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NILPOTENT ORBIT VARIETIESAND THE ATOMIC
DECOMPOSITION OF THE Q-KOSTKA POLYNOMIALS

WILLIAM BROCKMAN AND MARK HAIMAN

ABSTRACT. We study the coordinate rings k[C_“ M t] of scheme-theoretic intersec-
tions of nilpotent orbit closures with the diagonal matrices. Here i’ gives the Jordan
block structure of the nilpotent matrix. de Concini and Procesi [5] proved a conjecture
of Kraft [12] that these rings are isomorphic to the cohomology rings of the varieties
constructed by Springer [22, 23]. Thefamous g-K ostkapolynomial K, (q) isthe Hilbert
series for the multiplicity of the irreducible symmetric group representation indexed
by X inthering k[gﬂ t]. Lascoux and Schiitzenberger [15, 13] gave combinatorialy a
decomposition of Kj,,(q) asasum of “atomic” polynomials with non-negative integer
coefficients, and Lascoux proposed a corresponding decomposition in the conomol ogy
model.

Our work provides a geometric interpretation of the atomic decomposition. The
Frobenius-splitting results of Mehta and van der Kallen [19] imply a direct-sum de-
composition of the ideals of nilpotent orbit closures, arising from the inclusions of the
corresponding sets. We carry out the restriction to the diagonal using a recent theorem
of Broer [3]. This givesadirect-sum decomposition of theidealsyielding the k[C_,,m t],
and anew proof of the atomic decomposition of the g-Kostka polynomials.

1. Introduction. The g-Kostka polynomialsK,,,(q), also called Kostka-Foulkes or
Foulkes-Green polynomials, have been central to numerous developments over the last
two decades at the crossroads of combinatorics, algebra, and geometry. Defined [18]
through the expansion

1.1 S$\(X) =2 K (@)Pu(x; q)

expressing the Schur function s, (x) as a linear combination of Hall-Littlewood poly-
nomials P,(x; ), they are polynomials in g which specialize upon setting g = 1 to the
ordinary Kostka numbers K,,,. Here X and p are partitions of some positive integer n;
wewrite A - n.

Lascoux and Schiitzenberger [20] proved a conjecture of Foulkes [6] by expressing
K,.(0) asasum
(12) Kku (q) = Z qC(T)s

TeCY\,pn)

in which T varies over the set CS(\, 1) of column-strict (also called semi-standard)
tableaux of shape )\ containing u; ones, u twos, etc., and c(T), the charge of T,
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w
6 51 42 411 33 321
6|1 1 1 1 1 1
51 9 9 9q+9¢® q q+¢f
\ 42 q2 q2 q2 q2 + q3
411 ¢ 0 o
33 g q
321 g
1
6 51 42 411 33 321
6]1 0 0 0 0 0
51 qg 0 ¢ 0 0
y 42 ¢ 0 0 ¢
411 g 0 0
33 ® 0
321 q

TABLE 1: RM,(q) AND Ry,(0), RESPECTIVELY, FOR A, 1 > (321).

is an intricate combinatorial statistic. Our topic, the atomic decomposition of the g-
Kostka polynomials, comes from their subsequent work [14, 15, 13], which reveals the
remarkable combinatorial structuresunderlyingthe g-K ostkapolynomials. To beprecise,
they write the variant polynomial

(1.3) K@) ="K, (1/a) = > oD,
TeC,p)

wheren(p) = 55i(i — L)pi and &(T) = n(u) — c(T), as

(14) R)\u(q) = Z R)\l/(q)

V>
in which the atom polynomials R, (q) themselves have non-negative coefficients.

ExamMPLE 1.5. Table1 gives Rw(q) and R, ,(q) for the partitions A, . > (321). Note
that the only incomparable pair in this set is (411, 33).

