ASYMPTOTICALLY LINEAR ELLIPTIC SYSTEMS WITH PARAMETERS

CHAOQUAN PENG

Department of Mathematics, South-Central University for Nationalities, Wuhan 430074, The People's Republic of China e-mail: pcq1979@163.com

(Received 27 May 2009; accepted 28 October 2009)

Abstract. In this paper, we show that the semi-linear elliptic systems of the form

$$\begin{cases} -\Delta u - \mu \Delta v = g(x, v), & -\Delta v - \lambda \Delta u = f(x, u), \ x \in \Omega, \\ u = v = 0, & x \in \partial \Omega \end{cases}$$
(0.1)

possess at least one non-trivial solution pair $(u, v) \in H_0^1(\Omega) \times H_0^1(\Omega)$, where Ω is a smooth bounded domain in \mathbb{R}^N , λ and μ are non-negative numbers, f(x, t) and g(x, t) are continuous functions on $\Omega \times \mathbb{R}$ and asymptotically linear at infinity.

2000 Mathematics Subject Classification. AMS classification: 35J60, 35J65.

1. Introduction. In this paper, we consider the existence of non-trivial solutions of non-linear elliptic systems

$$\begin{cases} -\Delta u - \mu \Delta v = g(x, v), & -\Delta v - \lambda \Delta u = f(x, u), & x \in \Omega, \\ u = v = 0, & x \in \partial \Omega, \end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain, λ and μ are non-negative numbers, f(x, t) and g(x, t) are continuous functions on $\Omega \times \mathbb{R}$ and asymptotically linear at infinity for *t*.

In the case of $\lambda = \mu = 0$, in recent years, much attention has been paid to the existence of non-trivial solutions of problem (1.1) for the case that f and g are superlinear, see [1], [2], [3], [7] and references therein. In [4], G. Li and J. Yang considered the asymptotically linear elliptic systems

$$-\Delta u + u = g(x, v), \quad -\Delta v + v = f(x, u), x \in \mathbb{R}^N;$$

it obtained a positive solution by using linking theorem under the Cerami compactness condition.

If $\lambda, \mu \neq 0$, the problem has some new features. First, by the Pohozaev-type identity, the parameters λ and μ affect the sub-critical range of the growth of non-linear terms at infinity. Second, if $\lambda \mu < 1$, the decomposition of the space in the framework involves the parameters, see [5, 6]. Moreover, f and g are superlinear in [5] and are asymptotically linear in [6].

In this paper, we will consider asymptotically linear elliptic systems (1.1) in $E = H_0^1(\Omega) \times H_0^1(\Omega)$ with parameters λ , μ satisfies $\lambda \mu > 1$, which allow us to define an

equivalent norm on E. In fact, let E be equipped with the norm

$$||z||_E = \left(\int_{\Omega} \left(|\nabla u|^2 + |\nabla v|^2\right) dx\right)^{\frac{1}{2}},$$

where z = (u, v). Since $\lambda \mu > 1$, then there exists a real number l > 0 such that $\lambda > l > \frac{1}{\mu}$ and we have

$$\max\left\{\frac{1+\lambda}{2}, \frac{1+\mu}{2}\right\} (|\nabla u|^2 + |\nabla v|^2) \ge \nabla u \nabla v + \frac{\lambda}{2} |\nabla u|^2 + \frac{\mu}{2} |\nabla v|^2 \\\ge \min\left\{\frac{\lambda - l}{2}, \frac{\mu}{2} - \frac{1}{2l}\right\} (|\nabla u|^2 + |\nabla v|^2).$$
(1.2)

Then we may introduce a new inner product on E by the formula

$$\langle (u,v), (\varphi,\psi) \rangle = \int_{\Omega} (\lambda \nabla u \nabla \varphi + \nabla u \nabla \psi + \nabla v \nabla \varphi + \mu \nabla v \nabla \psi) \, dx, \tag{1.3}$$

and the corresponding norm is

$$||z|| = (\langle z, z \rangle)^{\frac{1}{2}} = \left(\int_{\Omega} (\lambda |\nabla u|^2 + 2\nabla u \nabla v + \mu |\nabla v|^2) \, dx \right)^{\frac{1}{2}}, \ \forall z = (u, v) \in E.$$
(1.4)

The norms $\|\cdot\|$ and $\|\cdot\|_E$ are then equivalent if $\lambda \mu > 1$ by (1.2).

