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Optimal approximants and orthogonal
polynomials in several variables
Meredith Sargent and Alan A. Sola
Abstract. We discuss the notion of optimal polynomial approximants in multivariable reproducing
kernel Hilbert spaces. In particular, we analyze difficulties that arise in the multivariable case
which are not present in one variable, for example, a more complicated relationship between
optimal approximants and orthogonal polynomials in weighted spaces. Weakly inner functions,
whose optimal approximants are all constant, provide extreme cases where nontrivial orthogonal
polynomials cannot be recovered from the optimal approximants. Concrete examples are presented
to illustrate the general theory and are used to disprove certain natural conjectures regarding zeros
of optimal approximants in several variables.

1 Introduction

There are situations when understanding a space H consisting of analytic functions
on some open subset of Cd requires the analysis of functions of the form 1/ f , where
f ∈H. In general, of course, 1/ f ∉H, and it becomes natural to look for substitutes
p∗ ∈H that approximate 1/ f in some appropriate sense. One example of this type of
investigation is the problem of determining cyclic vectors for the shift operator, or shift
operators, in a Hilbert function space. In this context, f ∈H is cyclic if the polynomial
multiples of f form a dense subset of H. If the constant function 1 is assumed to be
cyclic, then it is frequently the case that f ∈H is cyclic if a constant function can be
approximated in the norm of H by polynomial multiples of f. This in turn amounts,
at least intuitively, to being able to approximate 1/ f by polynomials.

The notion of an optimal approximant to 1/ f appeared some time ago, both in
the mathematical literature and previously in the engineering literature under the
name least squares polynomial inverse (typically in the setting of the Hardy space
H2). Chui [14] attributes the notion to E.A. Robinson who apparently considered
such approximation problems in the context of stationary stochastic processes [33].
In the 1980s, Chui and others [25] obtained several important results for one-variable
H2-approximants, in particular examining the location of their zeros. Least squares
polynomial inverses were also studied systematically in the several complex variables
setting by Delsarte, Genin, and Kamp in the late 1970s. They were led to examine least
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Optimal approximants in several variables 429

squares polynomial inverses to functions in H2 of the bidisk by problems in filtering
theory [38].

In a series of recent papers by several authors, cyclic vectors in Dirichlet-type
spaces have been studied via polynomial substitutes to 1/ f , appearing there under
the name optimal approximants; at the time, the authors were not aware of the earlier
works mentioned above. Optimal approximants were initially considered, and in some
cases computed explicitly, in the one-variable setting [3] and were then used in [4] to
exhibit noncyclic polynomials in two-variable Dirichlet spaces. Subsequently, optimal
approximants themselves have been studied in several papers, with a particular
emphasis on the location of their zeros [7, 8] and their boundary behavior and
universality [6, 10]. See [36] for a survey of optimal approximants.

This present paper on optimal approximants has two complementary goals. One
the one hand, we would like to draw the attention of the function theory and operator
theory communities to some results and problems discussed in the engineering
literature that, in our opinion, have not received enough attention. In some cases,
we are also able to give simplified arguments and examples. On the other hand, we
contribute to the theory in several ways. First, we explain how to extend the notion
of optimal approximants to a more general several-variables setting: in principle, this
part is straight-forward, but there are some technical points and choices that we need
to pay particular attention to. We then show that many of the nice properties exhib-
ited by one-variable optimal approximants and related functions are lost in higher
dimensions. Despite this, in some cases, particularly when examining orthogonal
polynomials, we find a structure connected to the one variable case. Finally, natural
conjectures for several variable-optimal approximants are disproved by examining
specific examples.

Our paper is structured as follows. We begin, in Section 2, by setting down notation
and giving a brief overview of the function spaces we are interested in. We then define
optimal approximants in reproducing kernel Hilbert spaces defined in domains in Cd

and discuss ways of computing such approximants for a given target function. We also
mention applications to the analysis of cyclic vectors and two-dimensional filters. In
Section 3, we discuss weakly inner functions, which are singled out by their property
of having constant optimal approximants, and their connections with classical inner
functions. An idea from earlier papers in the one-variable setting is adapted to
give an explicit construction of weakly inner functions. In Section 4, we examine
how optimal approximants relate to orthogonal polynomials in weighted spaces, and
investigate under what circumstances orthogonal polynomials can be recovered from
optimal approximants. We also show that for a certain class of examples, orthogonal
polynomials in two variables can be found from the known one-variable case. Section
5 is devoted to zero sets of optimal approximants and, in particular, to what is known in
the engineering literature as the Shanks conjecture on regions where optimal approx-
imants are zero-free. We review some of the existing results and then present sev-
eral counterexamples to possible Shanks-type statements. Finally, Section 6 features
explicit computation and discussion of optimal approximants and orthogonal polyno-
mials for functions of the form f = 1 − a(z1 + z2). Throughout the paper, we attempt
to give references to relevant previous work: we hope these sources will inspire further
work even though it is likely we have overlooked some important contributions.
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430 M. Sargent and A. A. Sola

2 Optimal approximants in reproducing kernel Hilbert spaces

2.1 Reproducing kernel Hilbert spaces

Let Ω ⊂ Cd be an open set containing the origin. A reproducing kernel Hilbert space
H(Ω) is a Hilbert space consisting of holomorphic functions on Ω such that evalua-
tion at a point of Ω,

eλ ∶H→ C, eλ[ f ] = f (λ),

furnishes a bounded linear functional. By standard Hilbert space theory, there exists
an element Kλ ∈H with the reproducing property

f (λ) = ⟨ f ,Kλ⟩H ,

where ⟨⋅, ⋅⟩H denotes the inner product inH(Ω). We call Kλ the reproducing kernel at
λ. For any orthonormal basis {ϕ j}∞j=0 forH, the reproducing kernel admits the series
representation

Kλ(z) =
∞
∑
j=0

ϕ j(λ)ϕ j(z).

See [1] for a general introduction to Hilbert function spaces.
In this paper, we shall typically take Ω to be the unit disk in C, the unit bidisk

in C2, or the unit ball in Cd . We shall also impose the standing assumptions that
C[z1 , . . . , zd], the ring of polynomials in d complex variables, forms a dense subspace
ofH(Ω) and that the operators of multiplication by the coordinate functions,

S j ∶H→H, S j[ f ](z) = z j ⋅ f (z), j = 1, . . . , d ,

act boundedly onH.
Throughout, we will consider the following spaces of holomorphic functions to

illustrate the general theory.

