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NILPOTENT ORBIT VARIETIES AND THE ATOMIC
DECOMPOSITION OF THE Q-KOSTKA POLYNOMIALS

WILLIAM BROCKMAN AND MARK HAIMAN

ABSTRACT. We study the coordinate rings k[Cñ \ »] of scheme-theoretic intersec-
tions of nilpotent orbit closures with the diagonal matrices. Here ñ0 gives the Jordan
block structure of the nilpotent matrix. de Concini and Procesi [5] proved a conjecture
of Kraft [12] that these rings are isomorphic to the cohomology rings of the varieties
constructed by Springer [22, 23]. The famous q-Kostka polynomial K̃ïñ(q) is the Hilbert
series for the multiplicity of the irreducible symmetric group representation indexed
by ï in the ring k[Cñ\ »]. Lascoux and Schützenberger [15, 13] gave combinatorially a
decomposition of K̃ïñ(q) as a sum of “atomic” polynomials with non-negative integer
coefficients, and Lascoux proposed a corresponding decomposition in the cohomology
model.

Our work provides a geometric interpretation of the atomic decomposition. The
Frobenius-splitting results of Mehta and van der Kallen [19] imply a direct-sum de-
composition of the ideals of nilpotent orbit closures, arising from the inclusions of the
corresponding sets. We carry out the restriction to the diagonal using a recent theorem
of Broer [3]. This gives a direct-sum decomposition of the ideals yielding the k[Cñ\ »],
and a new proof of the atomic decomposition of the q-Kostka polynomials.

1. Introduction. The q-Kostka polynomials Kïñ(q), also called Kostka-Foulkes or
Foulkes-Green polynomials, have been central to numerous developments over the last
two decades at the crossroads of combinatorics, algebra, and geometry. Defined [18]
through the expansion

sï(x) =
X
ñ

Kïñ(q)Pñ(x; q)(1.1)

expressing the Schur function sï(x) as a linear combination of Hall-Littlewood poly-
nomials Pñ(x; q), they are polynomials in q which specialize upon setting q = 1 to the
ordinary Kostka numbers Kïñ. Here ï and ñ are partitions of some positive integer n;
we write ï ` n.

Lascoux and Schützenberger [20] proved a conjecture of Foulkes [6] by expressing
Kïñ(q) as a sum

Kïñ(q) =
X

T2CS(ïÒñ)
qc(T)Ò(1.2)

in which T varies over the set CS(ïÒ ñ) of column-strict (also called semi-standard)
tableaux of shape ï containing ñ1 ones, ñ2 twos, etc., and c(T), the charge of T,
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ñ
6 51 42 411 33 321

6 1 1 1 1 1 1
51 q q q + q2 q q + q2

42 q2 q2 q2 q2 + q3
ï

411 q3 0 q3

33 q3 q3

321 q4

ñ
6 51 42 411 33 321

6 1 0 0 0 0 0
51 q 0 q2 0 0
42 q2 0 0 q3

ï
411 q3 0 0
33 q3 0

321 q4

TABLE 1: K̃ïñ(q) AND Rïñ(q), RESPECTIVELY, FOR ïÒ ñ ½ (321).

is an intricate combinatorial statistic. Our topic, the atomic decomposition of the q-
Kostka polynomials, comes from their subsequent work [14, 15, 13], which reveals the
remarkable combinatorial structures underlying the q-Kostka polynomials. To be precise,
they write the variant polynomial

K̃ïñ(q) = qn(ñ)Kïñ(1Ûq) =
X

T2CS(ïÒñ)
qĉ(T)Ò(1.3)

where n(ñ) =
P

i(i � 1)ñi and ĉ(T) = n(ñ) � c(T), as

K̃ïñ(q) =
X
ó½ñ

Rïó(q)Ò(1.4)

in which the atom polynomials Rïó(q) themselves have non-negative coefficients.

EXAMPLE 1.5. Table 1 gives K̃ïñ(q) and Rïñ(q) for the partitions ïÒ ñ ½ (321). Note
that the only incomparable pair in this set is (411Ò 33).