We assume that f and g satisfy

(H1) $f, g \in C^1(\Omega \times \mathbb{R}, \mathbb{R}), f(x, t) = g(x, t) = 0$ if $t \le 0$.

(*H*2) $\lim_{t\to 0} (f(x, t)/t) = \lim_{t\to 0} (g(x, t)/t) = 0$ uniformly with respect to $x \in \Omega$ and f(x, t) > 0, g(x, t) > 0 for t > 0, $x \in \Omega$.

(H3) $\lim_{t\to\infty} (f(x, t)/t) = l > 0$, $\lim_{t\to\infty} (g(x, t)/t) = m > 0$ uniformly in $x \in \Omega$. (H4) f(x, t)/t and g(x, t)/t are non-decreasing in $t \ge 0$ for $x \in \Omega$.

Let λ_1 be the first eigenvalue of $(-\Delta, H_0^1(\Omega))$ and $\varphi_1 > 0$ be the corresponding eigenfunction. Define $A = \min\{\frac{l}{1+\lambda}, \frac{m}{1+\mu}, \frac{m\lambda+\mu l - \sqrt{(m\lambda-\mu l)^2 + 4ml}}{2(\lambda\mu-1)}\}$.

The main result of this paper is as follows:

THEOREM 1.1. Suppose (H1) - (H4) hold. If $\lambda \mu > 1$ and $\lambda_1 < A$, then the problem (1.1) possesses at least one non-trivial solution pair $z = (u, v) \in E$. Furthermore, problem (1.1) possesses the least energy non-trivial solution pair $z = (u, v) \in E$.

We will use Mountain Pass theorem to prove Theorem 1.1. As a by-product, we show that

$$I^{\infty} = \inf \{ I(z) : I'(z) = 0, \ z = (u, v) \in E \setminus \{0\} \}$$

is achieved by some $z_0 = (u_0, v_0)$ with $u_0 \neq 0, v_0 \neq 0$.

Theorem 1.1 will be proved in Section 2.

2. Existence results. Suppose in this section λ , μ satisfies $\lambda \mu > 1$ and $\lambda_1 < A$. By $(H_1) - (H_3)$, it is easy to see that there is a 2 if <math>N > 2 and $2 if <math>N \le 2$ and that for any $\epsilon > 0$ there is a $c_{\epsilon} > 0$ such that for $\forall(x, t) \in \Omega \times \mathbb{R}$,

$$|f(x,t)|, |g(x,t)| \le \epsilon |t| + c_{\epsilon} |t|^{p-1}.$$
(2.1)

So the corresponding energy function

$$I(u, v) = \frac{1}{2} ||z||^2 - \int_{\Omega} F(x, u) \, dx - \int_{\Omega} G(x, v) \, dx \tag{2.2}$$

is well defined on *E* and class $C^1(E, \mathbb{R})$, where $F(x, t) = \int_0^t f(x, s) ds$ and $G(x, t) = \int_0^t g(x, s) ds$. Moreover, the Fréchet derivative *I'* satisfying

$$\langle I'(u,v),(\varphi,\psi)\rangle = \int_{\Omega} [\nabla u \nabla \psi + \nabla v \nabla \varphi + \lambda \nabla u \nabla \varphi + \mu \nabla v \nabla \psi] dx$$
$$-\int_{\Omega} f(x,u)\varphi dx - \int_{\Omega} g(x,v)\psi dx \qquad (2.3)$$

for $\forall (\varphi, \psi) \in E$.

