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Visual navigation is comparatively advanced without a Global Positioning System (GPS). It
obtains environmental information via real-time processing of the data gained through visual
sensors. Compared with other methods, visual navigation is a passive method that does not
launch light or other radiation applications, thus making it easier to hide. The novel
navigation system described in this paper uses stereo-matching combined with Inertial
Measurement Units (IMU). This system applies photogrammetric theory and a matching
algorithm to identify the matching points of two images of the same scene taken from
different views and obtains their 3D coordinates. Integrated with the orientation information
output by the IMU, the system reduces model-accumulated errors and improves the point
accuracy.
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1. INTRODUCTION. Localization is a key capability of autonomous
navigation of vehicles and robots. The Global Positioning System (GPS) has been
the most widespread navigational system used in outdoor navigation. However, navi-
gation methods relying on GPS can be vulnerable, and the signals may be disturbed in
urban environments with tall buildings or elevated rails. Worse, it is not available in
specific areas such as underground locations and outer space. However, integrated
vision navigation is a technique that uses single or multiple cameras to acquire 2D
image information from a scene, and then performs the navigation by applying
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algorithms such as image processing, computer vision, and object recognition to
locate the 3D dynamic positions. In the non-GPS environment, integrated vision
navigation is more advanced than other techniques. It is a passive positioning
technique with good imperceptibility, high observation speed, and good accuracy. On
the other hand, integrated vision navigation can avoid some strict environmental
restrictions because it does not depend on any signal or radiant sources. However, it
still becomes a problem when real-time and high-precision performance is required.
DeSouza and Kak (2002) presented an investigation of the developments in the

fields related to vision for mobile robot navigation in the past 20 years. The differences
in how vision is used for indoor and outdoor robots are large; thus they divided their
investigation into two different categories: indoor navigation and outdoor navigation.
Indoor navigation was then focused on map-based, map-building-based and mapless
navigation. The map-based navigation solution is supported by providing the robot
with a model of the environment. It is proposed by providing automated or semi-
automated robots that could explore their environment and build an internal represen-
tation. However, the mapless navigation solution relies on the integrated navigation
system without considering any prior description of the environment. Compared with
indoor navigation, outdoor navigation usually involves obstacle-avoidance, landmark
detection, map building/updating, and position estimation. Thus, outdoor navigation
is concentrated on structured and unstructured environments, and some progress can
be efficiently made to represent the uncertainties in a robot’s knowledge of its
environment as well as its own relative position in the environment.
A first prototype of the vision navigation system ‘NavLAB’ was developed

by Carnegie Mellon University (Thorpe et al., 1988). It mainly considered path
tracking and 3D vision. The area correlation-based method is used in path tracking
by dividing an image into road and non-road points. This method can adaptively
select road models according to different roads and environments, and the most likely
road border point is determined based on the acquired road or non-road points to
finally achieve path recognition and tracking. After 3D information has been acquired
via point-cloud processing from ERIM LIDAR data, 3D vision is performed to
optimize the vehicle navigation by recognizing track obstacles and analysing track
terrains.
The Chinese Academy of Sciences (Su and Zhu, 2005) presents a design method for

a novel configured stereo vision navigation system for mobile robots, which is a cata-
dioptric sensor called the Omnidirectional Stereo Vision Optical Device (OSVOD),
based on a common perspective camera coupled with two hyperbolic mirrors. As the
hyperbolic mirrors ensure a Single View Point (SVP), the incident light rays are easily
found from the points of the image. The two hyperbolic mirrors in OSVOD share one
focus that coincides with the camera centre, which is coaxially and separately aligned.
Thus, the geometry of OSVOD naturally ensures matched epipolar lines in the two
images of the scene. The separation between the two mirrors provides a large baseline
and eventually leads to a precise result. The properties mentioned above make
OSVOD especially suitable for omnidirectional stereo vision because depth estimation
depends on speed, efficiency and precision. The proposed system can be used by
mobile robots for obstacle detection, automatic mapping of environments, and
machine vision where fast and real-time calculations are needed.
Actually, the application of Visual Odometry (VO) and IMUs on Mars exploration

rovers are famous and successful examples; they enabled the rovers to drive safely
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and more effectively in highly-sloped and sandy terrains. After moving a small
amount on a slippery surface, the rovers were often commanded to use camera-based
VO to correct its errors in the initial wheel odometry-based estimation when the
wheels lost traction on large rocks and steep slopes (Cheng et al., 2005; Maimone
et al., 2007).
Another successful application of VO/IMU integration is in the natural

environment revealed by Konolige et al., (2007). In this algorithm, an Extended
Kalman Filter (EKF) was used for VO and IMU data fusion via loose coupling. It is
implemented for three steps:

. Step 1. The EKF formulation starts with motion prediction from VO.

. Step 2. The IMU is used as an inclinometer (absolute roll and pitch) to correct the
absolute gravity normal.

. Step 3. The IMU is used as an angular rate sensor (for incremental yaw) to
correct relative yaw increments.