Dirichlet-type spaces in the disk and the bidisk

Let α ∈ (−∞,∞) be fixed. The Dirichlet-type space Dα consists of holomorphic
functions f = ∑∞k=0 ak zk on the unit disk D = {z ∈ C ∶ ∣z∣ < 1} satisfying the norm
boundedness condition

∥ f ∥2
Dα

=
∞
∑
k=0
(k + 1)α ∣ak ∣

2 < ∞.(2.1)

When α = 0, we recover the standard Hardy space H2. The choice α = −1 corresponds
to the Bergman space A2 in the unit disk, while D1 can be identified with the classical
Dirichlet space D consisting of functions having ∫D ∣ f ′(z)∣2dA(z) < ∞, where dA is
normalized area measure on the disk. The literature on these spaces is vast, but basic
introductions can be found in [18, 19, 24].
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Optimal approximants in several variables 431

For α ∈ {−1, 0, 1}, explicit expressions for the reproducing kernels are known. In
H2 and A2, we have the usual Szegő and Bergman kernels

K
H2

λ (z) = 1
1 − λz

and K
A2

λ (z) = 1
(1 − λz)2

.(2.2)

For noninteger values of α, closed form expressions for the reproducing kernels Kλ in
terms of rational functions are in general not available.

We can define Dirichlet-type spaces Dα1 ,α2 on the bidisk

D
2 = {(z1 , z2) ∈ C2∶ ∣z1∣ < 1, ∣z2∣ < 1}

as tensor products of one-variable Dirichlet-type spaces, that is, we can take

Dα1 ,α2 = Dα1 ⊗ Dα2 .

See [1] for more on this perspective. In concrete terms,Dα1 ,α2 consists of holomorphic
functions

f (z1 , z2) =
∞
∑
j=0

∞
∑
k=0

a j,k z j
1 zk

2

on the bidisk whose Taylor coefficients satisfy

∥ f ∥2
α1 ,α2

=
∞
∑
j=0

∞
∑
k=0
( j + 1)α1(k + 1)α2 ∣a j,k ∣

2 .(2.3)

We write Dα when α = α1 = α2, and the norm in this case will be denoted by ∥ f ∥α .
By the general theory of reproducing kernel spaces [1], the kernel of Dα1 ,α2 at λ =
(λ1 , λ2) ∈ D2 is a product of one-variable kernels,

K
Dα1 ,α2
λ1 ,λ2

(z1 , z2) = K
Dα1
λ1

(z1) ⋅K
Dα2
λ2

(z2), (z1 , z2) ∈ D2 .(2.4)

Similar statements are valid in d-dimensional polydisks.

The Drury–Arveson space

Let

B
d = {z ∈ Cd ∶ ∥z∥2 < 1}

denote the unit ball in Cd and let Sd = ∂Bd be its boundary, the unit sphere, and let

⟨z, w⟩ = z1w1 +⋯ + zdwd

denote the standard Euclidean inner product on Cd .
The Drury–Arveson space on Bd , H2

d , is the reproducing kernel Hilbert space of
holomorphic functions of the ball determined by the kernel

K
H2

d
λ (z) = 1

1 − ⟨z, λ⟩ , z = (z1 , . . . , zd) ∈ Bd .

Basic structural properties of the Drury–Arveson space are discussed in, for instance,
[32, 37]; for instance, the Drury–Arveson norm is invariant under unitaries. For our
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Figure 1: We shall call the center row of this diagram the main diagonal. Degree lexicographic
order reads “down” each column (where the total degree of the monomials in each column is
fixed), moving to the right.

purposes, it will be useful to note that the norm in H2
d can be expressed in terms of

the coefficients of f = ∑k ak zk using standard multi-index notation:

∥ f ∥2
H2

d
=
∞
∑
n=0

∑
∣k∣=n

k!
∣k∣! ∣ak ∣2 .

In particular, in two variables, we have

K
H2

2
λ (z) = 1

1 − λ1z1 − λ2z2
and ∥ f ∥2

H2
2
=
∞
∑
j=0

∞
∑
k=0

j!k!
( j + k)!

∣a j,k ∣2 .

2.2 Optimal polynomial approximants

Set χ0 = 1 and let

χ1 , χ2 , χ3 , . . .

be an ordering of complex monomials zk = zk1
1 ⋯ zkd

d according to some chosen order.
In several variables, there are several natural ways to index monomials: the general
setup below is independent of this choice, but when we later turn to examples, we
typically use the degree lexicographic order [23] where monomials are ordered by
increasing total degree and ties are broken lexicographically. In two variables, this
amounts to

χ1 = z1 , χ2 = z2 , χ3 = z2
1 , χ4 = z1z2 , χ5 = z2

2 , χ6 = z3
1 ,

and so on. We find it illuminating to display the monomials in the tree diagram in
Figure 1.
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With an ordering of monomials in place, we set

Pn = span{χ j ∶ j = 0, . . . , n}, n = 0, 1, 2, . . . .(2.5)

Since χ0 = 1, we have P0 = span{1}, the constant polynomials. Note that

P0 ⊂ P1 ⊂ ⋯ ⊂ Pn ⊂ ⋯
is an exhaustion of C[z1 , . . . , zd] (viewed as a vector space) by finite-dimensional
subspaces, that is, ⋃n Pn = C[z1 , . . . , zd]. If d = 1, we typically order monomial by
degree, in which case

Pn = {p ∈ C[z]∶deg(p) ≤ n}
for n = 0, 1, 2, . . . .

Definition 1 Let f ∈H(Ω) be given. The nth-order optimal polynomial approximant
to 1/ f with respect to Pn is defined as the polynomial p∗n ∈ Pn such that

p∗n(z) f (z) = Proj f ⋅Pn
[1](z),

where Proj f ⋅Pn
∶H→ f ⋅Pn denotes the orthogonal projection onto the subspace

f ⋅Pn .
In other words, p∗n is the unique polynomial that minimizes ∥p ⋅ f − 1∥H among all

p ∈ Pn .

The existence and uniqueness of p∗n , relative to a particular choice of {χ j}, follow
immediately from Hilbert space theory: our assumption that multiplication by each
variable acts boundedly on H implies that f ⋅Pn is a closed subspace of H for each
n. Note that we obtain different sequences of optimal approximants depending on the
contents of the Pn .

The following notion of distance will also feature.

Definition 2 For a given f ∈H and Pn as above, the nth order optimal norm is
defined as

νn( f ,H) = ∥p∗n ⋅ f − 1∥H .

Note that, since the subspaces Pn are nested, νn( f ) is nonincreasing as a function
of n.

2.3 Optimal approximants via Grammians

The following is a straightforward reinterpretation of previous methods of computing
optimal approximants [3, 20] to our present setting.

