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Abstract. In this paper, we show that the semi-linear elliptic systems of the form

{−�u − μ�v = g(x, v), −�v − λ�u = f (x, u), x ∈ �,

u = v = 0, x ∈ ∂�
(0.1)

possess at least one non-trivial solution pair (u, v) ∈ H1
0 (�) × H1

0 (�), where � is a
smooth bounded domain in �N , λ and μ are non-negative numbers, f (x, t) and g(x, t)
are continuous functions on � × � and asymptotically linear at infinity.

2000 Mathematics Subject Classification. AMS classification: 35J60, 35J65.

1. Introduction. In this paper, we consider the existence of non-trivial solutions
of non-linear elliptic systems

{−�u − μ�v = g(x, v), −�v − λ�u = f (x, u), x ∈ �,

u = v = 0, x ∈ ∂�,
(1.1)

where � ⊂ �N is a smooth bounded domain, λ and μ are non-negative numbers, f (x, t)
and g(x, t) are continuous functions on � × � and asymptotically linear at infinity
for t.

In the case of λ = μ = 0, in recent years, much attention has been paid to the
existence of non-trivial solutions of problem (1.1) for the case that f and g are
superlinear, see [1], [2], [3], [7] and references therein. In [4], G. Li and J.Yang considered
the asymptotically linear elliptic systems

−�u + u = g(x, v), −�v + v = f (x, u), x ∈ �N ;

it obtained a positive solution by using linking theorem under the Cerami compactness
condition.

If λ,μ �= 0, the problem has some new features. First, by the Pohozaev-type
identity, the parameters λ and μ affect the sub-critical range of the growth of non-linear
terms at infinity. Second, if λμ < 1, the decomposition of the space in the framework
involves the parameters, see [5, 6]. Moreover, f and g are superlinear in [5] and are
asymptotically linear in [6].

In this paper, we will consider asymptotically linear elliptic systems (1.1) in E =
H1

0 (�) × H1
0 (�) with parameters λ, μ satisfies λμ > 1, which allow us to define an
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equivalent norm on E. In fact, let E be equipped with the norm

‖z‖E =
(∫

�

(|∇u|2 + |∇v|2) dx
) 1

2

,

where z = (u, v). Since λμ > 1, then there exists a real number l > 0 such that λ > l > 1
μ

and we have

max
{

1 + λ

2
,

1 + μ

2

}
(|∇u|2 + |∇v|2) ≥ ∇u∇v + λ

2
|∇u|2 + μ

2
|∇v|2

≥ min
{

λ − l
2

,
μ

2
− 1

2l

}
(|∇u|2 + |∇v|2). (1.2)

Then we may introduce a new inner product on E by the formula

〈(u, v), (ϕ,ψ)〉 =
∫

�

(λ∇u∇ϕ + ∇u∇ψ + ∇v∇ϕ + μ∇v∇ψ) dx, (1.3)

and the corresponding norm is

‖z‖ = (〈z, z〉) 1
2 =

(∫
�

(λ|∇u|2 + 2∇u∇v + μ|∇v|2) dx
) 1

2

, ∀z = (u, v) ∈ E. (1.4)

The norms ‖ · ‖ and ‖ · ‖E are then equivalent if λμ > 1 by (1.2).
We assume that f and g satisfy
(H1) f , g ∈ C1(� × �, �), f (x, t) = g(x, t) = 0 if t ≤ 0.
(H2) limt→0 (f (x, t)/t) = limt→0 (g(x, t)/t) = 0 uniformly with respect to x ∈ �

and f (x, t) > 0, g(x, t) > 0 for t > 0, x ∈ �.
(H3) limt→∞ (f (x, t)/t) = l > 0, limt→∞ (g(x, t)/t) = m > 0 uniformly in x ∈ �.
(H4) f (x, t)/t and g(x, t)/t are non-decreasing in t ≥ 0 for x ∈ �.
Let λ1 be the first eigenvalue of (−�, H1

0 (�)) and ϕ1 > 0 be the corresponding

eigenfunction. Define A = min{ l
1+λ

, m
1+μ

,
mλ+μl−

√
(mλ−μl)2+4ml

2(λμ−1) }.
The main result of this paper is as follows:

THEOREM 1.1. Suppose (H1) − (H4) hold. If λμ > 1 and λ1 < A, then the problem
(1.1) possesses at least one non-trivial solution pair z = (u, v) ∈ E. Furthermore, problem
(1.1) possesses the least energy non-trivial solution pair z = (u, v) ∈ E.