By using these techniques, the EKF attains precise localization in rough out-
door terrain. As the author presented, a typical result is less than 0·1% maximum
error over a 9 km trajectory, the IMU used in the system with Gyro bias stability
of 1 deg/h.
Later, Bayoud developed a mapping system using vision-aided inertial navigation

(Bayoud and Skaloud, 2008). The system employs the method of Simultaneous
Localization and Mapping (SLAM) where the only external inputs available to the
system at the beginning of the mapping mission are a number of features with known
coordinates.
Stereo image-matching is one of the key techniques in integrated vision navigation.

It is a process of calculating selected features and building relationships between
features to match the image points in different images. Image matching is a process
that identifies the relationship between a reference image and the image under inves-
tigation. A great number of image-matching algorithms have been proposed in recent
decades. These algorithms are classified into two categories: pixel-based and feature-
based. Pixel-based algorithms can robustly estimate simple transition motion but may
fail when dealing with either images with serious transformation or highly degraded
images. Optical flow and pixel correlation are two of the most popular pixel-based
methods (Lucas and Kanade, 1981; Castro and Morandi, 1987). Feature-based
algorithms have recently been widely developed (Mikolajczyk and Schmid, 2005).
They can offer a robust image-matching capability when tackling dramatically
changed or degraded images, which are invariant to image transition, scaling, rota-
tion, illumination, and limited ranges of viewpoint changes. Feature-based algorithms
can have higher image-matching performance than pixel-based algorithms in terms of
reliability and precision.
However, feature-based algorithms are not practical for some real-time applications

because of the nature of computational complexity and the huge memory con-
sumption. For a feature-based method, Bay et al., (2006) proposed the Speeded Up
Robust Feature (SURF) algorithm based on previous research results by considering
the time assumption. SURF uses the integral image to approximate the Gaussian
convolution, thereby accelerating the convolution process. However, SURF still dis-
plays a weakness in matching robustness and results in addition to wrong matching
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points. Moreover, it is still considered too slow to be adopted for real-time
applications even though it has significantly improved the processing speed of feature
extraction and generation of the feature descriptors.
Song (2004) then analysed the basic theory of binocular stereo vision and studied

the key technique of linear feature stereo matching, which is the strategy of camera
calibration, feature abstraction, and matching strategy. He first proposed an improved
two-step camera calibration method, which obtains interior and exterior orientation
elements and lens distortion parameters. At the same time, the proposed method
removes control points with large errors and iterations to retrieve more accurate
parameters. Song extracted a continuous single-pixel width segment using phase
grouping and a heuristic connecting segment extraction algorithm. Finally, he
proposed a novel stereo-matching strategy based on the geometry features and corner
points of neighbouring segment regions. The matching and calibration results are both
optimized with epipolar and parallax continuity constraints.
Results show that although stereo-matching has been developed for years with great

achievement, several theoretical and technical problems remain to be addressed. For
example, the method based on feature matching produces great computation but is
hard to use in high real-time demand applications. The problem of executing a fast
match of common points between images is the core issue of stereo-matching. Another
challenge in stereo-matching is the ambiguity of the matching results. Under certain
circumstances, two independent images share many similar features or pixels,
resulting in the resolution of big barriers. The results of stereo-matching can facilitate
the fast measurement of the 3D coordinates of an object; however, a challenge is
presented when the image is acquired at high speed, such as in a moving vehicle. Thus,
a new vision navigation system based on image matching and photogrammetric
theory is proposed in the current paper, and the determination of real-time,
3D positions from the sequence-based image is also discussed.

2. STEREO CAMERA CALIBRATIONS. One of the most important
tasks of computer vision is to reconstruct a 3D model of the real world and recognize
objects by implicitly analysing geometric information included in the images captured
by a camera. The spatial geometric information of a point and its corresponding point
in the image space is determined by the model parameters of the camera, and in most
conditions, these parameters are not easy to know directly. However, they can still
be obtained via experiments, known as camera calibration. Camera calibration
determines the geometric and optical parameters of the camera, and the orientation
and position parameters of the camera coordinate system relative to the object
coordinate. This process greatly affects the accuracy of computer vision.
Furthermore, camera calibration determines camera position and property para-

meters, and establishes the imaging model, which determines the show points in the
space coordinate project and their correspondence in the image plane. An ideal optical
projection imaging model is the central projection, also known as the pinhole model.
The pinhole model assumes that the reflected light is projected onto the image plane,
which satisfies the conditions for direct light transmission. The pinhole projection
model consists of the centre of the projection, the image plane, and the optical axis
(Figure 1).
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Most existing camera models are parametric and currently use the following camera
calibration methods (Pei, 2010):

. Direct linear transformation method: fewer parameters involved, convenient to
compute.

. Perspective transformation matrix method: builds the camera’s imaging model
through the perspective transformation matrix.

. Two-step camera calibration: initially uses the perspective transformation matrix
method to solve the linear camera parameters, and then uses these parameters as
initial values, considering the distortion factors to obtain nonlinear solutions
using the optimization method.

