Ergod Th & Dynam Sys (1990), 10, 763-776 Printed in Great Britain

Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors

MARIUSZ LEMAŃCZYK AND MIECZYSŁAW K MENTZEN Institute of Mathematics, Nicholas Copernicus University, ul Chopina 12/18, 87-100 Toruń, Poland

(Received 27 September 1988)

Abstract For ergodic group extensions of transformations with discrete spectra it is proved that each invariant sub- σ -algebra is determined by a compact subgroup in the centralizer of a natural factor

0 Introduction

In [5] the set of ergodic measures for compact abelian group extensions of a given transformation was described In the present paper, in a sense, we go further and we study the set of ergodic self-joinings of ergodic group extensions of transformations with discrete spectra These joinings turn out to be natural, namely, every ergodic self-joining of an ergodic compact, abelian group extension T_{φ} $(X \times G, \tilde{\mu}) \rightarrow (X \times G, \tilde{\mu})$ of a transformation with a discrete spectrum $T(X, \mu) \rightarrow (X, \mu)$ must be the relatively independent extension of an isomorphism between some two natural factors of T_{φ} (by a natural factor of a G-extension T_{φ} we mean the action of T_{φ} on the quotient space $X \times G/H$, for H a closed subgroup of G)

In [11] (see also [3], [4]) Veech proved that for any ergodic transformation U with the 2-fold simplicity property (we use the definition of 2-fold simplicity from [4]), there was a one-to the correspondence between invariant sub- σ -algebras and compact subgroups in the centralizer C(U) of U This Veech correspondence is given by

$$\mathscr{C} \leftrightarrow H(\mathscr{C}) = \{ S \in C(U) \mid (\forall A \in \mathscr{C}) S^{-1} A = A \}$$

for each U-invariant sub- σ -algebra \mathscr{C}

In this paper, using the structure of self-joinings, we prove that for any T_{φ} -invariant sub- σ -algebra of an ergodic group extension of a rotation there is a *compact* subgroup in the centralizer of a natural factor giving rise to the Veech correspondence

1 Ergodic joinings of group extensions of transformations with discrete spectra Let T_i (i=1, ..., n) be ergodic automorphisms of Lebesgue spaces $(X_i, \mathcal{B}_i, \mu_i)$, where μ_i is a T_i -invariant probability measure on a σ -algebra \mathcal{B}_i of subsets of X_i Definition 1 [9, 4] By an *n*-joining of T_1 , T_n we mean any $T_1 \times \times T_n$ -invariant measure λ on $\mathcal{B}_1 \otimes \otimes \mathcal{B}_n$ such that for each i = 1, n and each $A_i \in \mathcal{B}_i$

$$A(X_1 \times \cdots \times X_{i-1} \times A_i \times X_{i+1} \times \cdots \times X_n) = \mu_i(A_i)$$

The set of all *n*-joinings of T_1 , T_n will be denoted by $J(T_1, , T_n)$ The subset of $J(T_1, , T_n)$ consisting of all ergodic measures will be denoted by $J^e(T_1, , T_n)$ It is clear that if $\lambda \in J(T_1, , T_n)$ and

$$\lambda = \int_{E(T_1, T_n)} e \, d\tau(e)$$

is its ergodic decomposition with $E(T_1, \dots, T_n)$ being the set of all ergodic measures on $\mathscr{B}_1 \otimes \dots \otimes \mathscr{B}_n$, then

$$\tau(J^e(T_1, \dots, T_n)) = 1$$

Hence, we can say that the ergodic components of an *n*-joining are *n*-joinings In particular, $J^e(T_1, \dots, T_n)$ is nonempty since $\mu_1 \times \cdots \times \mu_n \in J(T_1, \dots, T_n)$

If n = 2 we say (for short) joinings (instead of 2-joinings) If $T_1 = T_2 = T_n = T$ we say *n-self-joinings* of T

Let $T(X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ be an ergodic automorphism By the centralizer, C(T), of T we mean the set of all $S(X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ commuting with T, i.e. ST = TS This set is endowed with the weak topology given by $S_n \rightarrow S$ iff for each $A \in \mathcal{B}, \ \mu(S_n^{-1}A \Delta S^{-1}A) \rightarrow 0$ For any $S \in C(T)$ we can define the corresponding graph joining μ_S defined on rectangles as

$$\mu_{S}(A \times B) = \mu(A \cap S^{-1}B) \tag{1}$$

The following characterization of graph joinings can be easily proved

LEMMA 1 Let $\lambda \in J^{e}(T, T)$ Then λ is a graph joining iff for any $A \in \mathcal{B}$ there is $\mathcal{B} \in \mathcal{B}$ with $\lambda(A \times X\Delta X \times B) = 0$, i.e. λ identifies the two marginals sub- σ -algebras of $\mathcal{B} \otimes \mathcal{B}$

If S_1 , $S_{n-1} \in C(T)$ then the measure defined as

$$\mu_{S_1, \dots, S_{n-1}}(A_0 \times A_1 \times \dots \times A_{n-1}) = \mu(A_0 \cap S_1^{-1}A_1 \cap \dots \cap S_{n-1}^{-1}A_{n-1})$$

is an element of

$$J^{e}(\underbrace{T, \dots, T}_{n \times})$$

Any *T*-invariant sub- σ -algebra $\ell \subset \mathcal{B}$ is called a *factor* of *T* (more precisely, the action of *T* on ℓ is called a factor of *T* on \mathcal{B}) Assume, that two factors ℓ_1 , ℓ_2 are isomorphic, i.e. there exists

$$S (T, X_1, \ell_1, \mu) \rightarrow (T, X_2, \ell_2, \mu),$$

where X_1, X_2 are the corresponding quotients We can lift this isomorphism to a self-joining λ of T by

$$\lambda(A \times B) = \int_{X_1} E(A|\ell_1)(\bar{x}) E(B|\ell_2)(S\bar{x}) d\mu(\bar{x})$$
(2)

Such a joining is called the relatively independent extension of the isomorphism S Note that λ need not be ergodic. In particular, when $\ell = \ell_1 = \ell_2$ and S = id, λ is called the relatively independent extension of the diagonal measure on ℓ This joining also need not be ergodic

From now on we assume that $T(X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ is an ergodic transformation with discrete spectrum, i.e. $L^2(X, \mathcal{B}, \mu) = \text{span} \{f_\alpha \ \alpha \in \text{Sp}(T), f_\alpha \circ T = \alpha f_\alpha\}$, where Sp(T) is the point spectrum of the unitary operator $T L^2(X, \mathcal{B}, \mu) \rightarrow L^2(X, \mathcal{B}, \mu)$, $Tf = f \circ T$