Several other algebraic and geometricinterpretationsof K, ,(0) havebeengiven. Hotta
and Springer [9], using a result of Spaltenstein [21], identified K, (0) as the Poincaré
series for the multiplicities of the irreducible symmetric group representation V,, in the
cohomology groupsof an algebraic variety X, defined by Springer [22]. Lusztig [16, 17]
described RA,t(q) asthe local intersection homology Poincaré series of a nilpotent orbit
variety, as an affine Kazhdan-L usztig polynomial, and as a g-anal og of weight multiplic-
ities. Our concern here will be with one further interpretation, introduced by Kraft and
de Concini-Procesi [12, 5], and recently given asimple and purely elementary treatment
by Garsiaand Procesi [7], which we now pause to describe.
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In brief, the Kraft-de Concini-Procesi approach forms rings giving the g-Kostka
polynomials—and isomorphic to the cohomology rings of Springer’s varieties—from
the scheme-theoretic inter sections of nilpotent orbit varietieswith the diagona matrices
t. Herewework over thefield k = C; the nilpotent orbit variety C,, isthe Zariski closure
of C,,, the conjugacy class of nilpotent matrices having Jordan block sizes i}, 5, ...,
i, With = n. The geometric relation

(1.6) c.=Uc

will be fundamental to this work. Denoting by k[X] the ring of polynomial functions
on an algebraic variety X, and by | (X) theideal of X, the scheme-theoretic intersection
C,. Mt may be defined by its ring of functions

(L.7) K[C, N t] =Kgl]/(1(C) + 1(1)).

(We note that [5] and [25] gave generators for | (C,) + | (t), while [26] gave generators
for 1(C,).) Weview k[N Nt] asan S,-module by restricting to the permutation matrices
the GL (k) conjugation action on g[(,,(k), and write

(18) Road = 3o muit(x (T, 1), )of;

here (k[C,, N t])4 denotes the homogeneous component of degree d, and mult(x*, V)
denotes the multiplicity of the irreducible character x* in the character of an S, module
V. This identification first arose as a consequence of the work of Kraft, de Concini,
Procesi, Spaltenstein, Springer, and Hottaand Springer [12, 5, 21, 22, 23, 9], while Garsia
and Procesi [7] gave an elementary proof. Other important papers discussing aspects of
this construction include Kostant [10], Steinberg [24], Bergeron and Garsia [2], and
Carrell [4].

In this paper we interpret the atomic decomposition (1.4) in the Kraft-de Concini-
Procesi setting, thus proving anew the non-negativity of the atom polynomialsR,,. Our
proof departs from the purely elementary spirit of Garsia and Procesi, relying fairly
heavily upon algebraic geometry. Using a Frobenius-splitting result of Mehta and van
der Kallen we deduce that there is a direct-sum decomposition of the coordinate rings of
the nullcone, N ,

(1.9) KINT=PA,

vkn

compatible with the ideals of the nilpotent orbit varieties:

(1.10) I(C)=QA, fordlukFn
vEu

This decomposition holds in prime characteristics (Corollary 4.2) and hence also in
characteristic zero (Theorem 5.12). Then, arecent result of Broer (intended by him for
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quite different purposes) enables us to carry the decomposition down to the diagonal
matrices. More precisely, we show that there is a direct-sum decomposition

(1.11) KN Nnt]=pA.

of graded S,-modules, such that for all ,

(L12) IC.nt)/IN Nt)=EPA.
vEu

From thisit isimmediate that (1.4) holdswith
(1.13) Ru(a) = > mult(x*, (A)a) o
d

Lascoux [13, Theorem 6.5] anticipated our result by stating, without proof, a similar
algebraic version of the atomic decomposition, in the setting of the cohomology ring of
the flag variety.

ACKNOWLEDGMENTS. Thefirst author thanksBram Broer, Adriano Garsia, and Mark
Shimozono for valuable conversations. Heis also grateful to Jim Carrell, Alain Lascoux,
Bruce Sagan, Nolan Wallach, and the reviewer for very helpful comments which have
significantly improved this paper.

