)^{\mathrm{H}} \cong K(H / T)$ as $K(H / T)$-modules.

Hence L is a free $K(G / H)$-module. Let x_{1}, \cdots, x_{n} be a compete set of coset representatives of T in G. If $X=\sum_{i=1}^{n} x_{\text {: }}$, by Lemma 2.2 there exists an element $l \in L$ with $X l \neq 0$. But $l=\tilde{T} m$ for some $m \in M$. So $X l=X \tilde{T} m=\tilde{G} m \neq 0$. Lemma 2.2 says that $K G$ is a direct summand of M. An easy induction proves the theorem.

Corollary 3.3. Let K have characteristic $p>0$ and let G and S be p-groups. If H is a subgroup of G with (G, H) a K-free pair then $(G \times S, H \times S)$ is a K-free pair.

Proof. $G \times S / S \cong G$ so $((G \times S) / S,(H \times S) / S)$ is a K-free pair.
Corollary 3.4. Let K have characteristic p and let $G=A_{m}(p)=\left\langle x, y / x^{p m-1}\right.$ $\left.=y^{p}=1, x^{y}=x^{1+p^{m-2}}\right\rangle$ where m is an integer $m \geqq 4$. Let $H=\left\langle x^{p^{m-2}}, y\right\rangle$. If T is any subgroup of G with $H \subseteq T \subseteq G$ then (G, T) is a K-free pair.

Proof. By Proposition 2.1 it is sufficient to show that (G, H) is a K-free pair. Let $S=\left\langle x^{p^{m-3}}, y\right\rangle \cong\left\langle x^{p^{m-3}}\right\rangle \times\langle y\rangle$. By Corollary 3.3 and Proposition 3.1 (S, H) is a K-free pair. Now $H \Delta G$ and G / H is cyclic. So $(G / H, S / H)$ is a K-free pair. Hence (G, S) is K-free. By Proposition 2.1, (G, H) is a K-free pair.

Corollary 3.5. Let K be a field of characteristic $p>0$ and let $G=B_{m}(p)$ $=\left\langle x, y, z \mid x^{p m-2}=y^{p}=z^{p}=1, x y=y x, y z=z y, x^{z}=x y\right\rangle$ where $m \geqq 4$. Let $H=\left\langle x^{p m-2}, y, z\right\rangle$. Then if T is any subgroup with $H \subseteq T \subseteq G,(G, T)$ is a K-free pair.

Proof. We need only note that $\langle y\rangle \triangle G$ and $(G /\langle y\rangle, H /\langle y\rangle)$ is a K-free pair.

4. The Quaternion Group

Theorem 4.1. Let K be a field of characteristic 2. Let G be the quaternion group of order 8, i.e. $G=\left\langle x, y \mid x^{4}=y^{4}=1, x^{2}=y^{2}=(x y)^{2}\right\rangle$. If H is any non-trivial subgroup of G then (G, H) is a K-free pair.

Proof. Let $T=\left\langle x^{2}\right\rangle$. Since all non-trivial subgroups of G contain T, it will be sufficient to prove that (G, T) is K-free.

Throughout this proof we suppose M is a $K G$-module such that M_{T} is a free
$K T$-module, but M is not free as a $K G$-module. It will be shown that this leads to a contradiction. Assume further that M has minimal K-dimension among such modules.

Let $L=\left(1+y^{2}\right) M$. Then L is a submodule of M. Let $N=M / L$. Since the elements of T act trivially on L and on N, these modules may be regarded as $K \bar{G}$-modules where $\bar{G}=G / T$. We can write $\bar{G}=\langle\bar{x}, \bar{y}\rangle$ where $\bar{x}=x T, \bar{y}=y T$. Since $M_{\langle x\rangle}, M_{\langle y\rangle}, M_{\langle x y\rangle}$ are free modules, $L_{\langle\bar{x}\rangle}, L_{\langle\bar{y}\rangle}, L_{\langle\bar{x} \bar{y}\rangle}, N_{\langle\bar{x}\rangle}, N_{(\bar{y}\rangle}$, and $N_{(\bar{x} \bar{y}\rangle}$ are free modules.

We shall need the following
Lemma 4.2. Let $S=\langle y\rangle$. Let $m_{1}, \cdots, m_{t} \in M$ such that $\left\{m_{i}+(\operatorname{rad} K S) M_{S}\right\}$ is a K-basis for $M_{S} /(\operatorname{rad} K S) M_{S}$. Then $m_{1}, \cdots, m_{\mathrm{t}}$ is a $K S$-basis for M_{s}.

Proof. Clearly the $K S$-dimension of M_{S} is t since M_{S} is a free module. Let $M^{\prime}=\sum_{i=1}^{t} K S m_{i}$. Then

$$
M_{S}=M^{\prime}+(\operatorname{rad} K S) M_{s}
$$

Nakayama's lemma [see Bass (1968; page 85)] says that $M_{s}=M^{\prime}$. A simple dimension argument proves the lemma.

