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Machine learning techniques are used to construct models capable of inferring plasma
state variables from non-emissive (LP) and emissive (EP) cylindrical Langmuir probes
under conditions in which standard analytic theories are not applicable. Synthetic data
sets, consisting of plasma parameters and probe characteristics computed kinetically in
the orbital motion theory framework, are used to train and test regression models to infer
electron densities, temperatures, and plasma potentials. Model skill metrics are introduced
to determine uncertainty margins on inferred parameters, when models are applied to
test sets not involved in the model optimization process. The different scalings and
transformations required to obtain optimal accuracy are described in each case considered
for both LPs and EPs. Excellent inferences are made for all three parameters considered
from LP characteristics, but owing to the strong dependence on the plasma potential, and
weak dependences on electron temperature and density with EPs, only plasma potential
inferences are reported with acceptable accuracy for this type of probe. Our findings
demonstrate that the combination of kinetic simulations and machine learning techniques
is a promising and practical way to infer plasma parameters efficiently from cylindrical
probes, under conditions beyond, and more general than those under which commonly
used analytic approximations are valid.
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1. Introduction

The inference of plasma parameters, like plasma density and temperature from
Langmuir and emissive probe measurements, is generally made with theoretical models.
Orbital motion theory (OMT) (Laframboise 1966) for cylindrical probes immersed at
rest in a collisionless and unmagnetized plasma and without particle trapping is one of
several such models. However, the OMT is based on the solutions of the Vlasov–Poisson
system, and it does not provide, in general, analytical relations between the collected
current and the plasma parameters to be used easily in the interpretation of experimental
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current–voltage (I–V) characteristics from both emissive and non-emissive cylindrical
probes. Only within a subset of the physical parameters that make the probe operate in the
so-called orbital-motion-limited regime (OML), like for instance for a small enough probe
radius-to-Debye length ratio (Sanmartín & Estes 1999), does the OMT provide simple and
analytical results for the collected currents. Beyond such a particular regime, the most
the OMT can provide is a large database of current–voltage characteristics for Langmuir
(Laframboise 1966) and emissive (Shahsavani, Chen & Sanchez-Arriaga 2021b) probes
based on numerical solutions of the Vlasov–Poisson system.

To ease their use in plasma diagnostics, analytical fitting laws have been proposed for
both types of probes (Ortega & Rheinboldt 1970; Mausbach 1997; Shahsavani et al. 2021b)
and used to infer plasma parameters (Becatti et al. 2019; Saravia, Giacobbe & Andreussi
2019). Multivariate regression techniques have also been used to construct predictive
models for cylindrical and spherical Langmuir probes by combining OML theory with
three-dimensional particle-in-cell simulations (Guthrie, Marchand & Marholm 2021;
Olowookere & Marchand 2021a,b). The large database of I–V characteristics based on the
OMT that has been recently constructed for cylindrical emissive probes (Shahsavani et al.
2021b) opens the possibility to extend the use of regression techniques as a bridge between
theoretical and experimental results. Such a database contains OMT I–V curves for both
Langmuir probes (zero emission) and emissive probes, computed for a broad range of
physical parameters. Since they were obtained by numerically solving the Vlasov–Poisson
system, the solutions of the database are valid within and beyond the OML regime and
within and beyond space-charge-limited (SCL) conditions.

The goal of this work is to apply multivariate regression techniques to the new database
of Shahsavani et al. (2021b) to construct a predictive model for the interpretation of
experimental I–V curves. The predictive model is used to investigate the most favourable
plasma parameters that could be inferred from experimental data1. It can also be used to
assess the error resulting from using OML instead of general OMT solutions in plasma
diagnostics for parameter regimes where the probe operates beyond OML conditions.

2. Methodology

The inference approach presented here is a promising alternative to commonly used
techniques based on analytic or empirical expressions to obtain plasma densities,
temperatures and potentials from Langmuir or emissive probes. It involves the creation
of a solution library consisting of cylindrical probe characteristics computed with kinetic
simulations, in a range of plasma parameters of interest. Given this library, or synthetic
data set, it is then possible to construct models based on multivariate regression techniques
to infer plasma parameters such as density, temperature and potential. These techniques are
briefly explained, and example applications are presented in the paragraphs which follow
for both non-emissive (LPs) and emissive (EPs) Langmuir probes.