Proposition 1 Let f ∈H/{0}. Then the coefficients of the n-order optimal approxi-
mant to 1/ f , p∗n = ∑n

j=0 c∗j χ j , are given by solution to the linear system

Mc⃗ ∗ = b⃗,

where M is an (n + 1) × (n + 1) Grammian matrix with entries given by

M i j = ⟨χ j f , χ i f ⟩
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and

b⃗ =
⎛
⎜
⎝

⟨1, χ0 f ⟩
⋮

⟨1, χn f ⟩

⎞
⎟
⎠

.

The proof is analogous to the one-variable case, see [20]; we sketch it for the reader’s
convenience.

Proof By the definition of p∗n , we have (p∗n f − 1) ⊥ Pn . Thus ⟨p∗n f − 1, f χ i⟩ =
⟨1, f χ i⟩. This in turn can be rewritten as

⟨∑
j

c∗j χ j f , f χ i⟩ = ⟨1, f χ i⟩,

and, using linearity, we obtain the desired linear system. ∎
If ⟨1, χ i f ⟩ = 0 for all i ≥ 1, as is the case for most spaces we are interested in, then

b⃗ = f (0)&&&⃗δ i ,0 in the above proposition.
It is typically not straightforward to find {p∗n} in a closed form for a given f using

the representation in Proposition 1. More sophisticated approaches to computation
and fine analysis of optimal approximants are discussed in [10, 15], for example, but
are not needed for what we want to achieve in this paper.

Building on one-variable work in [3, 20], we can obtain optimal approximants for
some simple polynomial targets.

Example 2 Consider a sequence {ω(k)}∞k=0 of strictly positive weights satisfying
limk→∞ ω(k + 1)/ω(k) = 1 and let Hω be the Hilbert function space consisting of
analytic f ∶D→ C whose power series f = ∑∞k=0 ak zk satisfy

∥ f ∥2
Hω

=
∞
∑
k=0

ω(k)∣ak ∣2 < ∞.(2.6)

Let us further assume that {zk/∥zk∥ω} is an orthonormal basis forHω . In this setting,
Fricain et al. [20, Theorem 3.9] have found an explicit expression for theHω-optimal
approximants to 1/ f for the function f = 1 − z. (See [3] for the case of Dirichlet-type
spaces in the unit disk.) Indeed, we have

p∗n(z) =
n
∑
k=0

(1 −
∑k

j=0 ω( j)−1

∑n+1
j=0 ω( j)−1

)zk .

In our discussion of higher-dimensional analogs of Example 2, we find it conve-
nient to consider diagonal subspaces

Jn = span{(z1⋯ zd)k ∶ k = 0, 1, . . . , n} and J = span{(z1⋯ zd)k ∶ k ∈ N}.

Also, define Pn using degree lexicographic order and let ⊘n denote the lowest index
m for which the exponent (z1z2)n belongs to Pm . (Explicitly, ⊘1 = 4, ⊘2 = 12, and so
on, and note thatJn ⊊ P⊘n .)

Example 3 We first consider optimal approximants to 1/(1 − z1z2) in the Dirichlet-
type spaces Dα1 ,α2 in the bidisk.
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In [4, 27], it was observed that there is an isometric isomorphism between Jn ,
viewed as a closed subspace ofDα1 ,α2 , and the set Jn = span{zk ∶ k = 0, 1, . . . , n} viewed
as a closed subspace of Dα1+α2 , a Dirichlet-type space in the unit disk. Under this
isomorphism, f = 1 − z1z2 is mapped to F = 1 − z. Next, we note that Dα1+α2 can be
viewed as Hω with weight sequence ω(k) = (k + 1)α1+α2 . Finally, by orthogonality,
the nth-order optimal approximants p∗n = Proj f ⋅Pn

[1]/ f are polynomials in z1z2 only.
Thus the optimal approximants p∗n change fromJm toJm+1, and stay the same for

all Pn containingJm and being strictly contained in P⊘(m+1).
Now, using Example 2, we find that

p∗⊘n = Proj f ⋅Pn
[1](z1z2) =

n
∑
k=0

(1 −
∑k

j=0( j + 1)−(α1+α2)

∑n+1
j=0( j + 1)−(α1+α2)

)(z1z2)k(2.7)

are the optimal approximants to 1/(1 − z1z2) for ⊘n ≤ k < ⊘(n + 1).

Example 4 A similar analysis applies in the case of the d-dimensional Drury–
Arveson space (or Dirichlet-type spaces in the unit ball, cf. [41]).

By the arithmetic-geometric means inequality, the mapping

ι ∶ (z1 , . . . , zd) ↦ dd/2
d
∏
j=1

z j

sends the unit ball Bd to the unit disk D. Next, we note that

∥(z1⋯ zd)k∥2
H2

d
= (k!)d

(dk)!
.

Together, these observations establish an isometric isomorphism betweenJk viewed
as a closed subspace of H2

d and the set Jn sitting inside the spaceHω of functions on
the disk associated with the weight sequence

ωd(k) = dd k (k!)d

(dk) .

Using this choice of weight sequence in the formula in Example 2, we obtain the
polynomials

p∗⊘n(z1 , . . . , zd) =
n
∑
k=0

(1 −
∑k

j=0 ωd( j)−1

∑n+1
j=0 ωd( j)−1

)(dd/2z1⋯ zd)k ,

and these are the optimal approximants to 1/(1 − dd/2 ∏d
k=1 zk) in H2

d for ⊘n ≤ k <
⊘(n + 1). Here, ⊘ is the d-dimensional analog of ⊘ in two variables.

For instance, in the two variable case,

p∗⊘1(z1 , z2) =
1
3

, p∗⊘2(z1 , z2) =
7
15
+ 2

15
z1z2 ,

p∗⊘3(z1 , z2) =
19
35

+ 22
35

z1z2 +
4
7

z2
1 z2

2 ,

and so on.
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2.4 Applications of optimal approximants: cyclic vectors

Recall that a vector f ∈H is said to be cyclic for the shift operators S1 , . . . , Sd if the
invariant subspace

[ f ]H = closHspan{Sk1
1 ⋯ Skd

d f ∶ k ∈ Nd}

is dense inH. Since the polynomials were assumed dense in all the Hilbert spaces we
are considering, the function f = 1 is a cyclic vector. As is explained in [12, 3], this is
equivalent to having

νn( f ) → 0 as n →∞.

One of the original applications of optimal approximants in [3, 4] was to use the
rate at which νn( f ) decays to zero to not only distinguish between cyclic and
noncyclic vectors but also to give finer distinctions between “how cyclic” different
cyclic functions are.