Let b_{1}, \cdots, b_{t} be a $K\langle\bar{y}\rangle$-basis for N. If $b_{t+i}=(1+y) b_{i}$ then $b_{1}, \cdots, b_{2 t}$ is a K-basis for N. Let a_{1}, \cdots, a_{t} be a set of coset representatives of b_{1}, \cdots, b_{t}, respectively' in M. That is, for each $i, a_{i} \rightarrow b_{i}$ under the quotient map $M \rightarrow N=M / L$. Since this quotient map induces an isomorphism

$$
M_{S} /\left(\operatorname{rad} K S \cdot M_{S}\right) \cong N_{S} /\left(\operatorname{rad} K \bar{S} \cdot N_{S}\right)
$$

the elements a_{1}, \cdots, a_{t} are a $K S$-basis for M_{S}. For each $i=1, \cdots, t$, let a_{t+i} $=(1+y) a_{i}, \quad a_{2 t+i}=\left(1+y^{2}\right) a_{i}$ and $a_{3 t+i}=\left(1+y+y^{2}+y^{3}\right) a_{i}$. Then a_{1}, \cdots, a_{4}; is a K-basis for M.

Lemma 4.3. There exists no $K G$-free submodules of N.
Proof. Write $N=N_{1} \oplus \cdots \oplus N_{S}$ where each N_{i} is indecomposable. Suppose one of these, say N_{1}, is a free $K \bar{G}$-module. We can assume without loss of generality that b_{1}, b, are a $K\langle\bar{y}\rangle$ basis for N_{1}. Since one of these must be a $K \bar{G}$-basis for N_{1}, we lose nothing by assuming that $N_{1}=K \bar{G} \cdot b_{1}$ and $b_{2}=x b_{1}$. But then

$$
\tilde{G} a_{1}=\left(1+y+y^{2}+y^{3}\right) a_{1}+\left(1+y+y^{2}+y^{3}\right) a_{2} \neq 0
$$

So M has a $K G$-free direct summand, by Lemma 2.2. This contradicts the minimality of the K-dimension of M.

Write $N=N_{1} \oplus N_{2} \oplus \cdots \oplus N_{S}$ where each N_{i} is indecomposable. Each N_{i} is free as a $K\langle\bar{x}\rangle$-module and as a $K\langle\overline{\boldsymbol{y}}\rangle$-module but not as a $K \bar{G}$-module. Basev (1961) and Heller and Reiner (1961) [see Conlon (1964)] have given a complete list of representations of $\overline{\boldsymbol{G}}$. The above requirements on each \boldsymbol{N}_{i} dictate that each
N_{i} is a $C_{n}(\pi)$, in Conlon's notation. That is, there exists a basis for N such that, relative to this basis, x and y have matrices

$$
y \leftrightarrow\left[\begin{array}{ll}
I & 0 \\
I & I
\end{array}\right], \quad x \leftrightarrow\left[\begin{array}{ll}
I & \\
A & I
\end{array}\right]
$$

where $I=I_{t}$ is the $t \times t$ identity matrix and A is non-singular. In fact if the field K is large enough we can assume that A is triangular.

If these matrices are given relative to the basis $b_{1}, \cdots, b_{2 t}$ for $N\left(b_{t+i}\right.$ $\left.=(1+y) b_{i}\right)$, then as before we can construct a K-basis a_{1}, \cdots, a_{41} for $\%$ With respect to this basis x and y have matrices

$$
x \leftrightarrow\left[\begin{array}{llll}
I & & & \\
A & I & & \\
B & C & I & \\
D & E & A & I
\end{array}\right]
$$

where B, C, D, E are to be determined. Now $x^{2}=y^{2}$. This implies that $A C=I$ and $E=A B A^{-1}$. Furthermore $x y=y^{3} x$. By computing the matrices for this element it is easily seen that $I+A=C$ and $I+A+B=E$. Hence $I+A+A^{2}=O$, and the minimum polynomial for A has at most two distinct roots.

Let F be an extension of K which contains the roots p, p^{2} of the polynomial $1+x+x^{2}$. In F, A is similar to the matrix

$$
A^{\prime}=\left[\begin{array}{ll}
p I_{r} & o \\
o & p^{2} I_{s}
\end{array}\right]
$$

For convenience assume $A=A^{\prime}$. But then

$$
\begin{aligned}
I+A & =A^{2}=B+E=B+A B A^{-1} . \text { If } \\
B & =\left[\begin{array}{ll}
W & X \\
Y & Z
\end{array}\right], \\
A^{2} & =B+A B A^{-1}=\left[\begin{array}{ll}
O & p^{2} X \\
p Y & O
\end{array}\right]
\end{aligned}
$$

which is impossible. This contradiction proves the theorem.

References

V. A. Basev (1961), 'Representations of the group $\mathbf{Z}_{2} \times \mathbf{Z}_{\mathbf{2}}$ in a field of characteristic 2' (Russian), Dokl. Akad. Nauk. SSSR 141 1015-1018.
Hyman Bass (1968), Algebraic K-Theory (Benjamin, New York, 1968.)
S. B. Conlon (1964), 'Certain representation algebras', J. Austral. Math. Soc. 4 83-99.

Charles W. Curtis and Irving Reiner (1962), Representation theory of finite groups and associative algebras (Interscience, New York, 1962.)
A. Heller and I. Reiner (1961), 'Indecomposable representations', Illinois J. Math. 5314-323.

University of Georgia
Athens, Georgia 30602
U. S. A.