Sequence $\{z_n\} \subset E$ is called the Palais–Smale sequence of a C^1 function I on E at level c ((*PS*)_c-sequence for short) if $I(z_n) \to c$ and $I'(z_n) \to 0$ as $n \to \infty$. To get a (*PS*)_c-sequence, we will use the Mountain Pass theorem cited in [8].

PROPOSITION 2.1. Let *E* be a Hilbert space, $I \in C^1(E, \mathbb{R})$, $e \in E$ and r > 0 such that ||e|| > r and $b := \inf_{\|z\|=r} I(z) > I(0) \ge I(e)$. Let *c* be characterised by $c := \inf_{\gamma \in \Gamma} \max_{\tau \in [0,1]} I(\gamma(\tau))$, where $\Gamma := \{\gamma \in C([0,1], E) : \gamma(0) = 0, \gamma(1) = e\}$. Then, there exists a sequence $\{z_n\} \subset E$ such that $I(z_n) \to c$ and $I'(z_n) \to 0$ as $n \to \infty$.

LEMMA 2.1. Let $(H_1) - (H_3)$ hold. Then we have the following: (a) There exist ρ , $\beta > 0$ such that $I(z) \ge \beta$ for all $z \in E$ with $||z|| = \rho$. (b) There exists $e \in E$ with $||e|| \ge \beta$ such that I(e) < 0.

Proof. (*a*) It follows from (2.1) and the Sobolev embedding theorem that for any $\epsilon > 0$ there is a $c_{\epsilon} > 0$ such that

$$\int_{\Omega} F(x, u) \, dx + \int_{\Omega} G(x, v) \, dx \le c \epsilon \|z\|^2 + c_{\epsilon} \|z\|^p$$

for all $z = (u, v) \in E$. This, jointly with (2.2) implies (a).

(b) By Fatou's Lemma, we have

$$\begin{split} \lim_{t \to \infty} \frac{I(t\varphi_1, t\varphi_1)}{t^2} &= \frac{1}{2} \int_{\Omega} (2 + \lambda + \mu) |\nabla \varphi_1|^2 \, dx - \lim_{t \to \infty} \int_{\Omega} \frac{F(x, t\varphi_1) + G(x, t\varphi_1)}{t^2} \, dx \\ &\leq \frac{1}{2} \int_{\Omega} (2 + \lambda + \mu) |\nabla \varphi_1|^2 \, dx - \int_{\Omega} \lim_{t \to \infty} \frac{F(x, t\varphi_1) + G(x, t\varphi_1)}{t^2 \varphi_1^2} \varphi_1^2 \, dx \\ &= \frac{1}{2} \int_{\Omega} (2 + \lambda + \mu) |\nabla \varphi_1|^2 \, dx - \frac{1}{2} \int_{\Omega} (l + m) \varphi_1^2 \, dx \\ &= \frac{1}{2} \left(2 + \lambda + \mu - \frac{l + m}{\lambda_1} \right) \int_{\Omega} |\nabla \varphi_1|^2 \, dx < 0 \end{split}$$

because of $\lambda_1 < A$. So $I(t\varphi_1, t\varphi_1) \rightarrow -\infty$ as $t \rightarrow \infty$ and part (b) is proved.

CHAOQUAN PENG

PROPOSITION 2.2. If $(u, v) \in H_0^1(\Omega) \times H_0^1(\Omega)$ is a non-trivial solution of (1.1), then we have $\lambda_1 \leq \frac{m\lambda + \mu l - \sqrt{(m\lambda - \mu l)^2 + 4ml}}{2(\lambda \mu - 1)}$.