Example 5 Returning to the one-variable spaces Hω considered by Fricain et al.,
and the function f = 1 − z, we note that, by [20, Corollary 3.10],

νn(1 − z,Hω) = (
1

∑n
k=0

1
ω(k)

)
1/2

.(2.8)

Arguing as in Example 2, we can now use (2.8) to extract information about
cyclicity of f = 1 − z1z2 in the Dirichlet spaces Dα1 ,α2 in the bidisk, and about 1 −
dd/2 ∏d

k=1 zk in the Drury–Arveson space.
Since the weight sequence in Dα1 ,α2 is ω1(k)ω2(l) = (k + 1)α1(l + 1)α2 , we have

ω(k) = ω1(k)ω2(k) = (k + 1)α1+α2 and thus

ν⊘n(1 − z1z2 ,Dα1 ,α2) = νn(1 − z, Dα1+α2) = (
1

∑n+1
k=0(k + 1)−(α1+α2)

)
1/2

.

The sum in the right-hand side converges as n tends to infinity precisely when α1 +
α2 ≤ 1. Thus, as was shown in [27], f = 1 − z1z2 is cyclic inDα1 ,α2 if and only if α1 + α2 ≤
1. When α1 + α2 > 1, we obtain

ν2(1 − z1z2 ,Dα1 ,α2) =
1

∑∞k=0(k + 1)−(α1+α2)
= 1

ζ(α1 + α2)
,

where ζ is the Riemann zeta function. In particular, for the Dirichlet space D = D1,1,
ν(1 − z1z2 ,D) =

√
6

π .

Cyclic polynomials for Dα1 ,α2 have been completely characterized, see [9, 27,
29], and the cyclicity/noncyclicity part of Example 5 follows immediately from that
characterization. What optimal approximants allow us to do is to measure how far
from cyclic 1 − z1z2 is for different pairs of (α1 , α2).
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Example 6 We turn to the Drury–Arveson space H2
d and the functions f = 1 −

dd/2z1⋯ zd . As in Example 2, we set ωd(k) = dd k (k!)d

(d k)! and obtain

ν2
⊘n(1 − dd/2

d
∏
k=1

zk , H2
d) =

1
∑n+1

k=0 ωd(k)−1

as well as

ν2(1 − dd/2
d
∏
k=1

zk , H2
d) =

1
∑∞k=0 ωd(k)−1 .

A short computation involving Stirling’s formula shows that

ωd(k) ≍ k
d−1

2 , as k →∞.

In particular, f = 1 − dd/2 ∏d
k=1 zk is cyclic in H2

d if and only if d ≤ 3. This recovers an
earlier result of Richter and Sundberg [31] who used the same embedding argument
above, which also features in Arveson’s work [2].

2.5 Applications of optimal approximants: two-dimensional recursive filters

Another, older, application of optimal approximants relates to two-dimensional recur-
sive filtering theory and was discussed by Shanks, Treitel, and Justice [38]. We give
a brief description of their work here and note that it in turn was motivated by
engineering applications including the study of seismic records and photographic data
[38].

Given a data array D = (d j,k)n
j,k=1, we form a two-variable polynomial D(z1 , z2) =

∑n
j=1 ∑n

k=1 d j,k z j−1
1 zk−1

2 and we set 1⃗ = (1, . . . , 1) ∈ Cn . Then, in the notation of [38], a
recursive filter algorithm is obtained as follows.

We set

R(z1 , z2) = F(z1 , z2)D(z1 , z2)(2.9)

where F(z1 , z2) = A(z1 , z2)/B(z1 , z2) is a rational function of two variables. After
clearing fractions, (2.9) translates into

B(z1 , z2)R(z1 , z2) = A(z1 , z2)D(z1 , z2).

Assuming that the constant term b1,1 in B(z1 , z2) = ∑MB
j=1 ∑

NB
k=1 b j,k z j−1

1 zk−1
2 is nonzero

and dividing through, we obtain

R(z1 , z2) =
⎛
⎝

NA

∑
j=1

NA

∑
k=1

a j,k

b1,1
z j−1

1 zk−1
2

⎞
⎠

D(z1 , z2)

−

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∑
1≤ j≤MB ,
≤k≤NB ,
( j,k)≠1⃗

b j,k

b1,1
z j−1

1 zk−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

R(z1 , z2).
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We thus have

rm ,n =
MA

∑
j=1

NA

∑
k=1

a j,k

b1,1
dm− j+1,n−k+1 − ∑

1≤ j≤MB ,
1≤k≤NB ,
( j,k)≠1⃗

b j,k

b1,1
rm− j+1,n−k+1 ,

expressing the output coefficient rm ,n in terms of output coefficients which are either
assumed to have been previously computed or are set to zero.

In order for this scheme to be of practical use, it is desirable that the filter be
stable, that is, that bounded inputs D are transformed into bounded outputs R. In
light of (2.9), one expects that this would require that B(z1 , z2) ≠ 0 for some subset
of values (z1 , z2). Indeed, Justice and Shanks proved [26] that stability holds if and
only if B(z1 , z2) ≠ 0 onD2. Unfortunately, this need not hold for all potentially useful
filters F = A/B.

To get around this difficulty, Shanks, Treitel, and Justice proposed replacing the
two-variable function B by its H2-optimal approximants p∗n . They argued that, intu-
itively speaking, p∗n should retain “many” of the features of B. Moreover, in light of the
one-variable case and numerical evidence in two variables, they conjectured [38] that
two-variable optimal approximants should be nonvanishing in the closed bidisk. Thus
1/p∗n would be a stabilizing filtering substitute for 1/B.

Unfortunately, the Shanks–Treitel–Justice approach to stabilization does not work
without additional assumptions on the target function B since there are polynomials
B whose optimal approximants p∗n vanish inside the bidisk, making the filter 1/p∗n
unstable as well.

We discuss zero set problems for optimal approximants in Section 5.

3 Optimal approximants and weakly inner functions

3.1 Weakly inner functions

Certain functions in H(Ω) have the distinguishing property that their optimal
approximants do not change as we consider larger Pn . Following [5, 16], we make
the following definition.

Definition 3 We say that g ∈H(Ω)/{0} is weakly inner if

⟨g , χ j g⟩ = 0 for all j ≠ 0.

See [13] for a comprehensive overview of notions of inner function for a wide range
of reproducing kernel Hilbert spaces. Inner functions can also be defined for Banach
spaces of analytic functions in a similar fashion using the notion of Birkhoff–James
orthogonality, viz. [13, Section 7].

Proposition 7 If g ∈H(Ω) is weakly inner, then its optimal approximants are all equal
to a single constant: p∗n = p0 for n = 1, 2, . . . .