2.1. Orbital motion theory
The OMT for cylindrical Langmuir (Laframboise 1966) and emissive (Chen &
Sanchez-Arriaga 2017) probes provides a full kinetic model for collisionless,
unmagnetized and stationary plasma without trapped particles. For convenience, we
summarize here its main elements and give some key information on the numerical
calculation of I–V curves from it (find a detailed description and justification in Chen
& Sanchez-Arriaga (2017) and references therein). The OMT considers a Maxwellian

1The model is available upon reasonable request, and it is being prepared for general availability under a GNU GPL
license.
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Beyond analytic approximations with machine learning inference 3

unperturbed plasma with density N0, potential Vs, made of ions and electrons with
temperatures Ti0 and Te0, respectively. The probe, treated as an infinitely long cylinder
with radius Rp, is immersed into the plasma at rest and is assumed to be at voltage V
with respect to the background plasma. In the case of EPs, the model assumes that the
electrons are emitted following a half-Maxwellian distribution function of temperature
Tem0 and density Nem0. Under these conditions, the OMT solves the Vlasov–Poisson system
that, after introducing adequate dimensionless variables, only involves the following five
parameters:

p =
[
φ ≡ eV

kTe0
, ρ ≡ Rp

λD
, δi ≡ Ti0

Te0
, δp ≡ Tem0

Te0
, β ≡ Nem0

N0

]
, (2.1)

with k the Boltzmann constant, ε0 the permittivity of vacuum, e the elementary charge,
and λD = √

ε0kTe0/e2N0 the electron Debye length. In the special case of (non-emissive)
LPs, δp and β are equal to zero. Since the OMT for cylindrical probes looks for
stationary solutions with axial symmetry, the energy and the angular momentum are
both conserved along the characteristic of the Vlasov equation. This feature allows us
to write the Vlasov–Poisson system, which is a set of partial differential equations, as
a single integro-differential equation for the normalized electrostatic potential φ. After
introducing a vector φ with the values of φ at the nodes of a numerical radial mesh, this
integro-differential equation becomes the following set of nonlinear algebraic equations:

F (φ) ≡ φ − P[V(φ)] = 0, (2.2)

with V and P being operators related to the Vlasov–Poisson equations (find the explicit
form in Chen & Sanchez-Arriaga 2017). Given the five dimensionless parameters in (2.1),
(2.2) can be solved numerically with a Newton method and, once the electrostatic potential
is known, the distribution function and the macroscopic quantities are found. Some of
these quantities, like the electric current, also involve the ion-to-electron mass ratio μi ≡
mi/me, which does not appear explicitly in the stationary Vlasov–Poisson system. The
main output of the OMT is the total collected current

I = 2πRpeN0

√
kTe0

2πme

[
ie(p) −

√
δi

μi
ii(p) − 2β

√
δpiem(p)

]
, (2.3)

where the three functions ie, ii and iem represent the normalized currents computed with the
OMT and they only depend on the vector of parameters p. The procedure described above
has been used to construct a database with more than 25 000 I–V characteristics of LPs
and EPs (Shahsavani et al. 2021b). It covers a wide range of the five physical parameters
in (2.1). A subset of this database and a user-friendly software to explore the solution
are available at the public repository (Shahsavani, Chen & Sanchez-Arriaga 2021a). This
work takes advantage of this database to construct plasma inference models.