2. Maintheorems. Wewill state our results using the terminology of lattice theory.
For k afield of characteristic 0, the homogeneous GL ,-submodules of thering k[N ], be-
causeeach graded component isfinite-dimensional, by completereducibility form acom-
plemented modular lattice under the operations of N and +. We denote L ({11, ..., ()
the sublattice generated by theideals {I. .. ., Ir }. A lattice L is distributive—a stronger
property than modular—if

2.1) IN@+K)=(NJ)+(1NK) forall,JKel.

For example, a set of subvarieties {X;..... X} of N generates a distributive lattice,
denoted L ({Xy, ..., % 1), under N and U. Themap | sends such alattice to a collection
of radical ideals, which do not necessarily themselves form alattice.

REMARK 2.2. In particular, for any n, the underlying set of L({C,, : u - n}) isthe
set of all unions of the nilpotent orbit varieties C,,. Thisfollows from (1.6), which yields
C,NC, =C,,, where V represents the least upper bound operation in the lattice Py, of
partitions of n under the dominance order (see[18, p. 11]).

Finally, a bijection ¢ : A — B between the underlying sets of two lattices A,B isa
(lattice) isomorphismif for all x,y € Awe havex <y iff p(X) < ¢(y), and a (lattice)
anti-isomorphismif x <y iff p(X) > ¢(y). We are now in a position to state our main
results.

THEOREM 2.3. Let k be an algebraically closed field, and fix n > 0. Then
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1. themap | induces a lattice anti-isomorphism
(2.4) L({C_,,:ul—n})—>L({|(C,,,):pl—n}).

If chark = 0, then

2. L({I(C,)) : p+npu{l()}) isdistributive, and

3. themapC, — I (C,Nt)/I (N Nt)inducesa lattice anti-isomorphism
(2.5) L({c_,t:wn})aL({l(c_ﬂm)/l(N m):wn}).

Geometrically, the first property means that any intersection of nilpotent orbit varieties
is scheme-theoretically reduced: that

(2.6) I(C)+1(C)=1(C,n).

The second property implies that the projection klN ] — k[N M t] induces a lattice
isomorphism, and thus, together with thefirst, implies thethird property. In Section 3 we
provethat the desired results (1.8)—(1.9) and (1.10)—(1.11) follow from Theorem 2.3. We
should point out that the direct-sum decompositions are not canonical; see the general
construction in the proof of Proposition 3.1 for the choicesinvolved.

Before proceeding to thefull details, we sketch the proofs here. Weidentify thelattice
generated by {1 (C,) : u - n} by showing, in section 4, that every element of the lattice
isradical. Thisfact is a consequence of arecent geometric resullt:

THEOREM 2.7 (MEHTA—VAN DER KALLEN [19]). Letkbeanalgebraicallyclosedfield
of positive characteristic. Thereisa Frobeniussplitting ¢ of g[(,, such that every nilpotent
orhit variety C,, is compatibly Frobenius split.

Since the distributivity is proved in positive characteristic, we must make a standard
technical argument to extend the result to characteristic O (section 5). This proves Theo-
rem 2.3 (1). Finally, in section 6, we address the intersection with the diagonal, showing
that the lattice generated by the | (C,,) together with | (t) is still distributive, eventhough
its elements are no longer radical.

This argument relies on a result of Broer, who in [3] extends Chevalley’s restriction
theorem to modules of covariants. His theorem holds in great generality, but we will
need it only for the Lie group GL,, and Lie algebra gl,. Let T C GL,, be the subgroup
of invertible diagonal matrices, and t C gl its Lie algebra. Any GL,-module M has a
representation of the Weyl group S, on the fixed-point set M of the T-action. Broer’s
theorem appliesto small GL ,-modules; those which do not have the T-weight 2¢, where
¢ isthe highest root of GL,.