PROPOSITION 1 Let $T \cdot (X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ be an ergodic transformation with discrete spectrum Then

- (1) C(T) is a group, and
- (11) $J^{e}(T, T) = \{\mu_{S} \mid S \in C(T)\}$

Proof Obviously (1) follows from (11) Take $\lambda \in J^e(T, T)$ We will show that λ identifies two marginal sub- σ -algebras $\tilde{\mathscr{B}}_1 = \{A \times X \ A \in \mathscr{B}\}, \ \tilde{\mathscr{B}}_2 = \{X \times B \ B \in \mathscr{B}\}$ To this end let us look at $L^2(X \times X, \mathscr{B} \otimes \mathscr{B}, \lambda)$ and the corresponding marginal subspaces

$$L^{2}(\tilde{\mathscr{B}}_{1}) = \{ \tilde{f} \ \tilde{f}(x, y) = f(x), f \in L^{2}(X, \mu) \},\$$

$$L^{2}(\tilde{\mathscr{B}}_{2}) = \{ \tilde{f} \ \tilde{f}(x, y) = f(y), f \in L^{2}(X, \mu) \}$$

Since $\lambda \in J(T, T)$, both $L^2(\tilde{\mathscr{B}}_1)$ and $L^2(\tilde{\mathscr{B}}_2)$ are naturally identified with $L^2(X, \mu)$ Therefore they are spanned by $\{\tilde{f}_{\alpha} \ \alpha \in \text{Sp}(T)\}, \{\tilde{\tilde{f}}_{\alpha} \ \alpha \in \text{Sp}(T)\}$ respectively But λ is ergodic, so

$$\tilde{f}_{\alpha}=a_{\alpha}\quad \tilde{f}_{\alpha},\quad a_{\alpha}\in\mathbb{C},$$

and consequently $L^2(\tilde{\mathscr{B}}_1) = L^2(\tilde{\mathscr{B}}_2)$ as two subspaces in $L^2(X \times X, \lambda)$ This is equivalent to saying that $\tilde{\mathscr{B}}_1$ and $\tilde{\mathscr{B}}_2$ are identified by λ An application of Lemma 1 gives the result

Remark The notion of graph joining (1) can be easily transferred to the case $J^e(T_1, T_2)$ where we consider isomorphism between T_1 and T_2 . Lemma 1 still works and the proof of Proposition 1 gives rise to a new proof of the well-known result that if T_1 and T_2 are ergodic transformations with discrete spectrum and Sp $(T_1) = \text{Sp}(T_2)$ then they are isomorphic (actually each ergodic joining between T_1 and T_2 is the graph of an isomorphism)

As an immediate consequence of Proposition 1 we get

COROLLARY 1 If $T(X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ is an ergodic automorphism with discrete spectrum then

$$J^{e}(\underbrace{T, , T}_{n}) = \{\mu_{S_{1}} \mid S_{n-1} \mid S_{1}, , S_{n-1} \in C(T)\}.$$

Let G be a compact metric abelian group equipped with a normalized Haar measure ν Let $\varphi X \rightarrow G$ be a measurable map Define

$$T_{\varphi} \quad (X \times G, \, \mu \times \nu) \to (X \times G, \, \mu \times \nu),$$
$$T_{\varphi}(x, g) = (Tx, \, \varphi(x)g)$$

 T_{φ} is called a group extension of T Following [8] T_{φ} is ergodic iff whenever $\alpha \in \hat{G}$ (i.e. α is a character of G) and a measurable

$$h \quad X \to S^{1} = \{ z \in \mathbb{C} \mid |z| = 1 \} \text{ satisfy } h(Tx)h(x)^{-1} = \alpha(\varphi(x)), \tag{3}$$

then $\alpha = 1$

We will also use the following result

PROPOSITION 2[7] Let T_{φ} be an ergodic G-extension of T Let $\overline{S} \in C(T_{\varphi})$ Then there are a continuous group epimorphism $v \ G \rightarrow G$ a measurable map $f \ X \rightarrow G$ and $S \in C(T)$ such that

$$\overline{S}(x, y) = S_{f,v}(x, y) = (Sx, f(x)v(y))$$

$$\tag{4}$$

Let $H \subseteq G$ be a closed (compact) subgroup Then we can consider the action of T_{φ} on $X \times G/H$ The factors of this form are called *natural factors* In fact these are the only factors of T_{φ} that contain the σ -algebra $\{A \times G \ A \in \mathcal{B}\}$ ([4], [11])

Our aim is to describe all ergodic self-joinings for an ergodic G-extension of T_{φ} . Without loss of generality we can assume that T is an ergodic rotation on a compact monothetic group X First we will work with the situation where T_{φ} is not necessarily ergodic Take an ergodic component λ

Let $\Pi X \times G \to X$, $\Pi(x, g) = x$ Then, if λ is an ergodic T_{φ} -invariant measure on $X \times G$ then $\lambda \Pi^{-1}$ is *T*-ergodic, hence $\lambda \Pi^{-1} = \mu$ We will also use the following straightforward result

LEMMA 2 There is a measurable T_{φ} -invariant subset $Y \subset X \times G$, $\lambda(Y) = 1$ such that for each $(x, g) \in Y$ and for each continuous function f on $X \times G$ (i.e. $f \in C(X \times G)$)

$$\lim_{n\to\infty}S_n(f)(x,g)\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}f\circ(T_\varphi)^k(x,g)=\int f\,d\lambda$$

Let us denote by H the stabilizer of λ in G, i.e.