Several other algebraic and geometric interpretations of K̃ïñ(q) have been given. Hotta
and Springer [9], using a result of Spaltenstein [21], identified K̃ïñ(q) as the Poincaré
series for the multiplicities of the irreducible symmetric group representation Vï in the
cohomology groups of an algebraic variety Xñ defined by Springer [22]. Lusztig [16, 17]
described K̃ïñ(q) as the local intersection homology Poincaré series of a nilpotent orbit
variety, as an affine Kazhdan-Lusztig polynomial, and as a q-analog of weight multiplic-
ities. Our concern here will be with one further interpretation, introduced by Kraft and
de Concini-Procesi [12, 5], and recently given a simple and purely elementary treatment
by Garsia and Procesi [7], which we now pause to describe.
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In brief, the Kraft-de Concini-Procesi approach forms rings giving the q-Kostka
polynomials—and isomorphic to the cohomology rings of Springer’s varieties—from
the scheme-theoretic intersections of nilpotent orbit varieties with the diagonal matrices
». Here we work over the field k = C; the nilpotent orbit variety Cñ is the Zariski closure
of Cñ, the conjugacy class of nilpotent matrices having Jordan block sizes ñ01, ñ02,    ,
ñ0n, with ñ ` n. The geometric relation

Cñ =
[
ó½ñ

Có(1.6)

will be fundamental to this work. Denoting by k[X] the ring of polynomial functions
on an algebraic variety X, and by I (X) the ideal of X, the scheme-theoretic intersection
Cñ \ » may be defined by its ring of functions

k[Cñ \ »] = k[ª¿n]Û
�
I (Cñ) + I (»)

�
(1.7)

(We note that [5] and [25] gave generators for I (Cñ) + I (»), while [26] gave generators
for I (Cñ).) We view k[N \»] as an Sn-module by restricting to the permutation matrices
the GLn(k) conjugation action on ª¿n(k), and write

K̃ïñ(q) =
X

d
mult

�
üïÒ

�
k[Cñ \ »]

�
d

�
qd;(1.8)

here (k[Cñ \ »])d denotes the homogeneous component of degree d, and mult(üïÒV)
denotes the multiplicity of the irreducible character üï in the character of an Sn module
V. This identification first arose as a consequence of the work of Kraft, de Concini,
Procesi, Spaltenstein, Springer, and Hotta and Springer [12, 5, 21, 22, 23, 9], while Garsia
and Procesi [7] gave an elementary proof. Other important papers discussing aspects of
this construction include Kostant [10], Steinberg [24], Bergeron and Garsia [2], and
Carrell [4].

In this paper we interpret the atomic decomposition (1.4) in the Kraft-de Concini-
Procesi setting, thus proving anew the non-negativity of the atom polynomials Rïó. Our
proof departs from the purely elementary spirit of Garsia and Procesi, relying fairly
heavily upon algebraic geometry. Using a Frobenius-splitting result of Mehta and van
der Kallen we deduce that there is a direct-sum decomposition of the coordinate rings of
the nullcone, N ,

k[N ] =
M
ó`n

Âó(1.9)

compatible with the ideals of the nilpotent orbit varieties:

I (Cñ) =
M
ó6½ñ

Âó for all ñ ` n(1.10)

This decomposition holds in prime characteristics (Corollary 4.2) and hence also in
characteristic zero (Theorem 5.12). Then, a recent result of Broer (intended by him for
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quite different purposes) enables us to carry the decomposition down to the diagonal
matrices. More precisely, we show that there is a direct-sum decomposition

k[N \ »] =
M
ó

Aó(1.11)

of graded Sn-modules, such that for all ñ,

I (Cñ \ »)ÛI (N \ ») =
M
ó6½ñ

Aó(1.12)

From this it is immediate that (1.4) holds with

Rïó(q) =
X

d
mult

�
üïÒ (Aó)d

�
qd(1.13)

Lascoux [13, Theorem 6.5] anticipated our result by stating, without proof, a similar
algebraic version of the atomic decomposition, in the setting of the cohomology ring of
the flag variety.

ACKNOWLEDGMENTS. The first author thanks Bram Broer, Adriano Garsia, and Mark
Shimozono for valuable conversations. He is also grateful to Jim Carrell, Alain Lascoux,
Bruce Sagan, Nolan Wallach, and the reviewer for very helpful comments which have
significantly improved this paper.