THEOREM 2.8 (BROER [3]). Let k be an algebraically closed field of characteristic
zero, and let M be a small GL,-module. For any nilpotent orbit variety C,,, the map

(2.9) Homgr, (M. K[C,]) — Homs,(M".K[C, Nt])

induced from the restriction k[C,] — K[C, N t] is an isomorphism of graded vector
spaces.
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A0
6 51 42 411 33 321
6|1
51 X6 X3
y & X5X6 €3(X3, X4, X5, X6)

411 XsX¢

33 XaX5X6
321 X4XsX2

TABLE 2: GENERATORS OF IRREDUCIBLES OF TYPE A IN A, (Q), FOR v > (321).

We note as well that the identification (1.8) combined with Broer’s theorem gives

(2.10) S dim Hom(MA. (KT,1) d) =K,(q).
d>0

where the representations M), are defined in Section 6; and hence the atomic decompo-
sition (1.4) of the g-Kostka polynomials follows directly from the direct-sum decompo-
sition (1.9)<(1.10) of k[N ]. We have chosen the slightly less direct route of obtaining
the decomposition inside the intersection with the diagonal, (1.11)—(1.12), because of
the important role of the latter in the previous work of Springer [22], Kraft [12], de
Concini-Procesi [5], Garsia-Procesi [7], and others.

EXAMPLE 2.11. Using Macaulay 2 [1], we found bases of the spacesA, C k[N N t]
whose characters are described by the atomic polynomialsR),, of example 1.5. In Table 2
we give one vector in each irreducible S,-representation. This example is somewhat
trivial, since there are only two incomparable partitions, and thus the corresponding
lattice is automatically distributive; in addition, the graded components of the atoms are
multiplicity-free. The example would have to be significantly larger (n = 10) to exhibit
greater complexity.

3. Distributive lattices. We begin our proof with a general statement on the con-
nection between distributive lattices and direct sums. The cases which occur may be
treated together as follows. Let G be a reductive group, and M a graded G-module. (We
assume each component of a graded module to be finite-dimensional.) Then the graded
submodules of M form a modular lattice under N and +, with least element {0} and
greatest element M, which by complete reducibility is a complemented modular lattice.

In the following proposition, 0 and 1 are the generic symbolsfor the least and greatest
elements of alattice when they exist. We usen and + for the meet and join operationsin
the lattice. We also use ®jca li, analogous to a direct sum of modules, to mean Yjca |
with the condition that I; N ica gy Ii = 0 for every j € A.

ProPosITION 3.1. Let L be a complemented modular lattice with 0 and 1. Let L
be the sub-lattice of L generated by 11, 12, ....I;. Then the following statements are
equivalent:
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(1) There exists a family {V;}ica of elements of [, and subsets A. c A for each
Lel,suchthatly+-- +1; = @jca V; and

(3.2 L=V, foralLel.
iGAL

(2) Thelattice L isdistributive.

PrROOF. Becausethe{V;}ia generateaBooleanalgebracontainingL, (1) implies(2).
Now assume (2). We may write any element of L asasum of intersectionsby distributing
intersections over sums. Let Lo be the subposet of L consisting of all intersections of
the Ij’s. For (1) it suffices to find a direct-sum decomposition of |1 + - - - + |, such that
every element of L is adirect sum of some of the summands. Index the intersections
by subsetsof {1.2,.... ry,sothat Iy i, g =l N, NNl Letly =T+ +1p.

Then associate to each Is a complement Ks of ZT;SIT in ls, in particular, K; = O.
Distributivity gives, forany Sc {1,..., n},
(33) ISHZKT:Z(ISHKT)Q Z IT-

T#S T#S IPE

since if TgSthen IsNKy = 0 by definition, and otherwise Is N Ky C g 1. Because
KsN Yr5slt = 0, we have shown @sKs is a direct sum; and clearly this equals
lp =11 +--- +1;. Induction then gives|s = &1osKy for al S n

Applying the proposition to the lattice L of graded GL -submodules of kK[g!(,], we
have:

COROLLARY 3.4. Theorem 2.3(1) is equivalent to (1.9)—1.10).