 $H = \{g \in G \ \lambda g = \lambda\},\$

where $\lambda g(A \times B) = \lambda (A \times Bg^{-1})$ or

$$\int f(x, g) d(\lambda g) = \int f(x, hg) d\lambda \quad \text{for } f \in C(X \times G)$$

Let us denote $f \circ g(x, h) = f(x, hg)$

LEMMA 3 (1) H is a closed subgroup of G (11) If $(x, g), (x, h) \in y$ then hH = gH

Proof As (1) is obvious, we will prove (11) Take $f \in C(X \times G)$ Then $(x, g) \in Y$ implies $S_n(f)(x, g) \rightarrow_n \int f d\lambda$ But

$$S_n(f)(x, g) = S_n(f)(x, hh^{-1}g) = S_n(f \circ h^{-1}g)(x, h)$$

since the action of G on the second coordinate commutes with T_{φ} But from our assumption, $(x, h) \in Y$ so

$$S_n(f \circ h^{-1}g)(x,h) \xrightarrow[n \to \infty]{} \int f \circ h^{-1}g \, d\lambda = \int f d(\lambda h^{-1}g)$$

Because f is an arbitrary element of $C(X \times G)$, $\lambda h^{-1}g = \lambda$, or, similarly, $h^{-1}g \in H$

Let us decompose λ over the factor (X, T, μ)

$$\lambda = \int_X \lambda_x \, d\mu(x)$$

LEMMA 4 $\lambda_x = \nu_H g \mu$ -a e, where ν_H is Haar measure on H, g = g(x) and $(x, g) \in Y$ Proof Let A be a Borel subset of G, $h \in H$ Let

$$M = \{x \in X \ \lambda_x(Ah^{-1}) < \lambda_x(A)\}$$

and suppose that $\mu(M) > 0$ Then

$$\lambda(M \times A) = \lambda h(M \times A) = \lambda(M \times Ah^{-1}) = \int_M \lambda_x(Ah^{-1}) d\mu(x)$$
$$< \int_M \lambda_x(A) d\mu(x) = \lambda(M \times A),$$

a contradiction Similarly we show that $\mu \{x \in X \ \lambda_x(Ah^{-1}) > \lambda_x(A)\} = 0$ As a conclusion we have $\lambda_x h = \lambda_x \mu$ -a e Let $(x, g) \in Y$ From Lemma 3(1) it follows that

$$Y \cap (\{x\} \times G) = \{x\} \times gH$$

Hence $\lambda_x(gH) = 1$ This implies $\lambda_x g^{-1}(H) = 1$ But for $h \in H$

$$(\lambda_x g^{-1})h = (\lambda_x h)g^{-1} = \lambda_x g^{-1}$$

Thus $\lambda_x g^{-1}$ is invariant under all translations by elements of H and therefore $\lambda_x g^{-1} = \nu_H$

Remark Lemma 4 implies that if we denote by $\tilde{\lambda} = \int_X \tilde{\lambda}_x d\mu(x)$ the image of λ on $X \times G/H$ then $\tilde{\lambda}_x$ is a Dirac measure μ -a e This allows us to define a measurable function $f \ X \to G/H$ by

$$f(x) = (\tilde{\lambda}_x)^{-1}(1),$$
 (5)

ie f(x) is the only atom of $\tilde{\lambda}_x$ on G/H (f is measurable since $f^{-1}(A) = E(\chi_{X \times A} | \mathcal{B})^{-1}(1)$, for any Borel subset $A \subset G/H$) Moreover, the T_{φ} -invariance of λ implies

$$f(Tx) = \varphi(x)f(x) \tag{6}$$

LEMMA 5 The system $(X \times G, T_{\varphi}, \lambda)$ is isomorphic to $(X \times H, T_{\psi}, \mu \times \nu_H)$ where $\psi X \rightarrow H$ is measurable (i.e. ergodic T_{φ} -invariant measures induce ergodic group extensions automorphisms)

Proof Define $t X \to G$ by the formula t(x) = U(f(x)), where U is a measurable selector for the natural map $G \to G/H$ (see [10], p 5), i e U satisfies U(gH)H = gHThen $t(x) \in f(x)$ μ -a e and, by (6), $\varphi(x)t(x)H = t(Tx)H$ Put

$$\psi(x) = \varphi(x)t(Tx)^{-1}t(x) \in H$$
(7)

Therefore from Lemma 4 it follows that

$$J \ (X \times H, T_{\psi}, \mu \times \nu_H) \rightarrow (X \times G, T_{\varphi}, \lambda)$$

acting as j(x, h) = (x, t(x)h) is an isomorphism

Let

$$\Gamma = \{ \gamma \in \hat{G} \text{ there is a measurable } h \ X \to S^1 \text{ such that} \\ h(Tx)h(x)^{-1} = \gamma(\varphi(x)) \ \mu \text{-a e} \}$$

Then Γ is a subgroup of \hat{G} and put

 $F = \operatorname{ann} \Gamma = \{g \in G \text{ for each } \gamma \in \Gamma, \gamma(g) = 1\}$

LEMMA 6 F = H

Proof Let $g_0 \in H$, $\gamma \in \Gamma$ Then $\gamma(\varphi(x)) = h(Tx)h(x)^{-1}$ and let us define a function $w X \times G \rightarrow S^1$ setting

$$w(x, g) = h(x)^{-1} \gamma(g)$$

Then for μ -a e x and for all g, w is T_{φ} -invariant The ergodicity of λ forces w to be constant λ -a.e., i.e. $h(x)^{-1}\gamma(g) = c \neq 0$ Moreover

$$c = \int w(x, g) \, d\ell = \int h(x)^{-1} \gamma(g) \, d\lambda = \int h(x)^{-1} \gamma(g) \, d(\lambda g_0)$$
$$= \int h(x)^{-1} \gamma(gg_0) \, d\lambda = \gamma(g_0)c$$

Hence $\gamma(g_0) = 1$ and therefore $g_0 \in F$ Now, let $g \in F$ If $g \notin H$ then there is a character γ such that

 $\gamma(g) \neq 1$ and $\gamma(H) = 1$

From (7) it follows that

$$\gamma(\varphi(x)) = \gamma(t(Tx)\psi(x)t(x)^{-1}) = \gamma(t(Tx))\gamma(t(x))^{-1}$$

since $\psi(x) \in H$ This implies $\gamma \in \Gamma$ and consequently $\gamma(g) = 1$ which is a contradiction *Remark.* The results contained in Lemmata 3-6 can be deduced from [5] We include these results for completeness as well as for new and simple proofs

Now, we are in a position to pass to our main problem, namely, to describe all ergodic self-joinings of T_{φ} We assume that

 T_{φ} is an ergodic G-extension

Let $\Pi X \times G \times X \times G \rightarrow X \times X$ be defined as

$$\Pi(x, g, y, h) = (x, y)$$

Assume that $\overline{\lambda} \in J^e(T_{\varphi}, T_{\varphi})$ Then by Proposition 1,

$$\bar{\lambda}\Pi^{-1} = \mu_s$$

for some $S \in C(T)$ Hence

Lemma 7

$$\bar{\lambda}\left(\bigcup_{x\in X} \{x\} \times G \times \{Sx\} \times G\right) = 1$$

We define a measure
$$\lambda$$
 on $X \times G \times G$ as follows

$$\lambda(A \times B \times C) = \overline{\lambda}(A \times B \times SA \times C)$$