. Two-plane calibration method.

The camera calibration module of the commercial software iWitness® used in
the current experiment can easily access the internal and external parameters of
the camera. Figure 2 shows the calibration results using the actual image shooting
in Tongji University, Shanghai, China and the corresponding coordinate data. From
the experimental results, the camera centre and focal length measured by a non-
measurement camera exhibits significant deviation from the actual values, resulting in
greater deviation in the subsequent resection experiment. Therefore, the camera must
be pre-calibrated before a non-measurement camera is used in the measurements;
otherwise, the accuracy of the subsequent results would be reduced.

3. SURF-BASED IMAGE-MATCHING ALGORITHM. The purpose
of stereo image matching is to find the correspondence in two or more images of the
same scene shot from different perspectives. For any kind of stereo-matching method,
the effectiveness of the solution depends on three key areas, namely, choosing the right
matching features, looking for their essential properties, and then establishing a stable

Figure 1. Pinhole projection model.
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feature-matching algorithm. In the present research, feature selection can be divided
into two categories, namely, region-based image correlation matching (area-based
matching), and features-based image correlation matching.
According to the selected feature, feature-based matching can be subdivided into

point-matching, line-matching and surface-feature matching. In general, feature-
matching can be done in three steps: (a) feature extraction, (b) feature description, and
(c) feature matching. Compared with other matching algorithms, the feature-based
matching algorithm does not directly depend on the characteristics of grey, and thus is
significantly more robust. Meanwhile, these algorithms can be calculated faster and
relatively easily deal with disparity discontinuity regions. However, their matching
accuracy largely depends on the accuracy of matching point detection.

3.1. Principle of SURF-Based Image-Matching Algorithm. In 2006, Herbert Bay
proposed a novel scale and rotation-invariant interest point detector and descriptor
and named it ‘Speeded Up Robust Features’ (SURF). It approximates and even
outperforms previously proposed schemes in the areas of repeatability, distinctiveness,
and robustness, and can be computed and compared much faster (Bay, 2006). This
performance is achieved by relying on integral images for image convolutions; by
building on the strengths of the leading existing detectors and descriptors (specifically
the Hessian matrix-based measure for the detector, and a distribution-based
descriptor); and by further simplifying these methods.

3.1.1. SURF Algorithm. The SURF algorithm can be divided into three typical
steps, namely, accurate interest point localization, interest point descriptor, and
feature vector matching (Figure 3).

3.1.2. Matching result of SURF. The program used in the current article is based
on the function of the open-source library OPENCV. Figure 4(a) shows the matching
result of a standard Graffiti scene, Figure 4(b) shows the result of the surveying

Figure 2. Camera calibration result.
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building in Tongji University, and Figure 4(c) shows an image of the Germany centre.
The size of the three images are 800×640 pixels, and in each image there are over
200 feature points. These three matching results show remarkable accounts of error-
matching points (label 1 is the correct matching point, whereas the labels 2 and 3 are
error-matching points). Further improvement is necessary to use these matching
results for future measurements.

3.2. Improved SURF-Based Image-Matching Algorithm. SURF significantly
improves the matching efficiency. However, it also reduces the matching stability
and results in increased error-matching points. Certain measures must be taken to
reduce the number of error-matching points because they are highly important in the
follow-up application.

3.2.1. Improvement Strategy. Given that most points have achieved correct
matching in the original SURF matching process and only a small number obtained
error matching, the original matching results are treated as coarse results with gross
errors. In addition, because the same 2D point coordinates in both images have been
obtained during the original matching process, the improvement takes the translation,
rotation, and scaling parameters between these two images into account using a robust
parameter estimation method for estimation, and a certain threshold is set. The
deviation between the original and estimated results is compared, and points with low
accuracy are removed, thereby obtaining better matching results. The following

Left Image Right Image

Generate Fast-
Hessian Matrix

Generate Fast-
Hessian Matrix

Locate Feature
Point 

Locate Feature
Point 

Assign Orientation Assign Orientation

Feature
Description 

Feature
Description 

Feature Point Matching

Figure 3. Flow chart of SURF.
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equations show the translation model and the specific robust estimation function used
in the current paper.

. Image translation model:

X

Y

( )
= X0

Y0

( )
+ μ

cos α − sin α

sin α cos α

( )
A

B

( )
(1)

Assign c=μ cos α, d=μ sin α

X = X0+A× c− B× d

Y = Y0+B× c+A× d

{
(2)

. The ‘Selecting Weight Iteration’ method is used for a robust estimation. The
specific method is called a “Norm minimization.” Its ρ and weight function are

 
(a) SURF-matching result of a graffiti scene (1/3 points present) 

 

 

 

 
(c) SURF-matching result of the Germany Centre (1/3 points present)

 
(b) SURF-matching result of a surveying building (1/3 points present)

Figure 4. SURF-matching results.
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expressed as:

ρ = v| |
p(v) = 1

v| |


 (3)

The flow chart of the improved SURF algorithm is shown in Figure 5.
3.2.2. Experimental Result of the Improved SURF Algorithm. The same images

appearing in the SURF process are used in the current experiment. Figure 6(a) shows
the improved result of the standard Graffiti scene and Figure 6(b) shows that of the
surveying building. Figure 6(c) shows the Germany centre. The number of matching
points in the figures decreases, but the matching accuracy obviously improved. More-
over, the improved SURF algorithm does not significantly increase the execution time
(Table 1). Therefore, the improved algorithm appears effective.