Proof. Let $k = \frac{\mu l - m\lambda + \sqrt{(m\lambda - \mu l)^2 + 4ml}}{2m}$. It is apparent that $(u, v) = (u, k\tilde{v})$ is a non-trivial solution pair of the problem

$$\begin{cases} -\Delta u - \mu k \Delta \tilde{v} = g(x, k \tilde{v}), & -\Delta \tilde{v} - \frac{\lambda}{k} \Delta u = \frac{1}{k} f(x, u), & x \in \Omega, \\ u = \tilde{v} = 0, & x \in \partial \Omega, \end{cases}$$

that is

$$-\left(1+\frac{\lambda}{k}\right)\Delta\left(u+\frac{1+\mu k}{1+\frac{\lambda}{k}}\tilde{v}\right) = g\left(x,k\tilde{v}\right) + \frac{1}{k}f(x,u).$$

By (H_3) and (H_4) , we have

$$\begin{split} \left(1+\frac{\lambda}{k}\right) \int_{\Omega} |\nabla\left(u+\frac{1+\mu k}{1+\frac{\lambda}{k}}\tilde{v}\right)|^2 dx &= \int_{\Omega} \left[g(x,k\tilde{v})+\frac{1}{k}f(x,u)\right] \left(u+\frac{1+\mu k}{1+\frac{\lambda}{k}}\tilde{v}\right) dx \\ &\leq \int_{\Omega} \left[mk\tilde{v}+\frac{l}{k}u\right] \left(u+\frac{1+\mu k}{1+\frac{\lambda}{k}}\tilde{v}\right) dx \\ &= \frac{l}{k} \int_{\Omega} \left(u+\frac{mk^2}{l}\tilde{v}\right) \left(u+\frac{1+\mu k}{1+\frac{\lambda}{k}}\tilde{v}\right) dx. \end{split}$$

By the definition of k we know that $\frac{1+\mu k}{1+\frac{\lambda}{k}} = \frac{mk^2}{l}$, and hence

$$\lambda_1 \leq \frac{\frac{l}{k}}{1+\frac{\lambda}{k}} = \frac{l}{k+\lambda} = \frac{m\lambda + \mu l - \sqrt{(m\lambda - \mu l)^2 + 4ml}}{2(\lambda\mu - 1)}.$$

The proof is complete.

PROPOSITION 2.3. Under assumptions $(H_1) - (H_4)$, problem (1.1) possesses at least one non-trivial solution pair $(u, v) \in E$.

Proof. Proposition 2.1 and Lemma 2.1 implies that there exists a $(PS)_c$ -sequence $\{z_n\} \subset E$ for I, that is

$$I(z_n) \to c, \quad I'(z_n) \to 0,$$
 (2.4)

where c > 0. To get a non-trivial solution, we only need to show that $\{z_n\}$ is bounded in *E*. For this purpose, we suppose, by contradiction, that $||z_n|| \to \infty$ as $n \to \infty$ and let

$$t_n = \frac{2\sqrt{c}}{\|z_n\|}, \quad w_n = t_n z_n = \frac{2\sqrt{c}z_n}{\|z_n\|} = \left(\frac{2\sqrt{c}u_n}{\|z_n\|}, \frac{2\sqrt{c}v_n}{\|z_n\|}\right) \stackrel{\Delta}{=} \left(w_n^1, w_n^2\right).$$
(2.5)

Obviously, $\{w_n\}$ is bounded in E. By extracting a sub-sequence, we may suppose that

$$w_n \rightharpoonup w \in E, \quad w_n \rightarrow w \ a.e. \ in \ \Omega$$

as $n \to \infty$, where $w = (w_1, w_2)$.

386

We claim that

$$w \not\equiv 0.$$

In fact, by $(H_2) - (H_4)$, we see that there exists M > 0 such that $|f(x, t)/t| \le M$, $|g(x, t)/t| \le M$ for all $x \in \Omega$ and $t \ge 0$. Supposing $w \equiv 0$, by Sobolev embedding theorem that, $w_n^1 \to 0$, $w_n^2 \to 0$ in $L^2(\Omega)$, as $n \to \infty$. Then it follows from (2.4) and (2.5) that