Proof By Proposition 1, the coefficients of p∗n = ∑n
j=0 c∗j χ j are given by

Mc⃗ ∗ = g(0)&&&&⃗δk ,0 ,
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where M j,k = ⟨g χ j , g χk⟩ and
&&&&⃗
δk ,0 = (1, 0, . . . , 0)T . By assumption, M j,0 = cδk ,0, so

the first column of M consists of all zeros past the first entry which is c = ∥g∥2. By
elementary linear algebra, the inverse matrix M−1 has the same property. But then

c⃗ ∗ = M−1 ḡ(0)&&&&⃗δk ,0 =
ḡ(0)

c
&&&&⃗
δk ,0 ,

and the proof is complete. ∎
Corollary 8 If g ∈H is weakly inner, then νn(g) = ν0(g) for all n = 1, 2 . . .

One obvious class of weakly inner functions in the Hardy space is the class of
classical inner functions: recall that a bounded holomorphic function θ∶Dd → C is said
to be inner if ∣θ(ζ)∣ = 1 for almost every ζ ∈ Td .

Lemma 9 Suppose θ∶Dd → C is inner. Then θ is weakly H2-inner.

Proof Without loss of generality, we may assume θ(0, 0) ≠ 0. Since θ is inner, we
have

⟨χ jθ , χk θ⟩ = ∫
Td

χ j χk ∣θ∣2dm = ∫
Td

χ j χk dm = 0, if j ≠ k.

Thus, the matrix M is diagonal, and M−1 θ̄(0, 0)e1 = θ̄(0, 0)δk ,0, as claimed. ∎
When d = 1, inner functions and weakly H2-inner functions coincide. Weakly

inner functions in the Bergman space of the unit disk are precisely the Bergman-
inner functions [24, Chapter 3]. In higher dimensions, however, a new phenomenon
manifests itself, and the class of classically inner functions forms a subclass of all
weakly H2-inner functions. This was originally observed by Delsarte, Genin, and
Kamp, see [16, Section 8], who gave a power series example. In the next subsection,
we give simpler examples.

3.2 Shapiro–Shields functions

By adapting a construction in [5], which in turn is based on an older idea of
Shapiro and Shields [39], we can build weakly inner functions in any reproducing
kernel Hilbert space with a finite prescribed zero set. See [13] and [28] for further
generalizations.

Definition 4 Let Λ = {λ1 , . . . , λn} ∈ Ω/{0} be a given set of distinct points and let
K
H
λ be the reproducing kernel of H at a point λ. Define KΛ to be the n × n matrix

whose entries are given by (KΛ)i , j = ⟨Kλ i ,Kλ j⟩ and recall that 1⃗ = (1, 1, . . . , 1) ∈ Cn .
The Shapiro–Shields function forH associated with Λ is defined as

sΛ(z) = ∣ 1 1⃗
(Kλ j)n

j=1 KΛ .∣(3.1)

The normalized Shapiro–Shields function is defined as

gΛ(z) = sΛ(z)
∥s∥Λ

;(3.2)
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normalization is not essential for our purposes.

Proposition 10 SupposeH(Ω) is a reproducing kernel Hilbert space with monomials
{χ j} forming an orthogonal set. Let sΛ be a Shapiro–Shields function forH associated
with a finite set Λ ∈ Ω/{0} of distinct points. Then, sΛ is weakly inner inH(Ω), and sΛ
vanishes at each point of Λ.

Proof The proof is a straight-forward adaptation of the one-variable proof in [5]
and is sketched for the reader’s convenience. First, the fact that sΛ vanishes at each λ j
follows from the fact that the first column in the determinant defining sΛ is equal to
the j + 1 column.

To see that sΛ is nontrivial, it suffices to note that the kernels Kλ1 , . . . ,Kλn are
linearly independent.

To establish that sΛ is weakly inner, we perform a cofactor expansion of the second
argument of ⟨χ jsΛ , sλ⟩ along the first column,

⟨χ jsΛ , sΛ⟩ = detKΛ⟨χ jsΛ , 1⟩ +
n
∑
m=1

Am⟨χ jsΛ ,Kλm ⟩.

Finally, ⟨χ jsΛ , 1⟩ = 0 for j ≥ 1 by orthogonality of monomials, while each
⟨χ jsΛ ,Kλm ⟩ = χ j(λm)sΛ(λm) is zero since sΛ(λm) = 0 for m = 1, . . . , n. ∎

For Hardy and Bergman spaces in the unit disk, normalized Shapiro–Shields func-
tions recover well-known inner functions, see [5]. Here, we examine such functions
in the bidisk and the ball.

Example 11 The Shapiro–Shields function for H2(D2) associated with a point
(λ1 , λ2) ∈ D2 is

sλ(z) = 1
(1 − ∣λ1∣2)(1 − ∣λ2∣2)

λ1(λ1 − z1) + λ2(z2 − λ2) − λ1 λ2(λ1 λ2 − z1z2)
(1 − λ1z1)(1 − λ2z2)

.

Several remarks are in order. As in one variable, the rational function sλ extends
holomorphically to a bigger polydisk, whose radius depends on λ. Next, since sλ above
is holomorphic of two variables, the function vanishes at points of the bidisk other
than λ. If λ1 = 0 or λ2 = 0, we recover a multiple of a one-variable Blaschke factor, but
in general, sλ is not of product type.

Finally, since sλ violates the Rudin–Stout description of rational inner functions in
polydisks [34, Chapter 5], sλ is not inner in the classical sense.

Example 12 In the Bergman space A2(D2), the Shapiro–Shields function associated
with (λ1 , λ2) ∈ D2 is

sλ(z) = ( 1
(1 − ∣λ1∣2)2(1 − ∣λ2∣2)2(1 − λ1z1)2(1 − λ2z2)2

)⋅

(( λ1 λ2)
2(z2

1 z2
2 − λ2

1 λ2
2) + 2λ1

2
λ2(λ2

1 λ2 − z2
1 z2) + 2λ1 λ2

2(λ1 λ2
2 − z1z2

2)

+ λ1
2(z2

1 − λ2
1 ) + 4 λ1 λ2(z1z2 − λ1 λ2) + λ2

2(z2
2 − λ2

2)

+ 2λ1(λ1 − z1) + 2λ2(λ2 − z2)).
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Example 13 For d ≥ 1, let λ ∈ Bd be a point in the unit ball. The Shapiro–Shields
function for H2

d associated with λ is

sλ(z) = 1
1 − ∥λ∥2

⟨λ − z, λ⟩
1 − ⟨z, λ⟩ .

It would be interesting to conduct a systematic study of weakly inner functions in
general reproducing kernel Hilbert spaces.

4 Orthogonal polynomials

4.1 Optimal approximants and orthogonal polynomials

Another interesting aspect of optimal approximants is their connection to orthogonal
polynomials of certain weighted spaces. This is discussed in one variable in [8],
Section 3, where the authors write the optimal approximants in terms of orthogonal
polynomials and exploit properties of orthogonal polynomials to show that, in the
case of the Hardy space, optimal approximants are zero free in the unit disk. These
connections were observed by engineers in, for example, [22], who also showed that
they extend to the two variable Hardy space case and form the basis for the Shanks
conjecture about the location of zeros of optimal approximants (Section 5.1).