4. THREE-DIMENSIONAL POSITIONING FROM AN IMAGE
SEQUENCE.

4.1. Rough Navigation and Position. In the image sequence, the intersection
theory from photogrammetry can be adopted to calculate the corresponding positions
of these feature points in the object space if the exterior parameters of the first and
second image and the image coordinates of the same point are known. Another
resection operation is performed to obtain the orientation and position parameters of
the third image. The exterior parameters of the second and third images are already

Gain coordinate of matching points using the
original SURF algorithm 

Treat the original coordinate as coarse result
with gross error and estimate translation

parameters  

Calculate the difference between
translation and matching result 

Exceed the setting
threshold? 

Remove the matching point

Accept the matching point

All points are
optimized? 

Retrieve optimized matching result

Y

N

N

Y

Figure 5. Flow chart of the improved SURF algorithm.
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known; hence, the intersection and resection can be continuously operated until a
Three Dimensional (3D) coordinate measurement is achieved. The entire process is
shown in Figure 7. The specific calculation strategy is as follows:

. The exterior parameters of the first and second images are calculated using the
image coordinates of the feature point and the corresponding 3D coordinates in
object space (POS1 and POS2 in Figure 7).

Table 1. Comparison between the efficiencies of the original and improved SURF.

Picture ID Image Size Original (ms) Improved (ms)

1 800×640 9842·73 11500·9
2 800×640 4054·76 5457·75
3 800×640 4354·27 6317·16

(a) Improved matching of the graffiti scene

(b) Improved matching of the surveying building (1/3 matching points present)

(c) Improved matching of the Germany centre (1/3 matching points present)

Figure 6. Matching results of the improved SURF.
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. The matching points between the first and second image are identified, and the
3D coordinates of the point in the object space are obtained using the matching
result (that is, the coordinates of points A, B, C, D, and E).

. The object coordinates obtained from the second step are passed to the third
image using the matching result from the second and third images.

. The exterior parameters of the third image are calculated (obtaining the posture
of POS3, as shown in Figure 7).

. The matching points in the second and third images are recalculated and their
3D coordinates in the object space are obtained using the intersection theory
(i.e., the 3D coordinates of F, G, H, and J are retrieved).

. The same operations from the fourth image are executed until the task is
completed.

After finishing the feature matching, the image point coordinates of feature points
can be obtained in stereo images based on photogrammetry mathematic model. Here
the titled bundle adjustment is used to get the exterior orientation parameters of
cameras and the 3D coordinates of unknown ground points as well. Bundle adjust-
ment is based on collinearity equation, making the bundles intersect optimally by
means of rotating and transforming. For each matched feature point, two error
equations can be formed.

vx = a11dXs + a12dYs + a13dZs + a14dφ+ a15dω+ a16dκ
−a11dX − a12dY − a13dZ − lx

vy = a21dXs + a22dYs + a23dZs + a24dφ+ a25dω+ a26dκ
−a21dX − a22dY − a23dZ − ly


 (4)

Where, vx and vy are observation residuals of image point coordinates, a11−a16,
a21−a26 are coefficients of error equations, dXs, dYs, dZs, dφ, dω, dκ are correction
values of exterior orientation parameters, dX, dY, dZ are correction values of
3D coordinates of unknown ground point, for control points, dX, dY, dZ are zero,
lx and ly are deviation of observation of image point coordinates and approximate

Figure 7. Image sequence-based coordinate measurement.
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values in the iteration process. For each matched point, an error equation could be
established. After all the error equations are established, we would use the iterated
solution to get correction values of exterior orientation parameters and 3D
coordinates of unknown ground points based on Least-squares principle.
The data shown in Tables 2 to 4 are used in the current experiment. Tables 2 and 3

show the feature point image coordinates and their object coordinates in the first and
second images, respectively, which are used to calculate the exterior parameters.
Table 4 shows the calculation results, as shown in Figure 8.