2. Main theorems. We will state our results using the terminology of lattice theory.
For k a field of characteristic 0, the homogeneous GLn-submodules of the ring k[N ], be-
cause each graded component is finite-dimensional, by complete reducibility form a com-
plemented modular lattice under the operations of \ and +. We denote L(fI1Ò    Ò Irg)
the sublattice generated by the ideals fI1Ò    Ò Irg. A lattice L is distributive—a stronger
property than modular—if

I \ (J + K) = (I \ J) + (I \ K) for all IÒ JÒK 2 L(2.1)

For example, a set of subvarieties fX1Ò    ÒXrg of N generates a distributive lattice,
denoted L(fX1Ò    ÒXrg), under \ and [. The map I sends such a lattice to a collection
of radical ideals, which do not necessarily themselves form a lattice.

REMARK 2.2. In particular, for any n, the underlying set of L(fCñ : ñ ` ng) is the
set of all unions of the nilpotent orbit varieties Cñ. This follows from (1.6), which yields
Cñ \ Có = Cñ_ó, where _ represents the least upper bound operation in the lattice Pn of
partitions of n under the dominance order (see [18, p. 11]).

Finally, a bijection ß : A ! B between the underlying sets of two lattices AÒB is a
(lattice) isomorphism if for all xÒ y 2 A we have x � y iff ß(x) � ß( y), and a (lattice)
anti-isomorphism if x � y iff ß(x) ½ ß( y). We are now in a position to state our main
results.

THEOREM 2.3. Let k be an algebraically closed field, and fix n Ù 0. Then
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1. the map I induces a lattice anti-isomorphism

L
�
fCñ : ñ ` ng

�
! L

�n
I (Cñ) : ñ ` n

o�
(2.4)

If char k = 0, then
2. L

�
fI (Cñ) : ñ ` ng [ fI (»)g

�
is distributive, and

3. the map Cñ 7! I (Cñ \ »)ÛI (N \ ») induces a lattice anti-isomorphism

L
�
fCñ : ñ ` ng

�
! L

�n
I (Cñ \ »)ÛI (N \ ») : ñ ` n

o�
(2.5)

Geometrically, the first property means that any intersection of nilpotent orbit varieties
is scheme-theoretically reduced: that

I (Cñ) + I (Có) = I (Cñ_ó)(2.6)

The second property implies that the projection k[N ] �! k[N \ »] induces a lattice
isomorphism, and thus, together with the first, implies the third property. In Section 3 we
prove that the desired results (1.8)–(1.9) and (1.10)–(1.11) follow from Theorem 2.3. We
should point out that the direct-sum decompositions are not canonical; see the general
construction in the proof of Proposition 3.1 for the choices involved.

Before proceeding to the full details, we sketch the proofs here. We identify the lattice
generated by fI (Cñ) : ñ ` ng by showing, in section 4, that every element of the lattice
is radical. This fact is a consequence of a recent geometric result:

THEOREM 2.7 (MEHTA–VAN DER KALLEN [19]). Let k be an algebraically closed field
of positive characteristic. There is a Frobenius splitting û of ª¿n such that every nilpotent
orbit variety Cñ is compatibly Frobenius split.

Since the distributivity is proved in positive characteristic, we must make a standard
technical argument to extend the result to characteristic 0 (section 5). This proves Theo-
rem 2.3 (1). Finally, in section 6, we address the intersection with the diagonal, showing
that the lattice generated by the I (Cñ) together with I (») is still distributive, even though
its elements are no longer radical.

This argument relies on a result of Broer, who in [3] extends Chevalley’s restriction
theorem to modules of covariants. His theorem holds in great generality, but we will
need it only for the Lie group GLn and Lie algebra ª¿n. Let T ² GLn be the subgroup
of invertible diagonal matrices, and » ² ª¿n its Lie algebra. Any GLn-module M has a
representation of the Weyl group Sn on the fixed-point set MT of the T-action. Broer’s
theorem applies to small GLn-modules: those which do not have the T-weight 2û, where
û is the highest root of GLn.

THEOREM 2.8 (BROER [3]). Let k be an algebraically closed field of characteristic
zero, and let M be a small GLn-module. For any nilpotent orbit variety Cñ, the map

HomGLn

�
MÒ k[Cñ]

�
! HomSn

�
MTÒ k[Cñ \ »]

�
(2.9)

induced from the restriction k[Cñ] ! k[Cñ \ »] is an isomorphism of graded vector
spaces.
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Aó(q)
6 51 42 411 33 321

6 1
51 x6 x2

6
42 x5x6 e3(x3Ò x4Ò x5Ò x6)

ï
411 x5x2

6
33 x4x5x6

321 x4x5x2
6

TABLE 2: GENERATORS OF IRREDUCIBLES OF TYPE ï IN Aó(q), FOR ó ½ (321).