$$4c = \int_{\Omega} \left[\frac{f(x, u_n)}{u_n} |w_n^1|^2 + \frac{g(x, v_n)}{v_n} |w_n^2|^2 \right] dx + o(1)$$

$$\leq M \int_{\Omega} \left[|w_n^1|^2 + |w_n^2|^2 \right] dx + o(1) \to 0$$

as $n \to \infty$, which is impossible as c > 0. Hence, the claim is proved. Set

$$p_n(x) = \begin{cases} \frac{f(x,u_n)}{u_n} & \text{if } u_n(x) > 0; \\ 0 & \text{if } u_n(x) \le 0, \end{cases} \quad q_n(x) = \begin{cases} \frac{g(x,v_n)}{v_n} & \text{if } v_n(x) > 0; \\ 0 & \text{if } v_n(x) \le 0. \end{cases}$$

By $(H_2) - (H_4)$, we see that

$$0 \le p_n(x) \le l, \quad 0 \le q_n(x) \le m, \quad \forall x \in \Omega,$$

and there exist two functions p(x), $q(x) \in L^{\infty}(\Omega)$ such that

$$p_n \rightarrow p, q_n \rightarrow q \text{ in } L^2(\Omega)$$

as $n \to \infty$. It results to

$$p_n(x)w_n^1 \rightharpoonup p(x)\max\{w^1(x), 0\}, \ q_n(x)w_n^2 \rightharpoonup q(x)\max\{w^2(x), 0\} \text{ in } L^2(\Omega)$$

as $n \to \infty$. Since $\{z_n\}$ is a $(PS)_c$ -sequence of I, then from (2.3) we have $\forall (\varphi, \psi) \in E$, so that

$$o(1) = \int_{\Omega} \left[\nabla w_n^1 \nabla \psi + \nabla w_n^2 \nabla \varphi + \lambda \nabla w_n^1 \nabla \varphi + \mu \nabla w_n^2 \nabla \psi \right] dx$$
$$- \int_{\Omega} p_n(x) w_n^1 \varphi \, dx - \int_{\Omega} q_n(x) w_n^2 \psi \, dx.$$

Letting $n \to \infty$, we obtain

$$\int_{\Omega} \left[\nabla w^{1} \nabla \psi + \nabla w^{2} \nabla \varphi + \lambda \nabla w^{1} \nabla \varphi + \mu \nabla w^{2} \nabla \psi \right] dx - \int_{\Omega} p(x) \max\{w^{1}, 0\} \varphi dx$$
$$- \int_{\Omega} q(x) \max\{w^{2}, 0\} \psi dx = 0.$$
(2.6)

Therefore, w^1 and w^2 satisfy

$$\begin{cases} -\Delta w^{1} - \mu \Delta w^{2} = q(x) \max\{w^{2}, 0\} \ge 0, \ x \in \Omega, \\ -\Delta w^{2} - \lambda \Delta w^{1} = p(x) \max\{w^{1}, 0\} \ge 0, \ x \in \Omega. \end{cases}$$
(2.7)

CHAOQUAN PENG

Choosing (φ_1 , 0) as a test function in (2.6), we can get that

$$\int_{\Omega} \left[\nabla w^2 \nabla \varphi_1 + \lambda \nabla w^1 \nabla \varphi_1 \right] dx = \int_{\Omega} p(x) \max\{w^1, 0\} \varphi_1 dx = l \int_{\Omega \cap \{x:w^1(x)>0\}} w^1 \varphi_1 dx,$$

but

$$\int_{\Omega} \left[\nabla w^2 \nabla \varphi_1 + \lambda \nabla w^1 \nabla \varphi_1 \right] dx = \int_{\Omega} \left[\lambda_1 w^2 \varphi_1 + \lambda \lambda_1 w^1 \varphi_1 \right] dx,$$

thus we have

$$\int_{\Omega \cap \{x:w^1(x)>0\}} (l-\lambda\lambda_1) w^1 \varphi_1 \, dx \le \int_{\Omega \cap \{x:w^2(x)>0\}} \lambda_1 w^2 \varphi_1 \, dx. \tag{2.8}$$