4.2. Obtaining the Image Exterior Parameter Through IMU. The relative spatial
position and attitude relation between the IMU and the camera must be calculated
to facilitate the integration with IMU and achieve optimization (Figure 9). The
calibration consists of two steps: (1) determining the offset between the camera

Table 2. Coordinates on the left image.

f=52·5 mm x=0·0 mm y=0·0 mm

Object Space Image Space

X(m) Y(m) Z(m) x(mm) y(mm)

1 5365·814 3125·820 8·655 −29·865 4·835
2 5367·334 3122·043 10·698 −4·065 17·435
3 5368·402 3119·686 10·704 12·035 18·135
4 5369·456 3117·314 10·712 28·935 19·035
5 5369·468 3117·316 6·765 30·335 −6·065
6 5368·400 3119·681 6·743 12·835 −6·565
7 5367·348 3122·021 6·748 −3·665 −6·765
8 5366·017 3124·950 6·746 −24·165 −7·365
9 5365·801 3125·802 4·715 −31·065 −21·065
10 5367·116 3122·882 4·721 −9·465 −20·265
11 5368·178 3120·516 4·725 7·735 −20·065
12 5369·234 3118·153 4·729 25·535 −19·965

Table 3. Coordinates on the right image.

f=52·5 mm x=0·0 mm y=0·0 mm

Object Space Image Space

X(m) Y(m) Z(m) x(mm) y(mm)

1 5366·522 3124·240 8·670 −26·265 4·135
2 5367·834 3121·324 8·668 −6·065 4·435
3 5368·899 3118·962 8·673 10·435 4·935
4 5369·957 3116·598 8·679 27·735 5·435
5 5369·468 3117·316 6·755 22·235 −7·365
6 5368·399 3119·684 6·742 5·035 −7·565
7 5367·350 3122·015 6·749 −11·465 −7·765
8 5366·017 3124·948 6·745 −32·065 −8·265
9 5366·506 3124·228 4·719 −27·465 −21·665
10 5367·819 3121·315 4·722 −6·165 −21·265
11 5368·880 3118·947 4·730 11·235 −21·165
12 5369·938 3116·582 4·728 29·635 −21·365
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projection centre and the geometry centre of the IMU; and (2) determining the
rotation matrix between the image space coordinate system and the carrier coordinate
system (original at the centre of the IMU).
The calibration is performed in an experiment ground with sufficient number of

feature points. firstly, two points, named A and B, are selected, with their coordinates
obtained via differential GPS, then Gauss projection is performed to obtain their
Gaussian coordinates, so they can be used as control points in the following total
station survey. The procedure is as follows:

. n feature points on the ground are selected and marked as control points in the
resection process, and their 3D coordinates are obtained via total station survey.

Table 4. Retrieved posture results.

Third
Frame

Fourth
Frame

Fifth
Frame

Sixth
Frame

Seventh
Frame

Eighth
Frame

X(m) 5383·453 5384·235 5384·789 5386·316 5385·885 5387·360
Y(m) 3124·235 3122·531 3120·828 3119·173 3117·417 3116·258
Z(m) 5·138 5·145 5·158 5·153 5·178 5·124

Figure 8. Exterior parameters of the image sequence.

Figure 9. Spatial relationship between IMU and the camera.
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Images are shot with the camera and their exterior parameters are retrieved
according to the resection theory, so the transformation matrix RC

e from image
space coordinate system to Earth-Centred Earth-Fixed (ECEF) coordinate
system is obtained.

. The carrier vehicle is placed in a suitable position and angle and kept stationary.
The IMU continuously obtains measurement data. For a high accuracy IMU, the
attitude (pitch, roll, yaw) of the carrier vehicle can be obtained through initial
alignment, however, for a low accuracy IMU, in which the gyro is not able to
sense the earth’s rotation, we can only obtain pitch and roll angle; thus, the yaw
angle should be obtained by other means. For our carrier vehicle, the base is
designed in the shape of rectangle, and the IMU is mounted aligned to its centre
line. So the coordinates of the four corner points of the carrier base are measured,
and the carrier heading angle is obtained.

While the IMU stays stationary, it outputs the gravitational acceleration g and the
component of Earth’s rotation angular velocity in the carrier coordinate system.
However, an IMU with low accuracy cannot sense the Earth’s rotation. Therefore,
only the pitch and roll angle can be calculated from the IMU output.
The output gravitational acceleration while stationary is assumed as gb; that is:

gb= gbx gby gbz
( )T

(5)

The component of the gravitational acceleration g in the local coordinate is
assumed as gL. This component can be easily retrieved as follows:

gL= 0 0 −g
[ ]T (6)

These assumptions satisfy the following equation:

gb= Rb
L × gL (7)

where RL
b is the rotation matrix between gb and gL.

In detail, the above equation can be expressed as:

gbx= − sin r× cos p× g

gby= sin p× g

gbz= cos r× cos p× g


 (8)

Thus, the expression for the calculation of the pitch and roll angles is:

p = sin−1 gby
g

( )

r = − tan−1 gbx
gbz

( )



(9)

The azimuth of the carrier can be presented by the midpoints of the front and back
ends. The midpoint of the front end is marked asC0, and that of the back end as D0.
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Thus, the following equation is obtained:

CoX = CLX + CRX

2
, DoX = DLX +DRX

2

CoY = CLY + CRY

2
, DoY = DLY +DRY

2

CoH = CLH + CRH

2
, DoH = DLH +DRH

2




(10)

The following equation is used to retrieve the carrier azimuth a:

a = arctan
CoY −DoY

CoX −DoX

[ ]
(11)