PROOF. Assuming first that Theorem 2.3(1) holds, we apply Proposition 3.1 to the
|attice of graded submodules of k[N ] and the sublattice L{I (C,,) : 1 € P,}. From the
proof of the proposition, the decomposition may be written

(3.5) KINT= D As,
SCPy

with

(3.6) I(C,)= ;9 As.

Now the equation (2.6) implies

(3.7) D As= P As

Sop Or Ssv SSuVr
henceif u Vv € Shut p ¢ Sand v ¢ Sthen As = (0). Equivaently, if we write
S=P,— S thenwehave As = (0) whenever , € S andv € S but Vv ¢ S that is, we
may take Sto be closed under V. Furthermore, since v > 1 implies 1 (C,) 2 1(C,.), we
have As = (0) unless Sis an upper order ideal. Combining the two conditions, Smay be
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taken to be a principal lower order ideal. So we re-index, writing A, for Am; now
(1.9)—(1.10) follows, since we have B
(3.8) 1(C)=PAs=PA.
Sop 240
The converseis immediate. ]

Similarly, (1.11)—(1.12) is equivalent to Theorem 2.3(3).

4. Characteristicp. Inthissection, let k be an algebraically closed field of charac-
teristic p > 0, and usethe samenotation for nilpotent orbit varietiesasin the Introduction.
We usethe method of Frobeniussplitting to prove Theorem 2.3(1) over k. Let Abeacom-
mutative k-algebra. The Frobeniusmap F: A — AisF(a) = a°. Let A’ be A considered
as an A-module under F.

DEerINITION 4.1. A is Frobenius split if there exists an A-module homomorphism
¢ . A — Asuchthat ¢ o F =ida. (Equivalently, such that ¢(1) = 1.)

If Ais Frobenius split, A is necessarily reduced: this will be our application of the
Frobenius splitting. For I C A anideal, F(I) C I, hencel C ¢(1). If ¢(I) = I, then A/I
is Frobenius-split by the map induced from ¢, and indeed all of the objects |, A/I, and
SpecA/| are said to be compatibly Frobenius split by ¢.

Mehta and van der Kallen proved (Theorem 2.7) that there is a splitting of gl,(k)
such that the nilpotent orbit varieties are compatibly Frobenius split. Since this property
is preserved by sums and intersections, as a corollary we have that every element of the
|attice generated by the | (C,,) is compatibly Frobenius split, and therefore radical. Using
the order-reversing map | of Hilbert’s Nullstellensatz, we write more precisely:

COROLLARY 4.2 (TO THEOREM 2.7). Theorem?2.3(1) holdsfor k algebraically closed
of positive characteristic.

5. Characteristic0. Wemust now provethat thelattice L ({I (CH)}) isdistributive
when k is an algebraically closed field of characteristic zero. We begin by defining an
ideal | (C,) in any commutative ring R; the definition will coincide with the original for
R an agebraically closed field. (Note that we do not concern ourselves with the set C,
over R, though it may be defined as before.) Let X bethe n by n matrix of indeterminates
{X11, Xa2s - - » X 1, Sothat R[X] isthe coordinatering of g{,(R), and R[GL ] = R[X][ﬁ]

is the coordinate ring of GL(R).

DEFINITION 5.1. For R a commutative ring, let the ideal 1(C,(R)) C R[X] be the
kernel of the map R[X] — R[GL,] that is derived from the map GL, — gl,, taking
g+— gN,g~ 1, where N, is the standard nilpotent matrix of Jordan block structure 1.’

We must compare theseidealswith the result of asimpler “ extension of scalars’ from
ZtoR

DerFINITION 5.2. Consider an ideal | in a commutative ring A. For any commutative
ring R, denote by R- | theimage of themap | ®; R— A®z R
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LEMMA 5.3. Let R be a commutativering which is torsion-free as a Z-module. Then
I(C.(R) =R-1(C.(2)).