Put

$$\alpha \bigcup_{x \in X} \{x\} \times G \times \{Sx\} \times G \to X \times G \times G,$$
$$\alpha(x, g, Sx, h) = (x, g, h)$$

Then we see that λ is just the image of $\overline{\lambda}$ via α Also $T_{\varphi \times \varphi \circ S} \circ \alpha = \alpha \circ (T_{\varphi} \times T_{\varphi})$ Therefore the Lemma below is clear

LEMMA 8 The function α is an isomorphism of $(X \times G \times X \times G, T_{\varphi} \times T_{\varphi}, \overline{\lambda})$ and $(X \times G \times G, T_{\varphi \times \varphi \circ S}, \lambda)$

In what follows we will consider $T_{\varphi \times \varphi \circ S}$ and the measure λ on $X \times G \times G$ Let $H \subset G \times G$, $H = \{(g_1, g_2) \in G \times G \ \lambda(g_1, g_2) = \lambda\},\$

 $H_1, H_2 \subset G, \quad H_1 = \{g \in G \ (g, e) \in H\}, \quad H_2 = \{g \in G \ (e, g) \in H\},$

where e is the unit element of G

Then, obviously, H_1 , H_2 are closed subgroups of H If we put $\Gamma = \{(\gamma_1, \gamma_2) \in \hat{G} \times \hat{G} \text{ there is a measurable function } h X \to S^1 \text{ such that } \gamma_1(\varphi(x))\gamma_2(\varphi(Sx)) = h(Tx)h(x)^{-1} \text{ then from Lemma 6, } H = \text{ann } \Gamma \text{ and therefore} \}$

$$H_{i} = \operatorname{ann} \Gamma_{i}, \quad i = 1, 2, \tag{8}$$

where
$$\Gamma_i = \Pi_i(\Gamma), \Pi_i \quad \hat{G} \times \hat{G} \rightarrow \hat{G}, \Pi_i(\gamma_1, \gamma_2) = \gamma_i$$

LEMMA 9 Γ is a 'diagonal' subgroup of $\hat{G} \times \hat{G}$, i.e.,

$$(\gamma_1, \gamma_2) \in \Gamma, (\gamma_1, \gamma'_2) \in \Gamma$$
 imply $\gamma_2 = \gamma'_2,$
 $(\gamma_1, \gamma_2) \in \Gamma, (\gamma'_1, \gamma_2) \in \Gamma$ imply $\gamma_1 = \gamma'_1$

Proof This is an obvious consequence of ergodicity of T_{φ} and (3)

LEMMA 10 There is a group isomorphism $\hat{w} \ \Gamma_2 \rightarrow \Gamma_1$

Proof This follows from Lemma 9 (as Γ is a subgroup of $\hat{G} \times \hat{G}$) that

$$\hat{w}(\gamma_2) = \gamma_1$$
 iff $(\gamma_1, \gamma_2) \in \Gamma$

is a well-defined group isomorphism of Γ_1 and Γ_2

Let $w G/H_1 \rightarrow G/H_2$ be the group isomorphism determined by

$$\hat{w} (G/H_2) \rightarrow (G/H_1) \hat{w}(\gamma_2) = \gamma_2 w_2$$

where $(G/H_i)^{\uparrow}$ is naturally identified with Γ_i as ann $\Gamma_i = H_i$, i = 1, 2LEMMA 11

$$H = \bigcup_{g \in G} gH_1 \times w(g^{-1}H_1)$$

Proof Let $g \in G$, $(\hat{w}(\gamma_2), \gamma_2) \in \Gamma$ Then

$$(\hat{w}(\gamma_2), \gamma_2)(gH_1 \times w(g^{-1}H_1)) = \hat{w}(\gamma_2)(gH_1) \quad \gamma_2(w(g^{-1}H_1))$$
$$= \hat{w}(\gamma_2)(gH_1) \quad \hat{w}(\gamma_2)(g^{-1}H_1)$$
$$= \hat{w}(\gamma_2)(H_1) = 1,$$

since (8) holds Therefore $gH_1 \times w(g^{-1}H_1) \subset H$ Now, let $(g, h) \in H$ We wish to show that

$$hH_2 \quad w(gH_1) = H_2 \tag{9}$$

Indeed, let $\gamma_2 \in \Gamma_2$,

$$\gamma_2(hH_2 \ w(gH_1)) = \gamma_2(w(gH_1)) \ \gamma_2(hH_2) = \hat{w}(\gamma_2)(gH_1) \ \gamma_2(hH_2) = (\hat{w}(\gamma_2), \gamma_2)(gH_1 \times hH_2) = 1$$

Now, from (9), $w(gH_1)^{-1} = hH_2$, so $h \in w(g^{-1}H_1)$

Let $\hat{p} \quad \Gamma_2 \rightarrow \Gamma$ be defined by

$$\hat{p}(\gamma_2) = (\hat{w}(\gamma_2), \gamma_2) \tag{10}$$

and let $p (G \times G)/H \rightarrow G/H_2$ be determined by

$$\hat{p}(\gamma_2) = \gamma_2 \circ p \tag{11}$$

Put $\overline{f} X \to G/H_2$

$$\bar{f} = p \circ f, \tag{12}$$

where f is defined by (5)

Let $v \quad G/H_1 \rightarrow G/H_2$ be the topological group isomorphism defined by

$$w(gH_1) = w(g^{-1}H_1)$$
(13)

Finally, let us define $S_{\bar{f}v}$ $X \times G/H_1 \rightarrow X \times G/H_2$ setting

$$S_{\bar{f},v}(x, gH_1) = (Sx, \bar{f}(x)v(gH_1))$$
(14)

LEMMA 12 The map $S_{\overline{f},\nu}$ establishes an isomorphism of the natural factors $(X \times G/H_1, T_{\varphi}, \mu \times \nu)$ and $(X \times G/H_2, T_{\varphi}, \mu \times \nu)$

Proof It is sufficient to show that $S_{\bar{f},v} \circ T_{\varphi} = T_{\varphi} \circ S_{\bar{f},v}$ This is equivalent to proving the equality

$$\bar{f}(Tx)\bar{f}(x)^{-1}v(\varphi(x)H_1)\varphi(Sx)^{-1}H_2 = H_2 \quad \mu\text{-a e}$$
 (15)