Hence, the attitude matrix of the carrier can be directly calculated using the p, r, and
y values:

RL
b =

cos r cos y− sin r sin y sin p − sin y cos p sin r cos y+ cos r sin y sin p
cos r sin y+ sin r cos y sin p cos y cos p sin r sin y− cos r cos y sin p

− sin r cos p sin p cos r cos p






(12)

where y=2π−a.
When the Rb

L and RC
e values are known, the rotation matrix can be easily calculated:

Rb
C = (RL

b )T · RL
e · Re

C (13)
where Re

L is the rotation matrix from the ECEF to the local system, which depends on
the latitude and longitude of the carrier.
Re
L can be expressed as follows:

RL
e =

− sin λ cos λ 0
− sin φ cos λ − sin φ sin λ cos φ
cos φ cos λ cos φ sin λ sin φ





 (14)

where:

φ is latitude.
λ is longitude.
φ and λ are obtained from the linear elements of camera’s exterior parameters.
RC
e is the rotation matrix from image space coordinate system to ECEF.

RC
e can be expressed as follows:

Re
C =

cos ϕ cos κ − sin ϕ sinω sin κ − cos ϕ sin κ − sin ϕ sinω cos κ − sin ϕ cosω

cosω sin κ cosω cos κ − sinω

sin ϕ cos κ + cos ϕ sinω sin κ − sin ϕ sin κ + cos ϕ sinω cos κ cos ϕ cosω







(15)
where, ϕ,ω, κ are three Euler angles from image space coordinate system to ECEF,
which are angle elements of the camera’s exterior parameters.
The coordinates can be retrieved from the centre of the IMU, and its offset to the

centre of the camera can be obtained.

685STEREO-IMAGE MATCHINGNO. 4

https://doi.org/10.1017/S0373463312000264 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000264


4.3. Optimization with the Integrated IMU. As a key part of the algorithm, the
integration of the VO and the IMU using an EKF will be implemented; actually, a
wheel odometry is also used in our system which can provide velocity information of
the carrier. Two approaches are considered: one is that, when the image features are
sufficiently rich, we use the estimated position and attitude of the camera via bundle
adjustment to calibrate the gyro drifts, accelerometer bias, scale factor error of the
wheel odometry with EKF; the residuals of the camera position and attitude can also
be estimated. Once all these sensor errors are calibrated, a high accuracy can be
obtained and used to support the estimation of the parameters for situations in which
the image features are too poor to determine the camera’s position or attitude; this
needs another approach to be considered. Under this situation, only IMU measure-
ments and wheel odometry data are used for integration, and the estimated position
and attitude are transformed and assigned to the camera.
VO and IMU are fused via loose coupling, in which each subsystem is taken as an

independent estimator. In the current paper, an indirect Kalman filter is used to
estimate the system errors. The error state considers the INS navigation parameter
errors, IMU errors, and scale factor errors for the wheel odometry. The dynamic
equation of the system is based on the INS error equation.
The error state vector can be written as

X = δrL, δvL, δεL, d, b, δk
( ) (16)

where δrL, δvL, δεL, d and b are 3D position errors, 3D velocity errors, 3D mis-
alignment angles, 3D gyro drifts, and 3D accelerometer bias for the INS, respectively.
δk is the scale factor error of the wheel odometry.
The error state vector can also be written as

X = Xins

Xod

[ ]
(17)

The system dynamic equation is described as follows:

X
· =

Fins
15×15

O
15×1

O
1×15

0





 Xins

Xod

[ ]
+ G ·W (18)

where Fins is the coefficient matrix of the INS error equation, which can be derived
from the INS navigation equation in the local-level frame, and G is the process noise
dynamic matrix.
The inputs to the Kalman filter include the velocities from the INS outputs and

wheel odometry measurements, the coordinates from the INS outputs and VO out-
puts, and the attitude angles from the INS outputs and VO outputs. The measurement
equation can be written as follows:

Zv

Zr

Za





 =

Hv

Hr

Ha





 · X +

Vv

Vr

Va





 (19)

where:
Zv,Zr,Za are filter measurements.
Hv,Hr,Ha are matrix measurements.
Vv,Vr,Va are the residuals.
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The velocity errors can be denoted as:

Zv = Vn
ins − Rn

bV
b
od (20)

where Vod
b is the velocity of the vehicle in a forward direction as measured using the

wheel odometry.
The measurement matrix for the velocity errors can be derived as follows:

Hv =
0 0 0 1 0 0 0 −vuod vnod 0 0 0 0 0 0 −veod
0 0 0 0 1 0 vuod 0 −veod 0 0 0 0 0 0 −vnod
0 0 0 0 0 1 −vnod veod 0 0 0 0 0 0 0 −vuod






(21)

The position errors can be denoted as:

Zr = rins − rimage (22)
where:

rins represents the position of the vehicle obtained from IMU.
rimage represents the position of the vehicle obtained from VO.