We note as well that the identification (1.8) combined with Broer’s theorem gives

X
d½0

dim Hom
�

MïÒ
�
k[Cñ]

�
d

�
= K̃ïñ(q)Ò(2.10)

where the representations Mï are defined in Section 6; and hence the atomic decompo-
sition (1.4) of the q-Kostka polynomials follows directly from the direct-sum decompo-
sition (1.9)–(1.10) of k[N ]. We have chosen the slightly less direct route of obtaining
the decomposition inside the intersection with the diagonal, (1.11)–(1.12), because of
the important role of the latter in the previous work of Springer [22], Kraft [12], de
Concini-Procesi [5], Garsia-Procesi [7], and others.

EXAMPLE 2.11. Using Macaulay 2 [1], we found bases of the spaces Aó ² k[N \ »]
whose characters are described by the atomic polynomials Rïó of example 1.5. In Table 2
we give one vector in each irreducible Sn-representation. This example is somewhat
trivial, since there are only two incomparable partitions, and thus the corresponding
lattice is automatically distributive; in addition, the graded components of the atoms are
multiplicity-free. The example would have to be significantly larger (n = 10) to exhibit
greater complexity.

3. Distributive lattices. We begin our proof with a general statement on the con-
nection between distributive lattices and direct sums. The cases which occur may be
treated together as follows. Let G be a reductive group, and M a graded G-module. (We
assume each component of a graded module to be finite-dimensional.) Then the graded
submodules of M form a modular lattice under \ and +, with least element f0g and
greatest element M, which by complete reducibility is a complemented modular lattice.

In the following proposition, 0̂ and 1̂ are the generic symbols for the least and greatest
elements of a lattice when they exist. We use \ and + for the meet and join operations in
the lattice. We also use

L
i2A Ii, analogous to a direct sum of modules, to mean

P
i2A Ii

with the condition that Ij \
P

i2(A�fjg) Ii = 0̂ for every j 2 A .

PROPOSITION 3.1. Let L̂ be a complemented modular lattice with 0̂ and 1̂. Let L
be the sub-lattice of L̂ generated by I1Ò I2Ò    Ò Ir. Then the following statements are
equivalent:
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(1) There exists a family fVigi2A of elements of L̂, and subsets AL ² A for each
L 2 L, such that I1 + Ð Ð Ð + Ir =

L
i2A Vi and

L =
M

i2AL

Vi for all L 2 L(3.2)

(2) The lattice L is distributive.

PROOF. Because thefVigi2A generate a Boolean algebra containing L, (1) implies (2).
Now assume (2). We may write any element of L as a sum of intersections by distributing
intersections over sums. Let L0 be the subposet of L consisting of all intersections of
the Ij’s. For (1) it suffices to find a direct-sum decomposition of I1 + Ð Ð Ð + Ir such that
every element of L0 is a direct sum of some of the summands. Index the intersections
by subsets of f1Ò 2Ò    Ò rg, so that Ifi1Òi2ÒÒisg

= Ii1 \ Ii2 \ Ð Ð Ð \ Iis . Let I; = I1 + Ð Ð Ð + Ir.
Then associate to each IS a complement KS of

P
T ¦
6=

S IT in IS; in particular, K; = 0̂.

Distributivity gives, for any S ² f1Ò    Ò ng,

IS \
X
T6=S

KT =
X
T6=S

(IS \ KT) �
X

T¦
6=

S
ITÒ(3.3)

since if T²
6=

S then IS \ KT = 0̂ by definition, and otherwise IS \ KT � IS[T . Because

KS \
P

T¦
6=

S IT = 0̂, we have shown
L

S KS is a direct sum; and clearly this equals

I; = I1 + Ð Ð Ð + Ir. Induction then gives IS =
L

T�S KT for all S.
Applying the proposition to the lattice L of graded GLn-submodules of k[ª¿n], we

have:

COROLLARY 3.4. Theorem 2.3(1) is equivalent to (1.9)–(1.10).