Using (6) and (12), (15) can be reduced to showing that

$$p((\varphi(x),\varphi(Sx))H)v(\varphi(x)H_1)\varphi(Sx)^{-1}H_2 = H_2$$

Take $\gamma \in \Gamma_2$ Then by (12), (10) and (13)

$$\gamma[p((\varphi(x),\varphi(Sx))H) \quad v(\varphi(x)H_1)\varphi(Sx)^{-1}H_2]$$

$$= \gamma \circ p((\varphi(x),\varphi(Sx))H) \quad \gamma(v(\varphi(x)H_1)) \quad \gamma((\varphi(Sx)^{-1})H_2)$$

$$= \hat{p}(\gamma)((\varphi(x),\varphi(Sx))H) \quad \gamma(v(\varphi(x)H_1)) \quad \gamma((\varphi(Sx)H_2)^{-1})$$

$$= \hat{w}(\gamma)(\varphi(x)H_1) \quad \gamma(\varphi(Sx)H_2) \quad \gamma(v(\varphi(x)H_1)) \quad \gamma(\varphi(Sx)H_2)^{-1} = 1$$

THEOREM 1 If T_{φ} $(X \times G, \mu \times \nu) \rightarrow (X \times G, \mu \times \nu)$ is an ergodic group extension of a transformation with discrete spectrum and $\bar{\lambda} \in J^{e}(T_{\varphi}, T_{\varphi})$ then there exist closed subgroups $H_{1} \subset G$, $H_{2} \subset G$ and an isomorphism of the corresponding natural factors \bar{S} $(X \times G/H_{1}, T_{\varphi}) \rightarrow (X \times G/H_{2}, T_{\varphi})$ such that for any Borel sets $A \subset X \times G$, $B \subset X \times G$

$$\bar{\lambda}(A \times B) = \int_{X \times G/H_1} E(A|H_1)(x, gH_1) \quad E(B|H_2)(\bar{S}(x, gH_1)) \ d(\mu \times \nu)(x, gH_1),$$

where $E(A|H_i)$ denotes the conditional expectation with respect to the natural factor $(X \times G/H_i, \mu \times \nu)$, i = 1, 2 (i e $\overline{\lambda}$ is the relatively independent extension of an isomorphism of two natural factors)

Proof It follows from Lemmata 4, 11, 12, since

$$\nu_{H} = \int_{G/H_{1}} \nu_{H_{1}} gH_{1} \times \nu_{H_{2}} v(gH_{1}) d\nu(gH_{1})$$

Although we have dealt with the case $\bar{\lambda} \in J^e(T_{\varphi}, T_{\varphi})$, all Lemmata 7-12 go through when $\bar{\lambda} \in J^e(T_{\varphi_1}, T_{\varphi_2})$ where $\varphi_i \ X \to G_1, \varphi_2 \ X \to G_2, T_{\varphi_1}, T_{\varphi_2}$ are ergodic This proves the following

THEOREM 2 Let T_{φ_i} $(X \times G_i, \mu \times \nu_i) \rightarrow (X \times G_i, \mu \times \nu_i)$ be an ergodic group extension of T, i = 1, 2 If $\bar{\lambda} \in J^e(T_{\varphi_1}, T_{\varphi_2})$ then there exist two closed subgroups $H_i \subset G_i$ and an isomorphism of the natural factors

$$\overline{S}$$
 $(X \times G_1/H_1, T_{\varphi_1}, \mu \times \nu_1) \rightarrow (X \times G_2/H_2, T_{\varphi_2}, \mu \times \nu_2)$

such that for any Borel sets $A \subseteq X \times G_1$, $B \subseteq X \times G_2$

$$\bar{\lambda}(A \times B) = \int_{X \times G_1/H_1} E(A \mid H_1)(x, gH_1) \quad E(B \mid H_2)(\bar{S}(x, gH_1)) \ d(\mu \times \nu_1)(x, gH_1)$$

Remark. A combination of Lemma 5 and Theorem 2 allows us to describe all ergodic *n*-joinings of ergodic extensions T_{φ_1} , T_{φ_n} Indeed, let $\lambda \in J^e(T_{\varphi_1}, \dots, T_{\varphi_n})$ Then the measure $\overline{\lambda}$ given by

$$\bar{\lambda}(A_1 \times A_2 \times \dots \times A_{n-1}) = \lambda(A_1 \times \dots \times A_{n-1} \times (X \times G_n))$$

is an ergodic n-1-joining of T_{φ_1} , $T_{\varphi_{n-1}}$ From Lemma 5 it follows that $(T_{\varphi_1} \times \cdots \times T_{\varphi_{n-1}}, \overline{\lambda})$ is isomorphic to some *H*-extension of *T* Therefore λ is an ergodic joining of this *H*-extension of *T* and T_{φ_n} Then we apply Theorem 2

Remark The result of Theorem 2 can be generalized as follows Let $T(X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ be an ergodic (not necessarily with a discrete spectrum) transformation of a Lebesgue space, $\varphi X \rightarrow G$ an ergodic cocycle If $\overline{\lambda} \in J^{e}(T_{\varphi}, T_{\varphi})$ projected on $J^{e}(T, T)$ is the graph joining of an $S \in C(T)$ then $\overline{\lambda}$ must satisfy the conclusion of Theorem 1

2 Structure of factors of group extensions of transformations with discrete spectra (Veech theorem)

Let T_{φ} $(X \times G, \tilde{\mathscr{B}}, \tilde{\mu}) \rightarrow (X \times G, \tilde{\mathscr{B}}, \tilde{\mu})$ be an ergodic group extension of a transformation with discrete spectrum T $(X, \mathscr{B}, \mu) \rightarrow (X, \mathscr{B}, \mu)$, $\tilde{\mu} = \mu \times \nu_G$ and $\tilde{\mathscr{B}}$ the corresponding product σ -algebra For each closed subgroup $H \subset G$ we have a natural factor T_{φ} $(X \times G/H, \tilde{\mu}) \rightarrow (X \times G/H, \tilde{\mu})$. Let $C_1(T_{\varphi}, H)$ denote the group of all invertible elements of the centralizer of T_{φ} on $(X \times G/H, \tilde{\mu})$ Assume that $\mathscr{H} \subset C_1(T_{\varphi}, H)$ is a subgroup Then this \mathscr{H} determines a factor of T_{φ} on $X \times G/H$ (and hence a factor of T_{φ} on $X \times G$) by

$$\ell(\mathcal{H}) = \{A \in \tilde{\mathcal{B}} \text{ for each } \bar{S} \in \mathcal{H}, \bar{S}A = A\}$$

The point is that when we pass through all *compact* \mathcal{H} for all possible closed $H \subset G$ we get all factors (Theorem 3)