This relationship can be generalized to a reproducing kernel Hilbert spaceH(Ω),
with properties discussed in Section 2.1 and inner product ⟨⋅ , ⋅⟩H. Recall that for f ∈
H(Ω), the nth-order optimal polynomial approximant to 1/ f with respect to Pn is
defined so that f (z)p∗n(z) = Proj f ⋅Pn

[1](z). If we let { f ϕ j} be an orthonormal basis
for f ⋅Pn , then we can consider the ϕ j to be orthonormal polynomials in a weighted
spaceH f with inner product

⟨g , h⟩H f ∶= ⟨g f , h f ⟩H .(4.1)

To avoid trivialities, we assume that f is not identically zero and does not vanish at the
origin. Using the orthonormal basis { f ϕ j} forH f , f p∗n can be expanded as

( f p∗n)(z1 , z2) =
n
∑
k=0

⟨1, f ϕk⟩Hϕk(z1 , z2) f (z1 , z2),(4.2)

and we can cancel to get

p∗n(z1 , z2) =
n
∑
k=0

⟨1, f ϕk⟩Hϕk(z1 , z2).(4.3)

This in turn implies that

⟨1, f ϕn⟩ϕn(z1 , z2) = p∗n(z1 , z2) − p∗n−1(z1 , z2), n = 1, 2, 3 . . . .(4.4)

In certain favorable circumstances, the relation (4.4) allows us to recover orthogonal
polynomials from optimal approximants. When f is weakly inner, however, the inner
product ⟨1, f ϕk⟩ = 0 for all k > 0. Therefore, the orthogonal polynomials cannot be
extracted from the formula (4.4). In fact, we have the following.
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Lemma 14 Suppose that for some f ∈H(Ω)/{0} and some n ∈ N, we have p∗n = p∗n−1.
Then ⟨1, f ϕn⟩ = 0 for nonconstant ϕn .

The main example considered in the engineering applications is the weighted
Hardy space of the bidisk with inner product given by

⟨g , h⟩H2 , f = lim
r→1− ∫

2π

0
∫

2π

0
g(re iθ 1 , re iθ2)h(re iθ 1 , re iθ2)∣ f (re iθ 1 , re iθ2)∣2dθ1dθ2

where dθ1 and dθ2 are normalized Lebesgue measure on the circle. Similarly, for the
Bergman space in the bidisk, we have

⟨g , h⟩A2 , f =∬
D2

g(z1 , z2)h(z1 , z2)∣ f (z)∣2dA(z1)dA(z2)

but for general pairs (α1 , α2), the inner product ⟨⋅, ⋅⟩ f is not expressible as a weighted
integral of g and h over the bidisk. In all theDα spaces, however,

⟨1, f ϕk⟩ = f (0)ϕk(0),

and we obtain the following immediate consequence of Lemma 14.

Lemma 15 Suppose that for some f ∈ Dα/{0} and some n ∈ N, we have p∗n = p∗n−1.
Then ϕn(0) = 0.

In particular, if f is weakly inner inDα , then all orthogonal polynomials ϕn inDα1 ,α2 , f
vanish at the origin for n ≥ 1.

Example 16 If f is a classical inner function in H2(Dd), then the weighted norm
⟨, ⋅, ⋅⟩ f coincides with the usual H2 norm, and the set of monomials {zk

1 z l
2}k , l∈N yields

orthogonal polynomials in the weighted space, all vanishing at the origin whenever
(k, l) ≠ (0, 0).

For weakly inner but not classically inner functions, one expects orthogonal
polynomials to exhibit a more complicated structure.

4.2 A class of weighted orthogonal polynomials

Our simple example f (z1 , z2) = 1 − az1z2 (a = 1 in the bidisk a =
√

2 in the 2-ball)
exhibits optimal approximants and orthogonal polynomials with interesting behavior.
As discussed in Examples 3 and 4, the optimal approximants to 1/ f contain only
monomials of the form (z1z2)n , that is, monomials on the main diagonal in Figure 1.
Because of this, not all of the orthogonal polynomials for the weight f can be
reconstructed from the optimal approximants for 1/ f . This is similar to the case of
a weakly inner function, but, in contrast, the differences of the optimal approximants
do give non-constant polynomials that are orthogonal, just not all the polynomials
needed to span the Pn . For instance, the polynomial χ1 = z1 cannot be expressed as a
linear combination of polynomials in z1z2.

Here, we assume the reproducing kernel Hilbert space H(Ω) discussed in Sec-
tion 2.1 has the additional property that the monomials are pairwise orthogonal. (The
Drury–Arveson space and each Dirichlet-type space have this property.) Exploiting
the diagonal structure in the monomial ordering allows us express the full collection of
orthogonal polynomials for a reproducing kernel Hilbert space weighted by a general
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polynomial in z1z2 (as in (4.1)) in terms of one-variable polynomials. We begin with
a lemma about the inner products of monomials in the weighted spaceH f .

Lemma 17 Let f (z1 , z2) = 1 + a1z1z2 + a2(z1z2)2 +⋯ + aN(z1z2)N be a polyno-
mial and let H be a reproducing kernel Hilbert space in which the monomials are
orthogonal. Consider H f , the space weighted by f with inner product ⟨g , h⟩H f ∶=
⟨g f , h f ⟩H. For nonnegative integers �1 ≤ k1, �2 ≤ k2, and for an integer J such that
0 ≤ J ≤ min(k1 , k2 , N),

⟨zk1
1 zk2

2 , z�1
1 z�2

2 ⟩ f =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N−J
∑
n=0

an an+J∥zk1+n
1 zk2+n

2 ∥2
f if �1 = k1 − J

�2 = k2 − J ,

0 otherwise.

Proof Expanding the inner product gives

⟨zk1
1 zk2

2 , z�1
1 z�2

2 ⟩ f = ⟨z
k1
1 zk2

2 f , z�1
1 z�2

2 f ⟩H

=
N
∑
m=0

N
∑
n=0

an am⟨zk1+n
1 zk2+n

2 , z�1+m
1 z�2+m

2 ⟩H .(4.5)

Because the monomials are orthogonal inH,

⟨zk1+n
1 zk2+n

2 , z�1+m
1 z�2+m

2 ⟩H =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∥zk1+n
1 zk2+n

2 ∥2
H if �1 + m = k1 + n

�2 + m = k2 + n ,

0 otherwise.