ProoF. From Definition 5.1 we have the exact sequence
(5.4) 0— 1(Cu.(2)) — Z[X] — Z[GL,].

Since R is torsion-freg, it is a flat Z-module, and the functor ®;R is exact. Further,
Z[X] ®z R=R[X] and Z[GL,] ®z R = R[GL], so tensoring the sequence (5.4) over Z
with Rwe obtain

(5.5) 0— 1(C,(2)) ® R— RIX] — R[GL,].

By definition, R- 1 (C,,(2)) istheimage of 1 (C,(2)) @ Rin R[X], so comparing (5.5)
with Definition 5.1 yields the result. ]

LEMMA 5.6. Fix a partition i, and let k be a field. The truth of the statement

(5.7) I(C.(k) =k-1(C.(2))
depends only on char k; furthermore, (5.7) holds for all but finitely many primes char k.

PrROOF. We take a computational point of view for simplicity and to indicate the
extreme generality of the arguments used for such results. Reduced Grobner bases of
I (C.(k)) andk- 1(C,(Z)) may be computed from Definition 5.1, and these bases suffice
to test (5.7). The only operations from k involved in a Grobner-basis computation are
arithmetic ones: adding, subtracting, multiplying, dividing, and comparing with 0. Since
the map k[ X] — k[GL,] is defined over the prime field kg, the computation will involve
only arithmetic in kg, and thus depends only on the characteristic of k.

Lemma 5.3 implies that (5.7) holds for chark = 0. Only comparing with 0, of
the arithmetic operations, depends on the characteristic. Furthermore, the computation
for k = Q, being finite, involves only a finite number of comparisons with 0. These
comparisons are the only points at which the computations in various characteristics
might differ. Thus there are only a finite number of characteristics, those dividing the
coefficients that are compared with 0, in which (5.7) might be false. ]

We will use the abbreviation “amost all positive characteristics’ for “all but afinite
number of positive characteristics.” The argument of Lemma 5.6 easily adaptsto prove:

LEMMA 5.8. Let |, J, and K beidealsin Z[X], and let k be a field. The truth of the

statements

(5.9) k-l+k-J=k-K
and

(5.10) k-1Nk-J=k-K

depends only on the characteristic of k. Furthermore, the truth of (5.9) or (5.10) is the
same in characteristic zero asin almost all positive characteristics.
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We thus wish to characterize the condition of Theorem 2.3(1) in terms of equalities
among finitely many intersections and sums of ideals.

LEMMA 5.11. Let k be an algebraically closed field. Then the following are equiva-
lent:
1. themap | inducesa lattice isomorphism L ({C,(k)}) — L({I (Cu(k))}).

2. L ({I (Cu(k))}) is distributive, and | (C,.(€)) + 1 (C,(K)) = I (C,vs (K)) for every
v € Pn.

PROOF. That (1) implies (2) is clear from Remark 2.2 and the fact that L ({C,.(k)})
is distributive. Assuming (2), the distributivity implies that every element of
L ({ I(C.(k)) }) may bewritten asanintersection of sumsof | (C,,)’s. Thesum condition
implies that these may be simplified to intersections of 1(C,,)’s; and any such intersec-
tion 1 (C.w)N---N1(C,0)isequa to 1 (C o U---UC,). Hencethemap | inducesa
bijection, which is readily seen to be alattice isomorphism, so (1) follows. ]

Thus we obtain Theorem 2.3(1), in fact for “amost all” fields:

THEOREM 5.12. Fix n > 0. The conditions of Lemma 5.11(2) hold for any field
k (except perhaps for k not algebraically closed and of a finite number of positive
characteristics).