PROOF. Assuming first that Theorem 2.3(1) holds, we apply Proposition 3.1 to the
lattice of graded submodules of k[N ] and the sublattice LfI (Cñ) : ñ 2 Png. From the
proof of the proposition, the decomposition may be written

k[N ] =
M

S�Pn

ASÒ(3.5)

with
I (Cñ) =

M
S3ñ

AS(3.6)

Now the equation (2.6) implies

M
S3ñ or S3ó

AS =
M

S3ñ_ó
AS;(3.7)

hence if ñ _ ó 2 S but ñ 62 S and ó 62 S then AS = (0). Equivalently, if we write
S̄ = Pn � S, then we have AS = (0) whenever ñ 2 S̄, and ó 2 S̄, but ñ_ ó 62 S̄; that is, we
may take S̄ to be closed under _. Furthermore, since ó ½ ñ implies I (Có) � I (Cñ), we
have AS = (0) unless S is an upper order ideal. Combining the two conditions, S may be
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taken to be a principal lower order ideal. So we re-index, writing Âó for A
fñ:ñ�óg

; now
(1.9)–(1.10) follows, since we have

I (Cñ) =
M
S3ñ

AS =
M
ó6½ñ

Âó(3.8)

The converse is immediate.
Similarly, (1.11)–(1.12) is equivalent to Theorem 2.3(3).

4. Characteristic p. In this section, let k be an algebraically closed field of charac-
teristic p Ù 0, and use the same notation for nilpotent orbit varieties as in the Introduction.
We use the method of Frobenius splitting to prove Theorem 2.3(1) over k. Let A be a com-
mutative k-algebra. The Frobenius map F: A ! A is F(a) = ap. Let A0 be A considered
as an A-module under F.

DEFINITION 4.1. A is Frobenius split if there exists an A-module homomorphism
û : A0 ! A such that û Ž F = idA. (Equivalently, such that û(1) = 1.)

If A is Frobenius split, A is necessarily reduced: this will be our application of the
Frobenius splitting. For I ² A an ideal, F(I) � I, hence I � û(I). If û(I) = I, then AÛI
is Frobenius-split by the map induced from û, and indeed all of the objects I, AÛI, and
Spec AÛI are said to be compatibly Frobenius split by û.

Mehta and van der Kallen proved (Theorem 2.7) that there is a splitting of ª¿n(k)
such that the nilpotent orbit varieties are compatibly Frobenius split. Since this property
is preserved by sums and intersections, as a corollary we have that every element of the
lattice generated by the I (Cñ) is compatibly Frobenius split, and therefore radical. Using
the order-reversing map I of Hilbert’s Nullstellensatz, we write more precisely:

COROLLARY 4.2 (TO THEOREM 2.7). Theorem 2.3(1) holds for k algebraically closed
of positive characteristic.

5. Characteristic 0. We must now prove that the lattice L
�
fI (Cñ)g

�
is distributive

when k is an algebraically closed field of characteristic zero. We begin by defining an
ideal I (Cñ) in any commutative ring R; the definition will coincide with the original for
R an algebraically closed field. (Note that we do not concern ourselves with the set Cñ

over R, though it may be defined as before.) Let X be the n by n matrix of indeterminates
fx11Ò x12Ò    Ò xnng, so that R[X] is the coordinate ring ofª¿n(R), and R[GLn] = R[X][ 1

det X ]
is the coordinate ring of GLn(R).

DEFINITION 5.1. For R a commutative ring, let the ideal I
�
Cñ(R)

�
² R[X] be the

kernel of the map R[X] ! R[GLn] that is derived from the map GLn ! ª¿n taking
g 7! gNñg�1, where Nñ is the standard nilpotent matrix of Jordan block structure ñ0.

We must compare these ideals with the result of a simpler “extension of scalars” from
Z to R:

DEFINITION 5.2. Consider an ideal I in a commutative ring A. For any commutative
ring R, denote by R Ð I the image of the map I 
Z R ! A 
Z R.
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LEMMA 5.3. Let R be a commutative ring which is torsion-free as a Z-module. Then
I
�
Cñ(R)

�
= R Ð I

�
Cñ(Z)

�
.