Since 0 ≤ �1 ≤ k1 and 0 ≤ �2 ≤ k2, there are integers J1, J2 such that 0 ≤ J1 ≤ k1 and 0 ≤
J2 ≤ k2 with �1 = k1 − J1 and �2 = k2 − J2. For each term of the sum, m − n is fixed, so
for the nonzero terms, where �1 + m = k1 + n and �2 + m = k2 + n,

J1 = k1 − �1 = m − n = k2 − �2 = J2 ,

so, let J = J1 = J2.
Then, the conditions for the inner product to be non zero,

�1 + m = k1 + n and �2 + m = k2 + n,

become m = n + J , and because 0 ≤ m, n ≤ N , ∣m − n∣ ≤ N , so J ≤ N . Finally, we can
rewrite (4.5) as

⟨zk1
1 zk2

2 , z�1
1 z�2

2 ⟩ f =
N
∑
m=0

N
∑
n=0

an am⟨zk1+n
1 zk2+n

2 , zk1−J+m
1 zk2−J+m

2 ⟩H

=
N−J
∑
n=0

an an+J∥zk1+n
1 zk2+n

2 ∥
2

f
,

when �1 = k1 − J and �2 = k2 − J . If these conditions do not hold, every term in the
sum (4.5) will be zero. ∎

We now give a structural description of the full family of orthogonal polynomials
for weights of the form f = ∑n

k=0 ak(z1z2)k . Here, we shall consider the monomials in
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degree lexicographic order:

χ0 = 1, χ1 = z1 , χ2 = z2 , χ3 = z2
1 , . . . ,

and polynomial subspaces Pn = span{χ0 , . . . , χn}. We let degz j
p denote the z j-

degree of a multivariable polynomial. We consider orthogonal polynomials {φk} for
H f , ordered so that span{φ0 , . . . , φn} = Pn , and we assume that degz1

φk = degz1
χk

and degz2
φk = degz2

χk , and that each φk is monic.

Theorem 18 For each N ∈ N0, let

M = max{degz1
φN , degz2

φN} −min{degz1
φN , degz2

φN}.

There exists a unique rN ∈ C[x] such that
(1) If degz1

φN ≥ degz2
φN , then φN = zM

1 rN(z1z2)
(2) If degz1

φN ≤ degz2
φN , then φN = zM

2 rN(z1z2).

The bidegree of each rN is implicit from degree lexicographical ordering.

Proof Without loss of generality, assume χN = zA
1 zB

2 where A ≥ B so that M = A− B.
When N = 0, χ0 = 1, so M = 0, and r0(x) = 1.

We proceed by induction on N: assume that the theorem holds for k < N , so that for
each such k, we have φk = zMk

1 rk(z1z2) or φk = zMk
2 rk(z1z2). By the Gram–Schmidt

process,

φN = zA
1 zB

2 −
N−1
∑
k=0

⟨zA
1 zB

2 , φk⟩ f

∥φk∥
2
f

φk .(4.6)

By Lemma 17, the inner products in (4.6) are zero except when φk contains a
monomial of the form zA−J

1 zB−J
2 for some J ≤ min{A, B}. This can be rewritten

zA−J
1 zB−J

2 = zB+M−J
1 zB−J

2 .(4.7)

Any φk that contains a term of the form (4.7) contains only monomials that can be
written as zM

1 (z1z2) j (by the inductive hypothesis). Therefore, every term of φN can
be written as zM

1 (z1z2) j , so φN = zM
1 rN(z1z2). ∎

Thus, determining two-variable orthogonal polynomials reduces to finding one-
variable polynomials, one family for each row in Figure 1. It is also apparent that all off-
diagonal orthogonal polynomials vanish at the origin, confirming what we had already
seen from forming successive differences of the corresponding optimal approximants.

In the particular caseH = H2 with weight f (z1 , z2) = 1 − z1z2, we obtain orthogo-
nal polynomials of a particularly attractive form: here, the rN(x) can be shown to be
the orthogonal polynomials in the one variable weight 1 − x, as in [40 , p. 86].

Corollary 19 For n = 0, 1, . . ., let

rn(x) = 1
n + 1

n
∑
k=0
(k + 1)zk .
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Then, the polynomials

φ(1)M ,m(z1 , z2) = zM
1 rm(z1z2) and φ(2)N ,n(z1 , z2) = zN

2 rn(z1z2),

with M , m, N , n ∈ N0, form an orthogonal basis for H2
1−z1 z2

(D2).

Proof It suffices to note that multiplication by z1 and by z2 is an isometry on H2(D2),
meaning that the orthogonality conditions along each row of Figure 1 reduce to a
condition for the main diagonal, where orthogonal polynomials can be recovered from
the optimal approximants to 1/(1 − z1z2). ∎

5 Zero sets and the Shanks conjecture

5.1 The Shanks conjecture

We turn to a discussion of zero sets of optimal approximants in several variables. It is
natural to ask whether optimal approximants inH(Ω) are zero-free in Ω. A variation
of this question is whether the assumption that f (z) ≠ 0 for z ∈ Ω implies that the
optimal approximants to 1/ f inherit the zero-free property.

The classical theory of orthogonal polynomials for L2 can be used to show that
optimal approximants in H2(D) are zero-free on the closed unit diskD for an arbitrary
target function f : this problem was addressed by Chui in [14]. In [8], an analogous
result was established for Dirichlet-type spaces Dα for α ≥ 0: if f ∈ Dα , f (0) ≠ 0, then
p∗n(z) ≠ 0 for all z ∈ D. By contrast, when α < 0, there are functions f ∈ Dα whose
optimal approximants vanish insideD; in fact, this can happen even for cyclic f, which
in particular means that f (z) ≠ 0 in D. However, the zero setsZ(p∗n) always omit a
disk D(0, r(α)) whose radius is strictly smaller than 1: it was shown in [8] that this
statement holds with r(α) = 2α/2. This was sharpened in the subsequent paper [7],
and a sharp estimate on r(α) was given for the Hardy space H2(D) and the Bergman
space A2(D).

As was explained in Section 2.5, nonvanishing of optimal approximants has rami-
fications for filter design, and zero set problems for optimal approximants in H2(D2)
have been investigated since the early 1970s. In their 1972 paper [38], Shanks et al.
conjectured that optimal approximants to 1/ f for any polynomial f would be zero-
free in the bidisk: in subsequent papers in the engineering community, this became
known as the Shanks conjecture.

A few years later, this strong version of the Shanks conjecture was disproved. In
[21], Genin and Kamp exhibited a counterexample, and in [22], a method to construct
polynomials yielding optimal approximants with zeros in the bidisk was presented.
For completeness, we present a simplified version of their counterexample.