PROOF. The distributivity and sum conditions onL ({ I(C.(k) }) constitute a finite
set of equationsin the lattice. We know from Corollary 4.2 that these equations hold in
L ({I (C.() }) for k algebraically closed of characteristic p > 0. Lemma 5.6 implies

that the equationstherefore holdin L ({k I(C.(D) }) for almost all chark > 0. Thusby
Lemmas.8, the equationsmust hold in L ({k~ 1(C.@) }) for chark = Oaswell. Finally,
this and Lemma 5.3 imply that the equations hold in L ({ I(Cu(k)) }) forchark=0. =

6. Intersectingwith thediagonal. In this sectionwe prove Theorem 2.3, parts (2)
and (3). We assume throughout that k is an algebraically closed field of characteristic
zero. Thering KIN N 1] =k{X]/(I(N) + 1 (t)) is naturally isomorphic to the ring

(6.1) R=kKX..... %]/ (€09 ... en(x))-

where g(x) is the i-th elementary symmetric function of x = {xi,...,%}. We let the
ideal 1, betheimageof I (C,)+1(t) inR, and defineR, = R/I,,; wewill tend to consider
theisomorphism R, ~ k[C,, M t] an equality. Note also that | (1n) = (0) and Ramy = R.
We first apply Broer's result (Theorem 2.8) to N . Consider a family of irreducible
(simple) GLy-modules {M,, : A I n} such that (a) each M, is small; (b) the zero-weight
space M] is the irreducible S,-module with character x*. (Gutkin [8] and Kostant [11],
and perhapsothers, observed that the usual indexing of the GL -irreducibles by partitions

leadsto the required family.) Broer’stheorem impliesthat we can construct an S,-module
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isomorphic to R inside k[N ] as follows. Let P, be the operator of projection onto the
GL -isotypic component of type M. Let

(6.2) R=@(P.KINT) .

Abn
Consider mult(xk, (R)q), the multiplicity in (R)g of an irreducible S,-character x*. This
multiplicity, by Schur’s Lemma, is dim Homg, (M]. (R)g), which by Theorem 2.8, in the
case . = (1"), isequal to dimHomar, (M. (KN 1)g). ThusP, (KN 1)g) = MU (R
as GL,-modules, and

g
(6.3) (PA (kN ])d)) ~ (M)™O R ~ (R

as S,-modules. Furthermore, the isomorphism in Theorem 2.8 is induced by the map
KIN]T — KIN N t]; thus we have that the restriction of this map to R induces an
isomorphism of graded S,-modules

(6.4) RSR

Denote the image of 1 (t) + I(N) ink[N] by L; i.e,, L istheideal in k[N ] generated
by the off-diagonal matrix entries. Similarly, denote theimage of 1(C,) in k[N ] by J,.
Then the isomorphism R— R splits the short exact sequence

(6.5) 0—L—kN]—R—O0,
giving
(6.6) KN]=LaR

ThefunctorsHomg, (M, _ ) andHomg, (M'. _ ) areexact onthe categoriesof graded
GL, and S,-modules, respectively. Thus the commutative diagram with exact rows, and
vertical arrows given by reduction modulo L,

0—J,—KN]—KC,]—0
(6.7) ! l l
0O—l,— R — R, —0
yields a commutative diagram
0— Homg, (M. J,) — Homg,(M. k[N 1) — Homg,,(M. k[C,]) — O
(6.8) | l |
0— Homg,(M',1,) - Homg(M",R) — Homg(M",R,) —0

whose rows are again exact. Theorem 2.8 says that the second and third vertical arrows
are isomorphisms; thus by the Five Lemma the first is as well. Note that, for each
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p = n, theintersection J, N Ris ®5-n(PrJ,)T". Sincethefirst vertical arrow in (6.8) isan
isomorphism, it follows by the reasoning used for (6.4) that J, N RS u- SO

(6.9) J, =@, NL) @@, NR).

Every element | of L.({J,}) will therefore have the property that | = (I NL) & (1 N R).
Since L({J,}) isdistributive by Theorem 5.12, it follows that L ({J,,} U{L}) isaswell.
The sublattice of elementscontaining L therefore projectsisomorphically modulo L onto
L ({1,}), which completes the proof of Theorem 2.3.
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