PROOF. From Definition 5.1 we have the exact sequence

0 ! I
�
Cñ(Z)

�
! Z[X] ! Z[GLn](5.4)

Since R is torsion-free, it is a flat Z-module, and the functor 
ZR is exact. Further,
Z[X] 
Z R = R[X] and Z[GLn] 
Z R = R[GLn], so tensoring the sequence (5.4) over Z
with R we obtain

0 ! I
�
Cñ(Z)

�

Z R ! R[X] ! R[GLn](5.5)

By definition, R Ð I
�
Cñ(Z)

�
is the image of I

�
Cñ(Z)

�

Z R in R[X], so comparing (5.5)

with Definition 5.1 yields the result.

LEMMA 5.6. Fix a partition ñ, and let k be a field. The truth of the statement

I
�
Cñ(k)

�
= k Ð I

�
Cñ(Z)

�
(5.7)

depends only on char k; furthermore, (5.7) holds for all but finitely many primes char k.

PROOF. We take a computational point of view for simplicity and to indicate the
extreme generality of the arguments used for such results. Reduced Gröbner bases of
I
�
Cñ(k)

�
and k ÐI

�
Cñ(Z)

�
may be computed from Definition 5.1, and these bases suffice

to test (5.7). The only operations from k involved in a Gröbner-basis computation are
arithmetic ones: adding, subtracting, multiplying, dividing, and comparing with 0. Since
the map k[X] ! k[GLn] is defined over the prime field k0, the computation will involve
only arithmetic in k0, and thus depends only on the characteristic of k.

Lemma 5.3 implies that (5.7) holds for chark = 0. Only comparing with 0, of
the arithmetic operations, depends on the characteristic. Furthermore, the computation
for k = Q, being finite, involves only a finite number of comparisons with 0. These
comparisons are the only points at which the computations in various characteristics
might differ. Thus there are only a finite number of characteristics, those dividing the
coefficients that are compared with 0, in which (5.7) might be false.

We will use the abbreviation “almost all positive characteristics” for “all but a finite
number of positive characteristics.” The argument of Lemma 5.6 easily adapts to prove:

LEMMA 5.8. Let I, J, and K be ideals in Z[X], and let k be a field. The truth of the
statements

k Ð I + k Ð J = k Ð K(5.9)

and
k Ð I \ k Ð J = k Ð K(5.10)

depends only on the characteristic of k. Furthermore, the truth of (5.9) or (5.10) is the
same in characteristic zero as in almost all positive characteristics.
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We thus wish to characterize the condition of Theorem 2.3(1) in terms of equalities
among finitely many intersections and sums of ideals.

LEMMA 5.11. Let k be an algebraically closed field. Then the following are equiva-
lent:

1. the map I induces a lattice isomorphism L
�
fCñ(k)g

�
! L

�n
I
�
Cñ(k)

�o�
.

2. L
�n

I
�
Cñ(k)

�o�
is distributive, and I

�
Cñ(k)

�
+ I

�
Có(k)

�
= I

�
Cñ_ó(k)

�
for every

ñÒ ó 2 Pn.

PROOF. That (1) implies (2) is clear from Remark 2.2 and the fact that L
�
fCñ(k)g

�
is distributive. Assuming (2), the distributivity implies that every element of

L
�n

I
�
Cñ(k)

�o�
may be written as an intersection of sums of I (Cñ)’s. The sum condition

implies that these may be simplified to intersections of I (Cñ)’s; and any such intersec-
tion I (Cñ(1) ) \ Ð Ð Ð \ I (Cñ(l) ) is equal to I (Cñ(1) [ Ð Ð Ð [Cñ(l) ). Hence the map I induces a
bijection, which is readily seen to be a lattice isomorphism, so (1) follows.

Thus we obtain Theorem 2.3(1), in fact for “almost all” fields:

THEOREM 5.12. Fix n Ù 0. The conditions of Lemma 5.11(2) hold for any field
k (except perhaps for k not algebraically closed and of a finite number of positive
characteristics).

PROOF. The distributivity and sum conditions onL
�n

I
�
Cñ(k)

�o�
constitute a finite

set of equations in the lattice. We know from Corollary 4.2 that these equations hold in

L
�n

I
�
Cñ(k)

�o�
for k algebraically closed of characteristic p Ù 0. Lemma 5.6 implies

that the equations therefore hold in L
�n

k ÐI
�
Cñ(Z)

�o�
for almost all char k Ù 0. Thus by

Lemma 5.8, the equations must hold in L
�n

k ÐI
�
Cñ(Z)

�o�
for char k = 0 as well. Finally,

this and Lemma 5.3 imply that the equations hold in L
�n

I
�
Cñ(k)

�o�
for char k = 0.