2.2. Multivariate regressions
Given data sets consisting of probe characteristics, and corresponding plasma parameters
such as density, temperature and potential it is possible to construct regression models
to infer these parameters from characteristics computed, or measured within the range of
parameters covered in the simulations. This is a standard application of what is known
in machine learning as supervised training; that is, training with data sets containing
independent variables, with corresponding labels; that is, dependent variables to be
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inferred. Several techniques have been developed in the field of machine learning to
perform supervised training, including the deep learning neural network, radial basis
functions (RBF) and kriging, (Powell 1992; Wackernagel 2003; Liu & Marchand 2022;
Roberts, Yaida & Hanin 2022). In the following, we consider RBF inference, arguably
one of the simplest regression approaches, because it is found to perform well with the
problems considered. This technique is used to infer the value of dependent variables Y
for given n-tuples of independent variables X̄, as the linear superposition of a function
of the distances (the L2 norm) between X̄ and reference n-tuples called ‘centres’. This is
expressed mathematically as

Ỹ =
N∑

i=1

aiG(‖X̄ − X̄i‖2), (2.4)

where Ỹ represents an approximate inferred dependent variable for a given X̄. The
inference skill of this method depends critically on the number and the distribution of
the centres in parameter space, and on the interpolating function G. Ideally, in order to
determine the optimal distribution of centres, it should be possible to quickly calculate
dependent variables Y for arbitrary n-tuples X̄ as, for example, with analytic expressions.
In this case, given a function G, and a number N of centres, the optimal distribution of
centres reduces to a nonlinear minimization problem in continuous n-tuple X̄ space. In
practice, however, regression methods are needed when the relation between Y and X̄ is
so complex that there is no fast way to determine Y for arbitrary X̄, and the choice of
centres has to be made by considering different combinations of N centres among the M
nodes contained in a training data set. A good inference model is then obtained for the
distribution of centres which yields the highest inference accuracy for a given data set.

The model skill, or accuracy, is measured quantitatively with a cost, or loss function L
which satisfies the following properties: (i) It is non-negative, (ii) it vanishes if inferences
coincide with the ‘ground truth’; that is, known labels in the training set, and (iii) it
increases as inferences deviate from known dependent values. There are many options
for choosing L, and the skill of the model constructed depends on the nature of the data
considered. Four loss functions are considered in our analysis, consisting of:

The maximum error absolute value MEAV defined by

MEAV = max{|Ỹi − Yi|, i = 1, M}, (2.5)

where Ỹi is the model-inferred dependent variable for n-tuple X̄i in a given data set,
and Yi is the known value as specified in that set. This is the most conservative loss
function for data in which inferred variables are of comparable magnitude. This function,
however, does not have continuous derivatives, which makes it difficult to minimize using
gradient-based approaches. When training is made with a data containing errors, this loss
function has the disadvantage depending sensitively on a small number of outliers.

The root mean square error RMSE is the square root of the mean square difference
between inferred, and given dependent variables in a given set. It is defined by

RMSE =
√√√√ 1

M

M∑
i=1

(Ỹi − Yi)2. (2.6)

This function is less conservative than MEAV, but it has continuous derivatives, for which
gradient descent optimization works well. It is also a good compromise between accuracy
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and sensitivity of outliers in the data set, and it is recommended when data used to
construct a model contain errors approximately following a normal distribution.

The maximum relative error absolute value MrEAV is defined by

MrEAV = max

{∣∣∣∣∣ Ỹi − Yi

min(|Ỹi|, |Yi|)

∣∣∣∣∣ , i = 1, M

}
. (2.7)

This loss function is also the most conservative and it is applicable when inferred values
are known to be non-zero and vary over one or more orders of magnitude. It also has
discontinuous derivatives, implying that it is more difficult to minimize using algorithms
based on the calculation of its derivatives, and as with MEAV, it is mostly sensitive to
outliers in the training data set.

The root mean square relative error RMSrE is defined by

RMSrE =
√√√√ 1

M

M∑
i=1

(
Ỹi − Yi

min(|Ỹi|, |Yi|)

)2

. (2.8)

This function has continuous derivatives, for which gradient-based optimization
techniques work well. It is not as conservative as MrEAV, and it is indicated when relative
errors in the dependent variables are assumed to have a normal distribution. As for RMSE,
it is a good compromise between conservative estimates, and sensitivity to outliers in
training data sets.