The position vector rimage should be expressed using the origin in the IMU centre by
subtracting the lever arm between IMU and the camera.
The measurement matrix for the position errors can be easily written as follows:

Hr =
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0





 (23)

The attitude errors can be denoted as:

Za = ains − aimage (24)
where:

ains represents the attitude of the vehicle obtained from IMU.
aimage represents the attitude of the vehicle obtained from VO.

The attitude vector aimage should be denoted as the attitude that relates the body
frame with the local-level frame, by taking into account the calibrated result of the
transformation matrix between IMU and the camera.
The measurement matrix for the attitude errors can be used to determine the

relationship between the attitude errors and the misalignment angles. The equation
can thus be derived as follows:

Ha =

0 0 0 0 0 0 cos y sin y 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − sin y
cos p

cos y
cos p

0 0 0 0 0 0 0 0

0 0 0 0 0 0
sin y sin p
cos p

− cos y sin p
cos p

1 0 0 0 0 0 0 0







(25)
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In a filter circle, the state error is estimated and compensated in the system, and the
parameters for VO are also adjusted

r̂image = rins −Hr · X̂ (26)
âimage = ains −Ha · X̂ (27)

where X̂ is the output of the Kalman filter for the error state estimation,
and r̂image, âimage are the adjustment parameters for VO.
Figure 10 summarizes the Kalman filter frame for the visual odometry/IMU

integration. The system is a closed loop Kalman filter, the outputs of which are fed
back to the system. When the solution for VO succeeds, the calibrated parameters for
VO after the filtration process return, and the estimated IMU errors and wheel odo-
metry error are calibrated. Thus, the integrated system can maintain high accuracy for
some time, even under the occasional short-lived VO solution failures. When the VO
solution fails, the only inputs are the velocities from INS and the wheel odometry,
with no VO inputs. Kalman filtering for the integrated IMU/wheel odometry system
is implemented, and the outputs, which are the optimal estimated INS parameters
(position and attitude), are passed on to the camera. In both cases, the coordinates of
the matched feature points would be recalculated via a forward intersection using the
estimated parameters for Kalman filtering for the camera.

5. EXPERIMENT AND RESULTS. The author developed a hardware
system, including a stereo camera pair, an IMU, a wheel sensor, a computer, and a
router, all mounted on a navigation vehicle, as well as a computational software based
on the algorithms presented in the current paper. The IMU used in our system consists
of three Fibre Optic Gyros and three MEMS Accelerometers. Gyro bias stability is

VO solutionINS solution
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Figure 10. Visual odometry/IMU integration Kalman filter.
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0·005 deg/s. Accelerometer bias stability is 10 mg. The type of stereo cameras is
progressive scanning CCD, the baseline is 30 cm, the focal length is 12 mm, and the
image frame is 696×520 pixels, with pixel size of 6·45μm×6·45μm, the field of view in
horizontal and vertical are 42° and 31°. The system is capable of data collection and
navigation solution in real time.
We conducted an experiment in a realistic situation to demonstrate the validity of

our algorithm. The experiment is performed in an open square located in Beijing, see
Figure 11. The entire process lasts for approximately 45 minutes, with the vehicle
running at a distance of about 1150 m. The data set collected includes images, IMU
data, wheel sensor data, and RTK GPS data. In the data collection process,
the images are captured at a rate of 2 Hz, and the total images collected are over
4300 frames. The wheel sensor output velocity of the vehicle is 2 Hz, and the IMU
data rate is 200 Hz. The RTK GPS outputs real-time differential results at 1 Hz
with an accuracy of several centimetres, and is used as a position truth to evaluate the
accuracy of the test results. The surroundings of the vehicle path are very complex,
with a considerable amount of grass and scattered stones on the ground for most
sections of the route. Some sections were bare ground.
Three different methods, namely, visual odometry, IMU/WO integration, VO/IMU

integration, are used for data processing using the collected data sets; a comparison of
the results is also conducted. Occasional failures occur when the VO algorithm is used
to compute all the image frames of the data sets. The analysis shows that solution
failure occurs when the number of feature points in the image is too low, such as in
highly reflective bare ground. This failure also occurs when the feature matching is
difficult to perform, such as in a monotonous grass background. To fill these gaps, the
IMU/wheel odometry integration is used to link the failed image frames.

Figure 11. Navigation platform in an experiment.
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Figure 12 shows the trajectories of the vehicle in the experiment; the four
trajectories obtained from RTK GPS, IMU/WO integration, VO solution, and
VO/IMU integration are also shown. The trajectory from the VO/IMU integration is
very close to that of RTK GPS. The deviations between the RTK GPS trajectory and
the three others are also found to increase with the running distance. Table 5 lists
the navigation errors of the three methods. The position error of the terminal point of
the VO/IMU integration is much smaller than that of the IMU/wheel odometry
integration and the VO solution, with running distance of 1150 m, an accumulated
error of 8·6 m, and a relative error percentage of 0·75%. During the experiment, there
are six times of short-time visual odometry failure, but we can see that the accuracy of
the integrated system is not seriously affected by the visual odometry failure.
The innovation of Kalman filtering is illustrated in Figure 13 and Figure 14,

including position innovation and attitude innovation. It can be seen from Figure 13
that the maximum position innovation in X, Y, Z directions is less than 0·15 m, and in
most cases less than 0·05 m. It can be seen from Figure 14 that the maximum attitude
innovation in pitch, roll, yaw angles is less than 0·1°, and in most cases less than 0·02°.
The innovation indicates that the Kalman filtering process is relatively stable, the
visual odometry and IMU integrated algorithm in this paper is valid and efficient.