6. Intersecting with the diagonal. In this section we prove Theorem 2.3, parts (2)
and (3). We assume throughout that k is an algebraically closed field of characteristic
zero. The ring k[N \ »] = k[X]Û

�
I (N ) + I (»)

�
is naturally isomorphic to the ring

R = k[x1Ò    Ò xn]Û
�
e1(x)Ò    Ò en(x)

�
Ò(6.1)

where ei(x) is the i-th elementary symmetric function of x = fx1Ò    Ò xng. We let the
ideal Iñ be the image of I (Cñ)+I (») in R, and define Rñ = RÛIñ; we will tend to consider
the isomorphism Rñ ' k[Cñ \ »] an equality. Note also that I(1n) = (0) and R(1n) = R.

We first apply Broer’s result (Theorem 2.8) to N . Consider a family of irreducible
(simple) GLn-modules fMï : ï ` ng such that (a) each Mï is small; (b) the zero-weight
space MT

ï is the irreducible Sn-module with character üï. (Gutkin [8] and Kostant [11],
and perhaps others, observed that the usual indexing of the GLn-irreducibles by partitions
leads to the required family.) Broer’s theorem implies that we can construct an Sn-module
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isomorphic to R inside k[N ] as follows. Let Pï be the operator of projection onto the
GLn-isotypic component of type Mï. Let

Ř =
M
ï`n

�
Pïk[N ]

�T
(6.2)

Consider mult
�
üïÒ (R)d

�
, the multiplicity in (R)d of an irreducible Sn-character üï. This

multiplicity, by Schur’s Lemma, is dim HomSn

�
MT
ïÒ (R)d

�
, which by Theorem 2.8, in the

case ñ = (1n), is equal to dim HomGLn

�
MïÒ (k[N ])d

�
. Thus Pï

�
(k[N ])d

�
' Mmult(üïÒ(R)d)

ï

as GLn-modules, and

 
Pï

��
k[N ]

�
d

�!T

' (MT
ï)mult(üïÒ(R)d) ' (R)d(6.3)

as Sn-modules. Furthermore, the isomorphism in Theorem 2.8 is induced by the map
k[N ] ! k[N \ »]; thus we have that the restriction of this map to Ř induces an
isomorphism of graded Sn-modules

Ř
'
! R(6.4)

Denote the image of I (») + I (N ) in k[N ] by L; i.e., L is the ideal in k[N ] generated
by the off-diagonal matrix entries. Similarly, denote the image of I (Cñ) in k[N ] by Jñ.

Then the isomorphism R
'
! Ř splits the short exact sequence

0 ! L ! k[N ] ! R ! 0Ò(6.5)

giving

k[N ] = Lý Ř(6.6)

The functors HomGLn (MÒ ) and HomSn (MTÒ ) are exact on the categories of graded
GLn and Sn-modules, respectively. Thus the commutative diagram with exact rows, and
vertical arrows given by reduction modulo L,

0! Jñ! k[N ]! k[Cñ]! 0
# # #

0! Iñ ! R ! Rñ ! 0
(6.7)

yields a commutative diagram

0!HomGLn(MÒ Jñ)!HomGLn(MÒ k[N ])!HomGLn(MÒ k[Cñ])! 0
# # #

0! HomSn (MTÒ Iñ) ! HomSn (MTÒR) ! HomSn (MTÒRñ) ! 0
(6.8)

whose rows are again exact. Theorem 2.8 says that the second and third vertical arrows
are isomorphisms; thus by the Five Lemma the first is as well. Note that, for each
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ñ ` n, the intersection Jñ \ Ř is
L
ï`n(PïJñ)T . Since the first vertical arrow in (6.8) is an

isomorphism, it follows by the reasoning used for (6.4) that Jñ \ Ř
'
! Iñ. So

Jñ = (Jñ \ L)ý (Jñ \ Ř)(6.9)

Every element I of L(fJñg) will therefore have the property that I = (I \ L) ý (I \ Ř).
Since L(fJñg) is distributive by Theorem 5.12, it follows that L(fJñg [ fLg) is as well.
The sublattice of elements containing L therefore projects isomorphically modulo L onto
L(fIñg), which completes the proof of Theorem 2.3.
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