Note that in (2.7) and (2.8), the denominator is the minimum between the absolute value
of the inferred value and the labels in the data set. This is to prevent large overestimations
in model inferences, while reporting relative errors never exceeding 100 %. With these
definitions of the relative error, the uncertainty interval given an inferred value Ỹ should
be [Ỹ/(1. + rE), Ỹ(1. + rE)] if Ỹ > 0, and [Ỹ(1. + rE), Ỹ/(1. + rE)] if Ỹ < 0, where rE
is the estimated relative error, whether maximum or root mean square (RMS). Functions G
can be subdivided into two broad categories: local and global functions. Global functions
are non-zero in most of the n-tuple space considered, while local functions only have
a significant value within a given range R of centres, ‖X̄ − X̄i‖2 < R, and become
negligible at larger distances. Both types have advantages and disadvantages, and the
choice of a given G is dictated by the nature of the problem at hand.

2.3. Synthetic data sets
Two synthetic data sets are constructed for LPs and EPs as described in § 2.1. Relative
to the ground, the plasma potential Vs is usually different from zero, and for a given bias
voltage Vb, the probe potential relative to surrounding plasma is given by

V = Vb − Vs. (2.9)

In this work, only long probes are considered, such that end effects and the proximity to a
satellite (or plasma chamber in laboratory plasma diagnostics) are negligible. As a result,
computed characteristics are for collected currents per unit length, as a function of voltages
V with respect to surrounding plasma. Characteristics consisting of collected currents as
a function of the bias voltage Vb (LPs), or probe floating potentials as a function of probe
temperature (EPs), considered in our inferences, can then be constructed for different
assumed plasma potentials using (2.9).
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2.3.1. Non-emissive Langmuir probes
For LPs, the characteristics are expressed as sequences of n currents (n-tuples)

corresponding to as many voltages (also n-tuples). Given the relation (2.9) for the probe
voltage V , the unperturbed plasma potential Vs, and the probe bias voltage Vb relative to
the ground, it is straightforward to construct data sets with characteristics as a function
of bias voltages for assumed plasma potentials. One point to consider in the construction
of a data set is the intended set of physical parameters for which inference models are
to be constructed. In the following examples, we construct models for electron densities
ranging from ∼1010 to ∼1012 m−3, electron temperatures ranging from ∼0.05 to ∼0.2 eV
and plasma potentials from ∼ − 2 to ∼ + 4 V. In this range, the dimensionless ratio of the
probe radius r to the Debye length λD varies from 0.2, where the OML approximation is
approximately valid, to 2.4, where OMT corrections can be significant.

Within this range of plasma environment parameters, collected currents depend most
strongly on the density, and good density inferences can be made as long as the
characteristics include part of the electron saturation region. For the temperature, however,
given the relatively weak dependence of the characteristics on the electron temperature,
it is important for the synthetic characteristics to include a good representation of
the electron retardation region in the full range of temperatures and plasma potentials
considered. In practice, this is done for each characteristic by limiting the currents
considered to those in the transition region, and normalizing currents by the largest
current in that region. Good inferences of the plasma potential can be made by scaling
the characteristics in order to remove the strong electron density dependence. For each
characteristic this is done by subtracting the average current 〈I〉 from currents in the
characteristic, and dividing the result by 〈I〉. In this study, each characteristic is discretized
with a 161−tuple of currents, followed by the corresponding 161-tuple of bias voltages
uniformly distributed in steps of 0.05 V in the range [−3,+5] V, followed by the electron
density, temperature and plasma potential assumed in the simulations. For simplicity, a
fixed ion-to-electron temperature ratio of unity is assumed in all cases. This assumption is
made in order to reduce the number of simulations required in the applications presented
below, but the regression approach presented is by no means limited to a particular fixed
ratio, as it could also be applied to cases with arbitrary and variable temperature ratios.