We will use Mountain Pass theorem to prove Theorem 1.1. As a by-product, we
show that

I∞ = inf
{
I(z) : I ′(z) = 0, z = (u, v) ∈ E\{0}}

is achieved by some z0 = (u0, v0) with u0 �≡ 0, v0 �≡ 0.
Theorem 1.1 will be proved in Section 2.

2. Existence results. Suppose in this section λ, μ satisfies λμ > 1 and λ1 < A.
By (H1) − (H3), it is easy to see that there is a 2 < p < 2N/(N − 2) if N > 2 and 2 <

p < +∞ if N ≤ 2 and that for any ε > 0 there is a cε > 0 such that for ∀(x, t) ∈ � × �,

|f (x, t)|, |g(x, t)| ≤ ε|t| + cε |t|p−1. (2.1)
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So the corresponding energy function

I(u, v) = 1
2
‖z‖2 −

∫
�

F(x, u) dx −
∫

�

G(x, v) dx (2.2)

is well defined on E and class C1(E, �), where F(x, t) = ∫ t
0 f (x, s) ds and G(x, t) =∫ t

0 g(x, s) ds. Moreover, the Fréchet derivative I ′ satisfying

〈I ′(u, v), (ϕ,ψ)〉 =
∫

�

[∇u∇ψ + ∇v∇ϕ + λ∇u∇ϕ + μ∇v∇ψ ] dx

−
∫

�

f (x, u)ϕ dx −
∫

�

g(x, v)ψ dx (2.3)

for ∀(ϕ,ψ) ∈ E.
Sequence {zn} ⊂ E is called the Palais–Smale sequence of a C1 function I on E

at level c ((PS)c-sequence for short) if I(zn) → c and I ′(zn) → 0 as n → ∞. To get a
(PS)c-sequence, we will use the Mountain Pass theorem cited in [8].

PROPOSITION 2.1. Let E be a Hilbert space, I ∈ C1(E, �), e ∈ E and r >

0 such that ‖e‖ > r and b := inf‖z‖=r I(z) > I(0) ≥ I(e). Let c be characterised
by c := infγ∈
 maxτ∈[0,1] I(γ (τ )), where 
 := {γ ∈ C([0, 1], E) : γ (0) = 0, γ (1) = e}.
Then, there exists a sequence {zn} ⊂ E such that I(zn) → c and I ′(zn) → 0 as
n → ∞.

LEMMA 2.1. Let (H1) − (H3) hold. Then we have the following:
(a) There exist ρ, β > 0 such that I(z) ≥ β for all z ∈ E with ‖z‖ = ρ.
(b) There exists e ∈ E with ‖e‖ ≥ β such that I(e) < 0.

Proof. (a) It follows from (2.1) and the Sobolev embedding theorem that for any
ε > 0 there is a cε > 0 such that

∫
�

F(x, u) dx +
∫

�

G(x, v) dx ≤ cε‖z‖2 + cε‖z‖p

for all z = (u, v) ∈ E. This, jointly with (2.2) implies (a).
(b) By Fatou’s Lemma, we have

lim
t→∞

I(tϕ1, tϕ1)
t2

= 1
2

∫
�

(2 + λ + μ)|∇ϕ1|2 dx − lim
t→∞

∫
�

F(x, tϕ1) + G(x, tϕ1)
t2

dx

≤ 1
2

∫
�

(2 + λ + μ)|∇ϕ1|2 dx −
∫

�

lim
t→∞

F(x, tϕ1) + G(x, tϕ1)

t2ϕ2
1

ϕ2
1 dx

= 1
2

∫
�

(2 + λ + μ)|∇ϕ1|2 dx − 1
2

∫
�

(l + m)ϕ2
1 dx

= 1
2

(
2 + λ + μ − l + m

λ1

) ∫
�

|∇ϕ1|2 dx < 0

because of λ1 < A. So I(tϕ1, tϕ1) → −∞ as t → ∞ and part (b) is proved. �
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PROPOSITION 2.2. If (u, v) ∈ H1
0 (�) × H1

0 (�) is a non-trivial solution of (1.1), then

we have λ1 ≤ mλ+μl−
√

(mλ−μl)2+4ml
2(λμ−1) .

