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1. Introduction

Let X be a field and G a finite group with subgroup H. We say that (G,H) is
a X-free pair if whenever M is a finitely generated XG-module whose restriction
MH is a free X//-module, then M is a free XG-module. In this paper pairs of groups
with this property will be investigated.

If AT has characteristic p and G is a cyclic p-group then (G,H) is a X-free pair
provided H is a non-trivial subgroup of G. Several other examples of such pairs
are given. One of the major results is that if X has characteristic 2 and G is the
quaternion group of order 8 then (G, H) is X-free for any non-trivial subgroup
H of G. Several conditions on the existence of such pairs are included in this
paper.

Almost all of the results in this paper concern cases where the field X has
characteristic p( / 0) and G is a p-group. There exist examples of X-free pairs
(G, H) where G is not a p-group. But the results are incomplete and are not included
here.

Throughout this paper all modules will be assumed to be finitely generated.
If G is a group \(G) will denote the identity XG-module. If U is a subgroup of G
and M is a Xt/-module let M c = XG ®KU M. If L is a XG-module, Lv denotes
the restriction of L to a Xl/-module. For x,yeG, xy = yxy"1 and U* = xUx~l.
The radical of XG is indicated by rad XG and G = Y.ll£ad-

2. Generalities

In this section X is a field and H is a subgroup of group G.

PROPOSITION 2.1. Let T be a subgroup of G with H ^ j . c G.

(i) lf(G,T)and(T,H)areK-freepairsthen(G,H)isaK-freepair.

(ii) If(G,H) is K-free then (G, T) is a K-free pair.
49
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PROOF, (i) Let M be a KG-module such that MH is a free module. Then AfT
is a free module since (MT)H = MH. So M is a free module.

(ii) Let M be a KG-module such that MT is free. Then MH is a free module.
We shall need the following several times.

LEMMA 2.2. Let K have characteristic p > 0. Let G be a p-group. Suppose
M is a KG-module. Then KG is a direct summand of M if and only if
GM * (0).

PROOF. It is well known that since G is a />-group KG is the unique minimal
ideal in KG. If GM ^ (0) then there exists some m e M with Gm ^ 0. So the
annihilator of m in KG is the zero ideal. Hence the mapping KG -+ M by a -> am
for a e KG is a monomorphism. Since KG is an injective left KG-module [see
Curtis and Reiner (1962; page 321)] this homomorphism must split.

PROPOSITION 2.3. Let K have characteristic p > 0 and let G be a p-group.
Suppose E is a finite extension ofK. If(G, H) is a K-free pair, it is an E-free pair.

PROOF. Let M be an £G-module such that MH is a free EH-modu\e. By res-
triction M is a finitely generated KG-module. Since EH = E ®K KH, we have
that MH is free as a K//-module, hence it is free as a KG-module. So GM J= (0)
and EG is a direct summand of M. By induction on the dimension of M we get
that M is a free EG-module.

THEOREM 2.4. Suppose (G,H) is a K-free pair. Then there exists no sub-
group C of G with C # {1}, and Cx n H = {1} for all xeG.

PROOF. Suppose there did exist such a subgroup. Then by the Mackey sub-
group theorem [Curtis and Reiner (1962; page 324)]

(l(C)G)H = X KC*ntf)H

X

where x runs through a set of representaives of the II — C double cosets. Since
C O H = {1} and 1({1})" = KH, {l(,Cf)n is a free KH-module. But \(C)G is
not a free /CG-module.

3. Some Examples

PROPOSITION 3.1. Let K be afield of characteristic p> 0. Let G be cyclic of
order p". If H is any non-trivial subgroup of G then (G,H) is a K-free pair.

PROOF. Let S = < x p > where x is a generator of G. If we show that (G, S) is a
K-free pair an easy induction proves the proposition.

Let M be an indecomposible KG-module of X-dimension n. The Jordan
canonical form of the matrix of x on M is
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1 I

I 1

A =

I I

1

Relative to some basis for M this is the matrix for x. So x" has matrix

1 0 ••• 0 1

1 ... 0 1

A" =

where the non-zero entries occur along the diagonal and in the (/, i + p) positions
for i = ],--,n-p. The K-dimension of M/(l - x")M is p.

Suppose M is a free KS-module. Then Ms is isomorphic to the sum of t
copies of KS. Thus n = p"~1t and t is the X-dimension of Afs/(rad KS • Ms).
Since

rad KS = (1 - x")KS

we must have t = p. Therefore n = p" and M S KG.
We can develop more examples using the following.

THEOREM 3.2. Let K be a field of characteristic p > 0 and G a p-group.
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Suppose T,H are subgroups ofG with T A G and T £ H £ G. lf{GjT,HjT) is
a K-free pair so is (G,H).

PROOF. Let M be a KG-module such that MH is a free K//-module. Let
^ = E9eT0- The set L = fM is a submodule of M since T A G . For all geT,
gf = 7s. So we can regard L as a G/T-module. We claim that L(H/T) is a free
module. This follows from the fact that MH is a direct sum of copies of KH and
f(KH) s 1(T)H while 1(T)H s X(///T) as K(#/7>modules.

Hence L is a free K(G///)-module. Let Xj,---,xn be a compete set of coset
representatives ofT in G.lf X = £ "= 1x., by Lemma 2.2 there exists an element
leL with .X7 # 0. But / = Tm for some m e M . So XI = Xfm = Gm # 0.
Lemma 2.2 says that KG is a direct summand of M. An easy induction proves
the theorem.

COROLLARY 3.3. Let K have characteristic p > 0 and let G and S be
p-groups. If H is a subgroup of G with (G,H) a K-free pair then (G x S,H x S)
is a K-free pair.