2.3.2. Emissive Langmuir probes
With EPs, characteristics are n-tuples of probe floating potentials as a function of

n-tuples of probe temperatures, followed by the electron density, temperature and plasma
potential. These characteristics, however, have a very different dependence on plasma
parameters than those of LPs. With EPs, the strongest dependence is on the plasma
potential, and the dependence on density is the weakest. The emissive probe characteristics
considered below were calculated assuming a probe work function Wp = 2 eV, and
temperatures in the range 650 to 750 K. Thermionic emission following a Richardson
Dushman law was assumed (see details in Chen & Sanchez-Arriaga 2017). The electron
density, temperature and plasma potential ranges are the same as assumed for the
non-emissive LP.

3. Example inferences

We now apply machine learning techniques to construct inference models for three
key plasma parameters, and estimate uncertainties in the inferred values. Models are
constructed and validated, on the basis of synthetic data generated with OMT simulations
for both LPs and EPs, as described in § 2.1. For non-emissive LPs, synthetic data consist
of 3500 nodes or entries, with probe characteristics, followed by corresponding densities,
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electron temperatures and bias potentials. Note that in practice, probe voltages are not set
relative to the background plasma, but rather to a ground, which is the vacuum vessel
in a laboratory experiment, or a satellite bus in space. In the following we simply refer
to the ‘ground’ with the understanding that it depends on the nature of the experiment.
In either case, the plasma potential is an unknown, which must be one of the inferred
quantities, along with the plasma density and temperature. For emissive probes, synthetic
data consist of probe floating potentials as a function of probe temperature, or equivalently
as a function of its emissivity, followed by the plasma density, temperature and potential.
For both LP and EP, models are constructed using RBF regression with training and
validation sets totalling approximately 40 % randomly selected entries from the full
solution libraries. Model inference skills are then assessed by applying the trained models
to test sets consisting of the remaining (∼60 %) entries from the solution library. For
reference and comparison purposes, we also report skill metrics, and present correlation
plots of inferences with known data, when models are applied to the combined training
and validation sets. For brevity in what follows, we refer to ‘training sets’ used to construct
models, with the understanding that training involves distinct training and a validation sets.
In all cases considered, the interpolation function is G(X̄) = |X̄|1.8, and only five centres
are used in the RBF regressions. The different loss functions L, and normalizations of the
independent n-tuples X̄ used in the different models are defined in each case considered.

3.1. Inferences with LP characteristics
3.1.1. Density inferences

Characteristics measured with non-emissive Langmuir probes depend most strongly
on the density, and to a lesser extent, on the plasma potential, and the ion and electron
temperatures. For that reason, density is the most straightforward plasma parameter to
infer, without requiring any normalization or transformation of the currents in the I–V
characteristics. The densities considered vary over two orders of magnitude, and so do
the currents. The best models are therefore obtained by minimizing a measure of the
relative error with MrEAV or RMSrE as a loss function. These have the advantage of
providing approximately uniform relative accuracy in the inferences, while loss functions
based on measures of the absolute value of the error would produce good accuracy for
the larger values of the density, but high relative uncertainties for the lower ones. The
example results shown below are obtained by minimizing the RMSrE defined in (2.8),
which produces conservative inferences, while not being skewed by outliers. Figure 1
shows a comparison between inferred and known densities from the training and test
sets. As expected, considering that optimization is made using the training set, and that
no further optimization is made using the test set, inferred densities are more accurate
when the model is applied to the training sets than when it is applied to the test set. It is
nonetheless interesting to note that the skill metrics are nearly the same in the two cases,
which indicates that the trained model can reliably be applied to more general data, not
included in the training process.

3.1.2. Electron temperature inferences
The electron temperature is arguably the most subtle parameter to infer, owing to

the stronger dependence of the characteristics on the density and plasma potential. In
order to infer the temperature, it is necessary to transform collected currents so as to
(i) reduce the strong density and plasma potential dependence, and (ii) focus on the
electron transition region where, for a Maxwellian electron distribution function, the
current varies approximately exponentially with voltage. In order to do this, the voltage
where the collected current vanishes (the probe floating potential) is determined by linear
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(a) (b)