Let $\ell \subset \tilde{\mathscr{B}}$ be a T_{φ} -invariant sub- σ -algebra Following (2) this ℓ gives rise to a self-joining of T_{φ} by

$$\tilde{\mu} \times_{\ell} \tilde{\mu}(A \times B) = \int_{\bar{X}} E(A | \ell)(\bar{x}) \quad E(B | \ell)(\bar{x}) \ d\tilde{\mu}(\bar{x}),$$

where $ar{X}$ is the quotient corresponding to ℓ

Put $\lambda = \tilde{\mu} \times_{\ell} \tilde{\mu}$ Since λ is not necessarily ergodic, let

$$\lambda = \int_{J^{e}(T_{\varphi}, T_{\varphi})} e \, d\gamma(e) \tag{16}$$

be its ergodic decomposition, γ a probability measure on $J^e(T_{\varphi}, T_{\varphi})$

The following lemma is well-known ([4], [9])

LEMMA 13 Let A be a Borel subset of $X \times G$ Then $A \in \ell$ iff $\lambda (A \times A^c \cup A^c \times A) = 0$

Let $E = \{e \in J^e(T_{\varphi}, T_{\varphi}) \text{ for each } A \in \ell, e(A \times A^c \cup A^c \times A) = 0\}$

LEMMA 14 $\gamma(E) = 1$

The proof of this is easy and is therefore omitted

LEMMA 15 Let $e \in J^e(T_{\varphi}, T_{\varphi})$ By Theorem 1,

$$e = \int_{X \times G/H_1} E(|H_1|(x, gH_1) \cdot E(|H_2|(S_{f,v}(x, gH_1)) d\hat{\mu}(x, gH_1))$$

Then $e \in E$ iff $\ell \subset \tilde{\mathscr{B}}_{H_1H_2}$ and for each $A \in \ell$, $S_{f,v}^{-1}(A) = A$

Proof We start with the following observation

$$\tilde{\mathscr{B}}_{H_1} \cap \tilde{\mathscr{B}}_{H_2} = \tilde{\mathscr{B}}_{H_1 H_2} \tag{17}$$

since $\tilde{\mathscr{B}}_J = \{A \in \tilde{\mathscr{B}} \text{ for each } g \in J, Ag = A\}, J \subset G \text{ closed Hence, the sufficiency easily follows Denote } \bar{S} = S_{f,v}$ Let $A \in \ell$, $e \in E$ Then

$$e(A \times A^c) = 0$$
 and $e(A^c \times A) = 0$

The definition of e implies

$$\int_{X \times G/H_1} E(A|H_1) \quad E(A^c|H_2) \bar{S} \, d\tilde{\mu}_{H_1} = 0, \tag{18}$$

$$\int_{X \times G/H_1} E(A^c | H_1) \cdot E(A | H_2) \bar{S} \, d\tilde{\mu}_{H_1} = 0$$
(19)

Assume that $E(A|H_1)(x, gH_1) \neq 0$, 1 Hence, by (18) $E(A^c|H_2) \circ \overline{S}(x, gH_1) = 0$, 1.e $E(A|H_2) \circ \overline{S}(x, gH_1) = 1$ It follows that $\overline{S}(x, gH_1) \subset A$ But, from (19) $E(A|H_2) \circ \overline{S}(x, gH_1) = 0$ (since $E(A^c|H_1)(x, gH_1) \neq 0$, 1), a contradiction We conclude that for $\tilde{\mu}_{H_1}$ -a.e (x, gH_1) , $E(A|H_1)(x, gH_1) = 0$ or 1, 1 e $A \in \tilde{\mathcal{B}}_{H_1}$ Suppose that $A \notin \tilde{\mathcal{B}}_{H_2}$ Then for a set of positive $\tilde{\mu}_{H_1}$ measure

$$E(A \mid H_2) \circ \overline{S}(x, gH_1) \neq 0, 1,$$
$$E(A^{c} \mid H_2) \circ \overline{S}(x, gH_1) \neq 0, 1$$

and

$$E(A^c \mid H_2) \circ \overline{S}(x, gH_2) \neq 0, 1$$

However this implies (see (18), (19)) that either $(x, gH_1) \subset A$ or $(x, gH_1) \subset A^c$ which is a contradiction Therefore, from (17), $A \in \tilde{\mathscr{B}}_{H_1H_2}$ Moreover

$$0 = \int_{X \times G/H_1} \chi_A \quad \chi_{A'} \circ \bar{S} \, d\tilde{\mu} = \int_{X \times G/H_1} \chi_{A \cap \bar{S}^{-1}A'} \, d\tilde{\mu}$$

forces $\bar{S}^{-1}A = A$ to hold This completes the proof

Let H be the largest closed subgroup of G such that

 $\ell \subset \tilde{\mathscr{B}}_{H}$

Such a group exists, as we can take H as being the closure of the group generated by $\{H_1 \ \ell \subset \tilde{\mathscr{B}}_{H_1}\}$ Since the map $\tilde{f} \ G \to L^2(X \times G, \tilde{\mu})$ given by $\tilde{f}(g) = f \circ g$ where $f \circ g(x, h) = f(x, hg), f \in L^2(X \times G, \tilde{\mu})$ is continuous, $\ell \subset \tilde{\mathscr{B}}_H$ In other words, there exists a smallest natural factor of T_{φ} , containing ℓ We will consider *this* factor as a group extension for which ℓ is a factor

LEMMA 16 If $H(\ell) = \{ \bar{S} \in C(T_{\varphi}, X \times G/H) \text{ for each } A \in \ell \bar{S}^{-1}A = A \}$ then $H(\ell) \subset C_1(T_{\varphi}, X \times G/H)$ (i.e. all elements from the centralizer of T_{φ} $(X \times G/H, \tilde{\mu}) \rightarrow (X \times G/H, \tilde{\mu})$ which do not move any $A \in \ell$ are invertible)

Proof If $\overline{S} \in H(\ell)$ is not invertible, so \overline{S}^{-1} carries the whole σ -algebra $\tilde{\mathscr{B}}_H$ to a smaller sub- σ -algebra which is a natural factor of T_{φ} $(X \times G/H, \tilde{\mu}) \rightarrow (X \times G/H, \tilde{\mu})$ Hence, this factor is determined by a closed (nontrivial) subgroup F of G/H Then it is clear that $\ell \subset \tilde{\mathscr{B}}_{F_1}$ where F_1 is the inverse image of F under the natural map $G \rightarrow G/H$ If F is not trivial, $F_1 \not\cong H$ and we get a contradiction