PROOF. G X S/S S G SO ((G X S)/S,(H X S)/S) is a K-free pair.

COROLLARY 3.4. Let X have characteristic p and let G = Am(p) = <x,y/xpm"'
= yp — 1, x" = x1"1^"1"2) w/icre m is an integer m ^ 4. Let H = (xpm~2, y}. If
T is any subgroup of G with H £ T £ G f/ten (G, T) is a K-free pair.

PROOF. By Proposition 2.1 it is sufficient to show that (G,H) is a K-free pair.
Let S = <xpm~3 ,y} ^ <xp m'3 > x <y>. By Corollary 3.3 and Proposition 3.1
(S,H) is a K-free pair. Now H A G and G/tf is cyclic. So (G/H,S/H) is a K-free
pair. Hence (G, S) is K-free. By Proposition 2.1, (G,H) is a K-free pair.

COROLLARY 3.5. Let K be a field of characteristic p > 0 and let G= Bm(p)
= <x, y, z | xpm = yp = zp = 1, xy = yx, yz = zy, xz = xy) where m ^ 4.
Ler / / = <xp m~\ y,z>. Then if T is any subgroup with H £ T £ G, (G, T) is a
K-free pair.

PROOF. We need only note that <y> A G and (G/(y), W/<y» is a K-free pair.

4. The Quaternion Group

THEOREM 4.1. Let K be a field of characteristic 2. Let G be the quaternion
group of order 8, i.e. G = <x ,y |x 4 = y* = 1, x2 = y2 = (xj>)2>. / / / / is an.y
non-trivial subgroup of G then (G,H) is a K-free pair.

PROOF. Let T = <x2). Since all non-trivial subgroups of G contain T, it will
be sufficient to prove that (G, T) is K-free.

Throughout this proof we suppose M is a KG-module such that A/T is a free
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XT-module, but M is not free as a XG-module. It will be shown that this leads to
a contradiction. Assume further that M has minimal X-dimension among such
modules.

Let L = (1 + y2)M. Then L is a submodule of M. Let N = M/L. Since the
elements of T act trivially on L and on N, these modules may be regarded as
X(/-modules where G = G/T. We can write G = <x,y> where x = xT, y = yT.
Since M<x>, M<y>, M<xy> are free modules, L<x>, L<p>, L<m, N(X>, N<y>, and N<ip> are
free modules.

We shall need the following

LEMMA 4.2. Let S = <y>. Let ml,---,m,e M such that {mt + (rad KS)MS]

is a K-basis for Ms/(rad KS)MS. Then m, , •••,m, is a KS-basis for Ms.

PROOF. Clearly the KS-dimension of Ms is t since Afs is a free module. Let
M' = I 'i^iKSm,. Then

Ms = M' + (rad KS)MS.

Nakayama's lemma [see Bass (1968; page 85)] says that Ms = M'. A simple
dimension argument proves the lemma.

Let bu •••,/>, be a X<^>-basis for N. If bl + i = (1 + y)b, then bu •••,b2l is a

K-basis for JV. Let au •••, a, be a set of coset representatives of bx, • ••, b,, respec-

tively' in M. That is, for each /, at -* b( under the quotient map M —> N = MjL.

Since this quotient map induces an isomorphism

Ms/(rad KS • Ms) s Ns /(rad KS • Ns),

the elements a l 7 •••,a, are a XS-basis for Ms. For each i = 1, - , l , let a, + j

= (1 + v)a,., a2,+I- = (1 + j 2 )^ , - and a3t + i = (1 + y + y2 + y3)a ; . Then

a1, ••-,04. is a X-basis for Af.

LEMMA 4.3. There exists no KG-free submodules of N.

PROOF. Write N= Nt © ••• © N s where each iV, is indecomposable. Suppose
one of these, say Nlt is a free X(/-module. We can assume without loss of generality
that bub, are a X<y> basis for JVt. Since one of these must be a X(J-basis for Jv"i,
we lose nothing by assuming that Nx = KG • bt and b2 = xbt. But then

Ctfj = (1 + y + y2 + y3)at + (1 + y + y2 + y3)a2 # 0.

So M has a XG-free direct summand, by Lemma 2.2. This contradicts the mini-
mality of the X-dimension of M.

Write N = iVt © N2 ® ••• © Ns where each Nt is indecomposable. Each Nt

is free as a X(x)-module and as a KXy)-module but not as a ICG-module. Basev
(1961) and Heller and Reiner (1961) [see Conlon (1964)] have given a complete
list of representations of G. The above requirements on each Nt dictate that each
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N, is a C(TT) , in Conlon's notation. That is, there exists a basis for N such that,
relative to this basis, x and y have matrices

/ 0

I I A I

where / = /, is the t x t identity matrix and A is non-singular. In fact if the field K
is large enough we can assume that A is triangular.

If these matrices are given relative to the basis bu •••, b2t for^/y. (b,+i

= (1 + y)b,), then as before we can construct a K-basis a,,---,a4t for Mf With
respect to this basis x and y have matrices

/

/ /

I

I

A

B

D

I

C

E

I

A

where B, C, D, E are to be determined. Now x2 = y2. This implies that AC = I and
E = ABA'1. Furthermore xy = y3x. By computing the matrices for this element
it is easily seen that I + A = C and / + A + B = E. Hence / + A + A2 = 0,
and the minimum polynomial for A has at most two distinct roots.

Let F be an extension of K which contains the roots p, p2 of the polynomial
1 + JC + x2. In F, A is similar to the matrix

A' =
pi, O

O p2ls

For convenience assume A = A'. But then
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l + A

B

Free modules

A2 = B + E = B + ABA'1. If

W X

V 7

55

A2 = B + ABA'1 =

0 p2X

pY 0

which is impossible. This contradiction proves the theorem.
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