FIGURE 1. Correlation plot of inferred densities against known values from the training set (a),
and the test set (b), for a non-emissive Langmuir probe (LP). In the figure, R is the Pearson
correlation coefficient, and RMSrE is the root mean square relative error. The line represents
what would be obtained for a perfect correlation.

interpolation between the two consecutive bias voltages at which collected currents have
opposite signs. With (V1, I1), and (V2, I2) being these 2-tuples of bias voltage - current,
the voltage V0 for which I0 = 0 is approximated as

V0 � V1 − I1
V2 − V1

I2 − I1
. (3.1)

With this approximate value for V0, the vicinity of the retardation region is constructed,
also with linear interpolation, for bias voltages ranging from V0 + δV to V0 + NVδV ,
where δV is of the order of the smallest electron temperature in the data set. The number
of interpolations NV is chosen to be sufficiently large for NVδV to be of the order of
a few times the largest temperature in the data set. In order to factor out the strong
density dependence of the current, the NV interpolated currents are divided by the current
interpolated at (NV + 1)δV . The inference model is then constructed, using the NV tuples
of resulting normalized currents, with δV = 0.01 and NV = 40.

Owing to the ratio of ∼4 between the largest and the smallest temperature, the model
could be constructed by minimizing either relative, or absolute errors. In the results
presented in figure 2 the RMSrE is selected as a cost function, but similar, results are
obtained with other cost functions. In the figure, inferred temperatures plotted against
known values from the training set (a) and the test set (b) show excellent model skill
both qualitatively and quantitatively, with a maximum relative error of 15 % and an RMS
relative error of 1.1 %. Here as well the inference errors are seen to be nearly identical to
those from the training set.

3.1.3. Plasma potential inferences
The simulations used to construct our solution library only account for a probe at

different voltages V with respect to the background plasma, without accounting for the
presence of a vacuum chamber or a spacecraft to which it is attached (see the definition
of φ in (2.1)). As explained in 2.3, our simulations can be used to construct data sets
with currents collected as a function of bias voltage Vb relative to the ground at different
voltages Vs relative to surrounding plasma, by using (2.9). Thus for a sufficiently long
probe, for which the collected current as a function of voltage V is approximately
independent of the proximity to other objects, and for which end effects are negligible,
it is possible to use (2.9) to construct data sets containing I–Vb characteristics for
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(a) (b)

FIGURE 2. Correlation plot of inferred electron temperatures against known values from the
training set (a), and the test set (b), for a non-emissive Langmuir probe (LP).

(a) (b)

FIGURE 3. Correlation plot of inferred plasma potential against known values from the
training set (a), and the test set (b), for a non-emissive Langmuir probe (LP).

different electron densities, temperatures and plasma potentials. Here, as for the inference
model considered in § 3.1.2, it is important to normalize currents in order to reduce
the strong density dependence of collected currents. A method found to produce good
results consists, for each characteristic, of subtracting the mean current 〈I〉 from the entire
characteristic currents, and dividing the result by 〈I〉. With this normalization, the resulting
characteristics are only mildly dependent on the density and temperature, and they differ
mostly due to the different plasma potentials. Here, given the relatively small interval
of plasma potentials considered (−2 to +4 V), the maximum absolute error is used as
a cost function. Correlation plots of the inferred, against known plasma potentials from
the training (a) and test (b) sets are shown in figure 3. The plots show excellent agreement
between inferred potentials and known values for both training and test sets, with nearly the
same skill metrics. In both cases, the MEAV is about 0.1 V, and the RMS error, 0.048 V,
which correspond respectively 1.7% and 0.8% of the 6 V range considered.