6. CONCLUSIONS. The current article introduces in detail the integrated
vision navigation system matching concept, research background, and recent
developments both domestic and abroad. The proposed passage applies a reliable
estimation method that improves the matching results of the SURF method, sig-
nificantly reducing the rate of wrong matches while avoiding extra calculation time.
The proposed system makes use of the improved results from the SURF method as
well as the relevant theories on photogrammetry. Moreover, the proposed system
realizes the measurement of 3D coordinates and an image sequence-based fast
coordinate extrapolation. At the same time, relevant programs are developed and
applied, and experimental results are collected and analysed. Finally, the proposed
system uses the integrated IMU data to further improve the accumulated error of the
model, which would be the foundation for further studies.

Figure 12. Trajectories obtained from the different solutions.

690 CHUN LIU AND OTHERS VOL. 65

https://doi.org/10.1017/S0373463312000264 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000264


The SURF method can execute a faster common point matching and perform real-
time matching. However, several wrong matching points are still obtained, affecting
the application range for the matching results. The improved SURF method not only
rapidly matches the common points, it also avoids many wrong matching points,
contributing to the overall accuracy. However, the improved method reduces the
amount of matching points. Based on the simple and efficient 3D coordinate

Table 5. Solution errors compared to GPS.

Solution
Error in position

(m)
Error percentage
of the distance

IMU/WO 52·3 4·5%
VO 18·7 1·6%
VO/IMU 8·6 0·75%

Figure 13. Position innovation of Kalman filtering.

Figure 14. Attitude innovation of Kalman filtering.
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measurement method of the basic theory of photogrammetry, the coordinates of the
image point in object space can easily be obtained. However, a number of technical
problems on the measurement of the image sequence-based coordinates remain to be
resolved. The IMU can provide an exterior orientation for the image, which greatly
simplifies the calculation. The combined treatment of IMU data will be investigated in
the future.

ACKNOWLEDGEMENT

The work in this paper is supported by National Basic Research Program of China (Project No.
2012CB957702).

REFERENCES

Bay, H., Tuytelaars, T. and Van Gool, L. (2006). SURF: Speeded-Up Robust Features. Proceedings of
ECCV 2006, 3951, 404–417.

Bayoud, F. and Skaloud, J. (2008). Vision-Aided Inertial Navigation System For Robotic Mobile Mapping.
Journal of Applied Geodesy, 2, 39–52.

Castro, E. De andMorandi, C. (1987). Registration of Translated and Rotated Images Using Finite Fourier
Transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5), 700–703.

Cheng, Y., Maimone, M. and Matthies, L. (2005). Visual Odometry on the Mars Exploration Rovers.
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1, 903–910.

DeSouza, G. N. and Kak, A. C. (2002). Vision for Mobile Robot Navigation: A Survey. IEEE Transaction
on Pattern Analysis and Machine Intelligence, 24(2), 237–267.

Konolige, K., Agrawal, M. and Solà, J. (2007). Large Scale Visual Odometry for Rough Terrain.
Proceedings of the International Symposium on Robotics Research, 2, 201–212.

Lucas, B. D. and Kanade, T. (1981). An Iterative Image Registration Technique with an Application to
Stereo Vision. Proceedings of IJCAI1981, 674–679.

Maimone, M., Cheng, Y. and Matthies, L. (2007). Two Years of Visual Odometry on the Mars Exploration
Rovers. Journal of Field Robotics, 24(2), 169–186.

Mikolajczyk, K. and Schmid, C. (2005). A Performance Evaluation of Local Descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27, 1615–1630.

Pei, C. (2010). The Research for the Binocular Stereo Matching Based on the Computer Vision. Master
Dissertation In Jiangsu University, China (in Chinese).

Song, C. B. (2004). Study on Image Matching in the Field of Stereo Vision Based on Line Feature. Master
Dissertation In Wuhan University, China (in Chinese).

Su, L. C. and Zhu, F. (2005). Design of a Novel Stereo Vision Navigation System for Mobile Robots.
Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO’05), pp. 611–614.

Thorpe, C., Hebert, M. H., Kanade, T. and Shafer, S. A. (1988). Vision and Navigation for the
Carnegie-Mellon Navlab. IEEE Transaction on Pattern Analysis and Machine Intelligence, 10(3),
362–373.

692 CHUN LIU AND OTHERS VOL. 65

https://doi.org/10.1017/S0373463312000264 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000264