Proof. Let k = μl−mλ+
√

(mλ−μl)2+4ml
2m . It is apparent that (u, v) = (u, kṽ) is a non-

trivial solution pair of the problem{−�u − μk�ṽ = g(x, kṽ), −�ṽ − λ
k�u = 1

k f (x, u), x ∈ �,

u = ṽ = 0, x ∈ ∂�,

that is

−
(

1 + λ

k

)
�

(
u + 1 + μk

1 + λ
k

ṽ

)
= g (x, kṽ) + 1

k
f (x, u).

By (H3) and (H4), we have

(
1 + λ

k

) ∫
�

|∇
(

u + 1 + μk
1 + λ

k

ṽ

)
|2 dx =

∫
�

[
g(x, kṽ) + 1

k
f (x, u)

] (
u + 1 + μk

1 + λ
k

ṽ

)
dx

≤
∫

�

[
mkṽ + l

k
u
] (

u + 1 + μk
1 + λ

k

ṽ

)
dx

= l
k

∫
�

(
u + mk2

l
ṽ

) (
u + 1 + μk

1 + λ
k

ṽ

)
dx.

By the definition of k we know that 1+μk
1+ λ

k
= mk2

l , and hence

λ1 ≤
l
k

1 + λ
k

= l
k + λ

= mλ + μl −
√

(mλ − μl)2 + 4ml
2(λμ − 1)

.

The proof is complete. �
PROPOSITION 2.3. Under assumptions (H1) − (H4), problem (1.1) possesses at least

one non-trivial solution pair (u, v) ∈ E.

Proof. Proposition 2.1 and Lemma 2.1 implies that there exists a (PS)c−sequence
{zn} ⊂ E for I , that is

I(zn) → c, I ′(zn) → 0, (2.4)

where c > 0. To get a non-trivial solution, we only need to show that {zn} is bounded in
E. For this purpose, we suppose, by contradiction, that ‖zn‖ → ∞ as n → ∞ and let

tn = 2
√

c
‖zn‖ , wn = tnzn = 2

√
czn

‖zn‖ =
(

2
√

cun

‖zn‖ ,
2
√

cvn

‖zn‖
)

�= (
w1

n, w
2
n

)
. (2.5)

Obviously, {wn} is bounded in E. By extracting a sub-sequence, we may suppose that

wn ⇀ w ∈ E, wn → w a.e. in �

as n → ∞, where w = (w1, w2).
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We claim that

w �≡ 0.

In fact, by (H2) − (H4), we see that there exists M > 0 such that |f (x, t)/t| ≤ M,
|g(x, t)/t| ≤ M for all x ∈ � and t ≥ 0. Supposing w ≡ 0, by Sobolev embedding
theorem that, w1

n → 0, w2
n → 0 in L2(�), as n → ∞. Then it follows from (2.4) and

(2.5) that

4c =
∫

�

[
f (x, un)

un
|w1

n|2 + g(x, vn)
vn

|w2
n|2

]
dx + o(1)

≤ M
∫

�

[|w1
n|2 + |w2

n|2
]

dx + o(1) → 0

as n → ∞, which is impossible as c > 0. Hence, the claim is proved.
Set

pn(x) =
{

f (x,un)
un

if un(x) > 0;

0 if un(x) ≤ 0,
qn(x) =

{
g(x,vn)

vn
if vn(x) > 0;

0 if vn(x) ≤ 0.

By (H2) − (H4), we see that

0 ≤ pn(x) ≤ l, 0 ≤ qn(x) ≤ m, ∀x ∈ �,

and there exist two functions p(x), q(x) ∈ L∞(�) such that

pn ⇀ p, qn ⇀ q in L2(�)

as n → ∞. It results to

pn(x)w1
n ⇀ p(x)max{w1(x), 0}, qn(x)w2

n ⇀ q(x)max{w2(x), 0} in L2(�)

as n → ∞. Since {zn} is a (PS)c−sequence of I , then from (2.3) we have ∀(ϕ,ψ) ∈ E,
so that

o(1) =
∫

�

[∇w1
n∇ψ + ∇w2

n∇ϕ + λ∇w1
n∇ϕ + μ∇w2

n∇ψ
]

dx

−
∫

�

pn(x)w1
nϕ dx −

∫
�

qn(x)w2
nψ dx.