3.2. Inferences with EP characteristics
Emissive probes are mostly used to infer plasma potentials, owing to their stronger
sensitivity to that parameter (Kemp & Sellen 1966; Smith, Hershkowitz & Coakley
1979; Sheehan & Hershkowitz 2011). Our regression approach has been applied to infer
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(a) (b)

FIGURE 4. Correlation plot of inferred plasma potential against known values from the
training set (a), and the test set (b), for an emissive Langmuir probe (EP).

the plasma temperature and density from EP characteristics, but it was not possible to
obtain results with satisfactory accuracy. We therefore limit our attention to inferences
of the plasma potential only. Inferences were made with RBF using the same number
of centres (five) and interpolation function G(X̄) as for non-emissive probe in § 3.1. In
this case, considering that characteristics depend most strongly on the plasma potential,
no normalization of the probe floating potentials is needed. The inference model is
constructed by minimizing the maximum absolute error, as described in § 3. Here,
considering that the plasma potential can change sign, and be close to zero, the model
was constructed by minimizing the maximum absolute error between inferred and known
values of Vs, as described in § 3.

Correlation plots of inferred plasma potentials against known potentials from the data
set, are shown in figure 4, for training (a) and test (b). The correlation coefficients R,
and the RMS errors are found to be similar in both cases, with inferences being slightly
less accurate for the test set. The uncertainties of 0.22 and 0.26 V for the training and
test correspond respectively to 3.7% and 4.3% of the full 6 V range considered. These
are approximately a factor two larger than those found with LP characteristics, but they
nonetheless show excellent inference skill for plasma potential inferences.

4. Summary and conclusion

A new approach is presented to infer space plasma parameters from long cylindrical
probe characteristics in a Maxwellian plasma at rest, using a combination of kinetic
simulations and multivariate regression techniques. Two types of probes are considered.
One is a non-emissive Langmuir probe (LP) for which characteristics consist of n-tuples
of currents collected by probes for n-tuples of bias voltages. The second is an emissive
probe (EP) for which the characteristics are probe floating potentials as a function of
probe temperatures; both being parameterized in terms of n-tuples. Currents collected
by an LP as a function of bias voltages, and floating probe potentials as a function of
probe temperatures for an EP, are calculated numerically for different space environment
conditions, using the OMT (numerical solutions of the Vlasov–Poisson system). The
resulting characteristics are used to construct a solution library, or synthetic data set,
consisting of discretized currents and corresponding bias voltages, followed by the electron
density, temperature and assumed plasma potential.
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When considering an LP, the range and resolution of bias voltages in the characteristics
is chosen so as to cover part of the ion and electron saturation regions, while providing
a sufficiently detailed representation of the electron transition region for the ranges of
the assumed electron temperatures and plasma potentials. Using radial basis function
regression, the inference of plasma density is mostly sensitive to the magnitude of the
current collected in the electron saturation region, which does not require currents to be
normalized in order to obtain good inferences. For the plasma potential and of the electron
temperature, however, inferences depend more sensitively on the electron transition region,
which requires adapted transformations of the current characteristics, in order to obtain
good accuracy. With EPs, probe characteristics are most sensitive to the background
plasma potential, and they are relatively insensitive to the density or temperature. In this
case, only inferences made for the plasma potentials were found to be of satisfactory
accuracy, without requiring any normalization of transformation of the characteristics.

Given plasma conditions, the direct computation of currents collected by a probe
or an emissive floating potential, is a straightforward exercise with present computing
resources, even if it can be somewhat time consuming. The inverse problem consisting of
inferring plasma conditions from measured characteristics, however, is significantly more
difficult, and it cannot be solved in real time with simulations. This would indeed require
multiple simulations in which plasma parameters would be optimized so as to best fit each
characteristic. While possible for a few characteristics, such an iterative approach would
be impractical in actual data processing. However, the use of multivariate regressions with
pre-calculated synthetic data sets offers a powerful and practical alternative for doing
such inferences for data analysis. This approach, based on standard machine learning
procedures, would have the added advantage of providing uncertainty margins specifically
associated with the inference technique; something that is not obtained when using
inference techniques based on analytic or semi-analytic expressions. To conclude, the
analysis presented here is arguably based on several simplifications, but it is sufficient
to demonstrate the potential of the approach presented to complement existing analytic
techniques and improve plasma parameter inferences. More work will be needed for
simulation-regression approaches to be adopted and applied routinely in lab and space
plasmas; work which, we believe, should be of interest to experimentalists and modellers
alike.
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