By exactly the same arguments we can prove the following

LEMMA 17 For each $e \in E$ (E considered for T_{φ} , T_{φ} ($X \times G/H$, $\tilde{\mu}$) \rightarrow ($X \times G/H$, $\tilde{\mu}$)), $e = (\tilde{\mu})_{\bar{S}}$ and \bar{S} is an invertible element of the centralizer of T_{φ} , T_{φ} ($X \times G/H$, $\tilde{\mu}$) \rightarrow ($X \times G/H$, $\tilde{\mu}$)

THEOREM 3 (Veech Theorem) If ℓ is a T_{φ} -invariant sub- σ -algebra for an ergodic group extension T_{φ} $(X \times G, \tilde{\mu}) \rightarrow (X \times G, \tilde{\mu})$ of a transformation with discrete spectrum, then there exists a natural factor of T_{φ} , T_{φ} $(X \times G/H, \tilde{\mu}_H) \rightarrow (X \times G/H, \tilde{\mu})$ such that $\ell = \{A \in \tilde{\mathcal{B}}_H \text{ for each } \bar{S} \in H(\ell), \bar{S}A = A\}$ and $H(\ell)$ is a compact subgroup of the centralizer of T_{φ} $(X \times G/H, \tilde{\mu}) \rightarrow (X \times G/H, \tilde{\mu})$

Proof This natural factor is taken as the smallest natural factor of T_{φ} which contains ℓ Then Lemmata 16 and 17 reduce our problem to the following for *this* natural factor the relatively independent extension of the diagonal measure on ℓ has the ergodic decomposition which consists of some invertible \overline{S} 's belonging to the centralizer of T_{φ} $(X \times G/H, \tilde{\mu}) \rightarrow (X \times G/H, \tilde{\mu})$ We are now in the situation of Theorem 1 8 2 from [4]

Remark. From Theorem 3 it follows that for each factor ℓ of an ergodic group extension T_{φ} $(X \times G, \tilde{\mathcal{B}}, \tilde{\mu}) \rightarrow (X \times G, \tilde{\mathcal{B}}, \tilde{\mu})$ we can pass from ℓ to $\tilde{\mathcal{B}}$ in two steps, each one of which is a group extension operation (the first not necessarily abelian)

Remark. Although, throughout the paper we have dealt with a discrete spectrum rotation $T(X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$, Theorem 3 is still valid if we replace T by a 2-fold

simple transformation (see [4]), i.e. a transformation where besides graph joinings μ_S , $S \in C(T)$ we admit only $\mu \times \mu$ as a new ergodic self-joining of T

Example 1 Let $T(X, \mathcal{B}, \mu) \rightarrow (X, \mathcal{B}, \mu)$ be defined as $Tx = x + \alpha$, where X = [0, 1) (mod 1), μ is the Lebesgue measure and α is irrational Let $\varphi X \rightarrow X$, $\varphi(x) = x$ Using the following classical result ([1])

For $m \in \mathbb{Z}$, $m \neq 0$, $b \in [0, 1)$ the cocycle

$$\psi(x) = mx + b$$
 is ergodic, (20)

one can easily compute the centralizer of T_{φ} as well as its natural factors $T_{m\varphi}(m \in \mathbb{N})$

$$C(T_{m\varphi}) = \{S_{f,v} \},$$

$$f(Tx) - f(x) = m\varphi(Sx) - v\varphi(x),$$

$$f(x+\alpha) - f(x) = m(x+\beta) - smx = m(1-s)x + m\beta$$

Hence, from (20) s = 1 and using Anzai's result [1], $m\beta = m'\alpha$ for an integer m'Therefore the centralizer T_{φ} does not contain nontrivial compact subgroups, i.e. subgroups for which the projection on the first coordinate is different from {id} Consequently from $C(T_{\varphi})$ we can read merely all natural factors, while for instance the transformation

$$U(x, y) = (x + 2\alpha, x + y)$$

is a factor of T_{φ} (via the map $(x, y) \mapsto (2x, 2y)$) However this factor can be read from the centralizer of $T_{2\varphi}$ as the group $\{0, \frac{1}{2}\}$ can be lifted to the centralizer of $T_{2\varphi}$

Remark. These circle extensions of some rotations are well-known to be coalescent (i e their centralizers are groups) However in [6] some new examples of ergodic circle extensions of rotations are constructed with the coalescence property being lost

Example 2 It would be interesting to know whether for ergodic group extensions the following formula holds

$$C((T_{\varphi})^n) = C(T_{\varphi}), \quad n \ge 2$$
(21)

It is not difficult to see that total ergodicity (i e

$$\lambda \in J^{e}((T_{\varphi})^{n}, (T_{\varphi})^{n}) \quad \text{for each natural } n)$$
(22)

of all $\lambda \in J^e(T_{\varphi}, T_{\varphi})$ forces (21) to be true Indeed, let $\overline{S} \in C((T_{\varphi})^n)$ Then take

$$\lambda = \frac{1}{n} \left(\tilde{\mu}_{\bar{S}} + \tilde{\mu}_{\bar{S}} \circ T_{\varphi} + \dots + \tilde{\mu}_{\bar{S}} \circ (T_{\varphi})^{n-1} \right)$$

It is not hard to see that $\lambda \in J(T_{\varphi}, T_{\varphi})$ is in fact ergodic Then from (22) it follows that $\lambda \in J^{e}((T_{\varphi})^{n}, (T_{\varphi})^{n})$ and consequently $\lambda = \tilde{\mu}_{\bar{S}}$, i.e. $\bar{S} \in C(T_{\varphi})$ Nevertheless (21) does not hold in general For instance for the examples from Example 1, $T_{\varphi}(x, y) = (x + \alpha, x + y), C(T_{\varphi}) \neq C((T_{\varphi})^{2})$ as $\frac{1}{2}$ can be lifted to the centralizer of $(T_{\varphi})^{2}(x, y) = (x + 2\alpha, 2x + \alpha + y)$

It is also interesting to ask whether there is any relation between two isomorphic sub- σ -algebras ℓ_1 , ℓ_2 of a G-extension T_{φ} and the subgroups $H(\ell_1)$, $H(\ell_2)$ in the centralizers of the smallest natural factors containing these two sub- σ -algebras. It will follow from Theorem 4 that the answer is positive and the corollary after this theorem says what this relation is Assume that U is an isomorphism of two invariant sub- σ -algebras ℓ_1 , ℓ_2 of T_{φ} Let $X \times G/H_1$ and $X \times G/H_2$ be the smallest natural factors of T_{φ} containing algebras ℓ_1 and ℓ_2 , respectively, as factors