Letting n → ∞, we obtain∫
�

[∇w1∇ψ + ∇w2∇ϕ + λ∇w1∇ϕ + μ∇w2∇ψ
]

dx −
∫

�

p(x)max{w1, 0}ϕdx

−
∫

�

q(x)max{w2, 0}ψ dx = 0. (2.6)

Therefore, w1 and w2 satisfy{−�w1 − μ�w2 = q(x)max{w2, 0} ≥ 0, x ∈ �,

−�w2 − λ�w1 = p(x)max{w1, 0} ≥ 0, x ∈ �.
(2.7)
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Choosing (ϕ1, 0) as a test function in (2.6), we can get that∫
�

[∇w2∇ϕ1 + λ∇w1∇ϕ1
]

dx =
∫

�

p(x)max{w1, 0}ϕ1 dx = l
∫

�∩{x:w1(x)>0}
w1ϕ1 dx,

but ∫
�

[∇w2∇ϕ1 + λ∇w1∇ϕ1
]

dx =
∫

�

[
λ1w

2ϕ1 + λλ1w
1ϕ1

]
dx,

thus we have ∫
�∩{x:w1(x)>0}

(l − λλ1)w1ϕ1 dx ≤
∫

�∩{x:w2(x)>0}
λ1w

2ϕ1 dx. (2.8)

Similarly, choosing (0, ϕ1) as a test function in (2.6), we can get∫
�∩{x:w2(x)>0}

(m − μλ1)w2ϕ1 dx ≤
∫

�∩{x:w1(x)>0}
λ1w

1ϕ1 dx. (2.9)

If � ∩ {x : w2(x) > 0} = ∅, then from (2.7) we know that the maximum principle
implies that w1 = −μw2 ≥ 0 in �, but w = (w1, w2) �≡ 0, so we must have � ∩ {x :
w1(x) > 0} �= ∅. Hence we can conclude from (2.8) that l − λλ1 ≤ 0, which contradicts
λ1 < A. Therefore � ∩ {x : w2(x) > 0} �= ∅. Similarly, we have � ∩ {x : w1(x) > 0} �=
∅. Thus, combining (2.8) and (2.9), we can get

(l − λλ1)(m − μλ1) ≤ λ2
1,

which is impossible since λ1 < A.
Thus, we must have ‖zn‖ ≤ c < +∞ and the Proposition is proved. �
The proof for Theorem 1.1 will be completed by the following Proposition.

PROPOSITION 2.4. If (H1) − (H4) hold, then I∞ is assumed.

Proof. By Proposition 2.3, we know that I∞ is well defined and finite. Now we
show that I∞ is assumed. Using (2.1) and Sobolev embedding theorem, we get

‖z‖2 =
∫

�

f (x, u)u dx +
∫

�

g(x, v)v dx ≤ εc‖z‖2 + cε‖z‖p.

When ε is small enough, we have

‖z‖ ≥ c > 0. (2.10)

Suppose now zn = (un, vn) �≡ 0 is a minimising sequence of I∞. By Proposition 2.3,
we see that {zn} is uniformly bounded in E. So we may assume zn → z = (u, v) in E
and I ′(z) = 0. Since (2.10) implies z �= (0, 0), it follows that I∞ = limn→∞ I(zn) = I(z).
Consequently, I∞ is assumed by z ∈ E \ {0}. The proof is complete. �

Proof of Theorem 1.1. This is a direct consequence of Proposition 2.3 and 2.4. �

ACKNOWLEDGEMENT. This work is supported by Natural Science Foundation of
South-Central University for Nationalities, yzz08001.

https://doi.org/10.1017/S0017089510000078 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000078


ASYMPTOTICALLY LINEAR ELLIPTIC SYSTEMS WITH PARAMETERS 389

REFERENCES

1. Ph. Clement, D. G. Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic
systems, Comm. PDE. 17 (1992), 923–940.

2. D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems, Trans. Amer.
Math. Soc. 343 (1994), 99–106.

3. J. Hulshof and R. C. A. M. Van de Vorst, Differential systems with strongly indefinite
linear part, J. Funct. Anal. 114 (1993), 32–58.

4. G. Li and J. Yang, Asymptotically linear elliptic system, Comm. PDE. 29 (2004), 925–
954.

5. C. Peng and J. Yang, Nonnegative solutions for nonlinear elliptic systems, J. Math.
Anal. Appl. 330 (2007), 633–653.

6. C. Peng and J. Yang, Positive solution for asymptotically linear elliptic systems, Glasgow
Math. J. 49 (2007), 377–390.

7. R. C. A. M. Van de Vorst, Variational identities and applications to differential systems,
Arch. Rational Mech. Anal. 116 (1991), 375–398.

8. M. Willem, Minimax theorems (Birkhauser, Boston, 1996).

https://doi.org/10.1017/S0017089510000078 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000078