Similarly, choosing $(0, \varphi_1)$ as a test function in (2.6), we can get

$$\int_{\Omega \cap \{x:w^2(x)>0\}} (m-\mu\lambda_1) w^2 \varphi_1 \, dx \le \int_{\Omega \cap \{x:w^1(x)>0\}} \lambda_1 w^1 \varphi_1 \, dx.$$
(2.9)

If $\Omega \cap \{x : w^2(x) > 0\} = \emptyset$, then from (2.7) we know that the maximum principle implies that $w^1 = -\mu w^2 \ge 0$ in Ω , but $w = (w_1, w_2) \ne 0$, so we must have $\Omega \cap \{x : w^1(x) > 0\} \ne \emptyset$. Hence we can conclude from (2.8) that $l - \lambda \lambda_1 \le 0$, which contradicts $\lambda_1 < A$. Therefore $\Omega \cap \{x : w^2(x) > 0\} \ne \emptyset$. Similarly, we have $\Omega \cap \{x : w^1(x) > 0\} \ne \emptyset$. Thus, combining (2.8) and (2.9), we can get

$$(l - \lambda \lambda_1)(m - \mu \lambda_1) \le \lambda_1^2,$$

which is impossible since $\lambda_1 < A$.

Thus, we must have $||z_n|| \le c < +\infty$ and the Proposition is proved.

The proof for Theorem 1.1 will be completed by the following Proposition.

PROPOSITION 2.4. If $(H_1) - (H_4)$ hold, then I^{∞} is assumed.

Proof. By Proposition 2.3, we know that I^{∞} is well defined and finite. Now we show that I^{∞} is assumed. Using (2.1) and Sobolev embedding theorem, we get

$$||z||^{2} = \int_{\Omega} f(x, u)u \, dx + \int_{\Omega} g(x, v)v \, dx \le \epsilon c ||z||^{2} + c_{\epsilon} ||z||^{p}.$$

When ϵ is small enough, we have

$$\|z\| \ge c > 0. \tag{2.10}$$

 \square

Suppose now $z_n = (u_n, v_n) \neq 0$ is a minimising sequence of I^{∞} . By Proposition 2.3, we see that $\{z_n\}$ is uniformly bounded in *E*. So we may assume $z_n \rightarrow z = (u, v)$ in *E* and I'(z) = 0. Since (2.10) implies $z \neq (0, 0)$, it follows that $I^{\infty} = \lim_{n \to \infty} I(z_n) = I(z)$. Consequently, I^{∞} is assumed by $z \in E \setminus \{0\}$. The proof is complete.

Proof of Theorem 1.1. This is a direct consequence of Proposition 2.3 and 2.4. \Box

ACKNOWLEDGEMENT. This work is supported by Natural Science Foundation of South-Central University for Nationalities, yzz08001.

REFERENCES

1. Ph. Clement, D. G. Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, *Comm. PDE.* 17 (1992), 923–940.

2. D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems, *Trans. Amer. Math. Soc.* 343 (1994), 99–106.

3. J. Hulshof and R. C. A. M. Van de Vorst, Differential systems with strongly indefinite linear part, *J. Funct. Anal.* **114** (1993), 32–58.

4. G. Li and J. Yang, Asymptotically linear elliptic system, *Comm. PDE.* **29** (2004), 925–954.

5. C. Peng and J. Yang, Nonnegative solutions for nonlinear elliptic systems, J. Math. Anal. Appl. 330 (2007), 633–653.

6. C. Peng and J. Yang, Positive solution for asymptotically linear elliptic systems, *Glasgow Math. J.* **49** (2007), 377–390.

7. R. C. A. M. Van de Vorst, Variational identities and applications to differential systems, *Arch. Rational Mech. Anal.* **116** (1991), 375–398.

8. M. Willem, Minimax theorems (Birkhauser, Boston, 1996).