THEOREM 4 There exists an isomorphism $\overline{S} X \times G/H_1 \rightarrow X \times G/H_2$ satisfying $\overline{S}|_{\ell_1} = U$

Proof The proof consists of two steps First we will establish the following property of ergodic joinings of ℓ_1 and ℓ_2

If ν is an ergodic joining of ℓ_1 and ℓ_2 then ν

is the projection of some ergodic joining of $X \times G/H_1$ and $X \times G/H_2$ (23) Indeed, set $\hat{\nu}$ to be the relatively independent extension of ν to $(X \times G/H_1) \times (X \times G/H_2)$, 1 e

$$\hat{\nu} = \int_{\ell_1 \otimes \ell_2} E(-|\ell_1|)(\bar{x}) E(-|\ell_2|)(\bar{y}) \, d\nu$$

Obviously, $\hat{\nu}$ need not be ergodic Let

$$\hat{\nu} = \int_{J^{e}(H_1 H_2)} \tau \, d\gamma(\tau)$$

be the ergodic decomposition of $\hat{\nu}$

If Π_i is the projection of $X \times G/H_i$ onto the (quotient) Lebesgue space corresponding to ℓ_i , i = 1, 2, then

$$\nu = \hat{\nu} \circ (\Pi_1 \times \Pi_2) = \int_{J^e(H_1, H_2)} \tau \circ (\Pi_1 \times \Pi_2) \, d\gamma(\tau)$$

Ergodicity of ν yields that for γ -a e τ , $\tau \circ (\Pi_1 \times \Pi_2) = \nu$ In particular, there exists an ergodic joining τ such that $\tau \circ (\Pi_1 \times \Pi_2) = \nu$, and property (23) is proved

To end the proof of Theorem 4, denote by $\tilde{\mu}_U$ the graph joining on $\ell_1 \otimes \ell_2$, corresponding to the isomorphism U By virtue of (23) there is a measure $\tau \in J^e(H_1, H_2)$ such that

$$\tilde{\mu}_U = \tau \circ (\Pi_1 \times \Pi_2) \tag{24}$$

Take $A \in \ell_1$ Then, by definition of $\tilde{\mu}_U$,

$$\tilde{\mu}_U(A \times U(A^c)) = \tilde{\mu}(A \cap U^{-1}U(A^c)) = 0$$

On the other hand, using (24) we have

$$\tilde{\mu}_U(A \times U(A^{\circ})) = \tau \circ (\Pi_1 \times \Pi_2)(A \times U(A^{\circ})) = \tau(A \times U(A^{\circ}))$$
(25)

since $A \times U(A^{\prime}) \in \ell_1 \otimes \ell_2$

There are subgroups $\tilde{F}_i \subset G/H_i$, i = 1, 2, and isomorphism $\bar{S} \ X \times G/F_1 \rightarrow X \times G/F_2$ (where F_i is the subgroup of G, for which G/F_i is naturally isomorphic to $(G/H_i)/\tilde{F}_i$, i = 1, 2) satisfying

$$\tau = \int_{X \times G/F_i} E(|F_1|) E(|F_2|) \circ \bar{S} d\tilde{\mu}$$

Therefore, by (24) and (25)

$$0 = \int_{X \times G/F_1} E(A|F_1)(\bar{x}) E(U(A^c)|F_2) \circ \bar{S} d\tilde{\mu}$$

=
$$\int_{X \times G/F_1} E(A|F_1)(\bar{x}) E(\bar{S}^{-1}U(A^c)|F_1)(\bar{x}) d\tilde{\mu}$$
 (26)

Similarly

$$0 = \tilde{\mu}_{U}(A^{c} \times U(A))$$

=
$$\int_{X \times G/F_{1}} E(A^{c} | F_{1})(\bar{x}) \quad E(\bar{S}^{-1}U(A) | F_{1})(\bar{x}) \, d\tilde{\mu}$$
(27)

Now, if \tilde{F}_1 is a nontrivial subgroup of X/H_1 , i.e. $F_1 \not\cong H_1$, then for some set $A \in \ell_1$ the function $E(A|F_1)$ is not a characteristic function. In other words, for a set of positive measure, $E(A|F_1)(\bar{x}) \neq 0, 1$ By (26) and (27), for such an \bar{x} ,

 $0 = E(A|F_1)(\bar{x}) \quad E(\bar{S}^{-1}U(A^c)|F_2)(\bar{x})$

and

$$0 = E(A^{c} | F_{1})(\bar{x}) \quad E(\bar{S}^{-1}U(A) | F_{2})(\bar{x})$$

Using the same arguments as in the proof of Lemma 15, we obtain a contradiction Therefore $F_1 = H_1$ Since U is an isomorphism, $F_2 = H_2$ Thus \bar{S} is an isomorphism of $X \times G/H_1$ and $X \times G/H_2$ and $\bar{S}|_{\ell_1} = U$

COROLLARY 2 If ℓ_1 , ℓ_2 are two isomorphic invariant sub- σ -algebras then there is an isomorphism \overline{S} of the smallest natural factors $X \times G/H_1$ and $X \times G/H_2$ of T_{φ} containing ℓ_1 , ℓ_2 respectively, such that $H(\ell_2) = \overline{S}H(\ell_1)\overline{S}^{-1}$

REFERENCES

- [1] H Anzai Ergodic skew-product transformations on the torus Osaka J Math 3 (1951), 83-99
- [2] F Hahn & W Parry Some characteristic properties of dynamical systems with quasi-discrete spectra Math Syst Th 2 (1968), 179-190
- [3] A del Junco & D Rudolph A rank-one, rigid, simple prime map Ergod Th Dynam & Sys 7 (1987), 229-247
- [4] A del Junco & D Rudolph On ergodic actions whose self-joinings are graphs Ergod Th & Dynam Sys 7 (1987), 531-557
- [5] H B Keynes & D Newton The structure of ergodic measures for compact group extensions Isr J Math 18(4) (1974), 363-389
- [6] M Lemańczyk & P Liardet Coalescence of Anzai skew products (to appear)
- [7] D Newton On canonical factors of ergodic dynamical systems J London Math Soc 2, 19 (1979), 129-136
- [8] W Parry Compact abelian group extensions of discrete dynamical systems Z Wahr Verw Geb 13 (1969), 95-113
- [9] D Rudolph An example of measure-preserving map with minimal self-joinings, and applications J d'Analyse Math 35 (1979), 97-122
- [10] V S Varadarajan Geometry of Quantum Theory Vol II, Van Nostrand Reinhold, New York (1970)
- [11] W A Veech A criterion for a process to be prime Monatsh Math 94 (1982), 335-341