Example 20 (Genin–Kamp [21]) Let

f (z1 , z2) = 1 − z1 − z2 − z2
1 + 4z1z2 − z2

2 + 2z3
1 − 2z2

1 z2 − 2z1z2
2

+ 2z3
2 − z3

1 z2 + 4z2
1 z2

2 − z1z3
2 − z3

1 z2
2 − z2

1 z3
2 .(5.1)
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For this polynomial, we have the optimal approximant

p∗2(z1 , z2) =
39

1165
+ 23

1165
z1 +

23
1165

z2

which vanishes in the bidisk, for instance at (z1 , z2) = ( 9
10 e3i , − 9

10 e3i − 39
23 ). Note that

the original function f also has zeros in the bidisk.

After the full Shanks conjecture had been disproved, efforts were made to prove
a weaker versions of the Shanks conjecture where nonvanishing of optimal approx-
imants in the bidisk is supposed to follow from additional assumptions on f. For
instance, Delsarte, Genin, and Kamp state a “weakest form of Shanks’ conjecture” in
[16] where nonvanishing of the target polynomial f on the closed bidisk D2 would
guarantee that the optimal approximants to 1/ f are zero-free in D2. An intermediate
version might be to ask that the polynomial f be cyclic in H2(D2) in order to ensure
that the optimal approximants p∗n have no zeros in D2; this, as shown in [29], is
equivalent to asking that f itself have no zeros in the open bidisk.

The paper [30] claimed to establish the weak Shanks conjecture of [16], but in [17],
Delsarte, Genin, and Kamp show that this purported proof fails. As far as the authors
are aware, the weak Shanks conjecture remains open for the Hardy space of the bidisk:

Conjecture 21 (Weakest form of the Shanks conjecture) Suppose f ∈ C[z1 , z2] satis-
fies f (z) ≠ 0 for z ∈ D2. Then, the H2(D2)-optimal approximants to 1/ f are zero-free
in D2.

We have not been able to settle the Shanks conjecture in its weakest form in H2.
However, we now demonstrate that it fails in other function spaces of the bidisk,
including the Bergman space A2(D2).

Example 22 (Counterexample to the Shanks conjecture for the Bergman space)
Consider the irreducible polynomial

b(z1 , z2) = −4 + 3z1 − z2
1 + 3z2 − 2z1z2 + z2

1 z2 − z2
2 + z1z2

2 .(5.2)

This polynomial is the denominator of a rational inner function in the bidisk con-
structed in [11], and hence it follows that b has no zeros in the bidisk and, in
particular, is a cyclic vector in the Bergman space A2(D), viz. [9]. However, b does
have a single boundary zero at (1, 1) ∈ T2. In fact, as is explained in [11], there are
general methods for constructing rational inner functions in two variables having
boundary singularities with prescribed properties. The denominator polynomials of
such rational inner functions often exhibit some interesting features, which led us to
consider them when searching for counterexamples.

The second nonconstant optimal approximant to 1/b can be computed,

p∗2 =
4

835
( − 1267

27
− 24z1 − 24z2),(5.3)

and has zeros inside the bidisk (see Figure 2).
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Figure 2: Solving (5.3) p∗2 (z1 , e i t) = 0 for z1 and plotting ∣z1 ∣ against t ∈ (0, 2π). Note that p∗2
is symmetric in z1 and z2 .

Figure 3: Facial zero sets of b̃.

We now dilate b to

b̃(z1 , z2) = b( 99
100

z1 , 99
100

z2).

Note that (as can be seen in Figure 3) the zeros of b̃ are now strictly outside the closed
bidisk.

However, the optimal approximant

p∗2 =
11316790431936000000000000
98483870117907418000870963

( − 5554782671089
2829197607984

− z1 − z2)(5.4)

has zeros inside the closed bidisk, as seen in Figure 4.

Remarks The same function b produces optimal approximants which vanish in the
bidisk for α1 = α2 = −.85. Similarly, choosing α1 = 0, α2 = −3, b also yields zeros in the
bidisk for p∗2 .
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Figure 4: Solving p∗2 (z1 , e i t) = 0 for z1 and plotting ∣z1 ∣ against t ∈ (0, 2π). Note that p∗2 is
symmetric in z1 and z2 .

5.2 Reproducing kernel methods

One faces several difficulties when seeking to extend the results of [14] and [7, 8]
on the location of zero sets of optimal approximants to function spaces in several
variables. Zeros of a polynomial, or indeed any holomorphic function of several
complex variables, are never isolated, and we no longer have access to the fundamental
theorem of algebra. We briefly revisit the reproducing kernel arguments in [8] in the
multi-variable setting to see how these facts block a straight-forward extension of the
proof.

Let p∗n be an optimal approximant to 1/ f in Dα1 ,α2 . Then, as is explained in
Section 2.1, we have

Kn(z, 0) = p∗n(z) f (z),

where Kn(⋅, 0) is the reproducing kernel at 0 for f ⋅Pn . Suppose for a moment that
p∗n is of the form

p∗n(z1 , z2) = (P(z1 , z2) −w0)Q(z1 , z2)

for some w0 ∈ C, some P ∈ C[z1 , z2] vanishing at the origin, and some Q ∈ C[z1 , z2].
We seek to determine some set K ⊂ Ω such that w0 − P(z) ≠ 0 for z ∈ K. As in [8,
Section 4], we can write

w0Q(z) f (z) = P(z)Q(z) f (z) −Kn(z, 0)

and since PQ f vanishes at the origin and is an element of f ⋅Pn , we get PQ f ⊥
Kn(⋅, 0) by appealing to the reproducing property of Kn(z, 0). This in turn implies
that

∣w0∣2∥Q f ∥2
H = ∥PQ f ∥2

H + ∥Kn(⋅, 0)∥2
H .

Since ∥Kn(⋅, 0)∥ ≥ 0, it follows that

∣w0∣2∥Q f ∥2 − ∥PQ f ∥2 ≥ 0.(5.5)
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Up to this point, the argument is identical to that in [8]. Now, in one variable, the
assumption that w0 ∈ C is a zero of p∗n allows us to take P(z) = z. In many function
spaces of interest, such as the Dirichlet spaces, one has ∥z f ∥ ≥ C(H)∥ f ∥ for some
easily computable constant C(H), and this allows us to conclude that from (5.5) that
∣w0∣2 − C(H)2 ≥ 0, thus obtaining a lower bound on the location of zeros of the one-
variable polynomial p∗n(z).

In several variables, there is no distinguished form of P, and even if we restrict
ourselves to some prescribed factor P, we are left with the task of estimating the ratio
∥PQ f ∥/∥Q f ∥ from below, and this does not seem like an easy task. Finally, assuming
a lower bound on ∣w0∣ is obtained in this way, we would in addition need to analyze
whether this lower bound places w0 outside the range of P(z) on some subset D2.

We do obtain the following, again by leveraging one-variable arguments.

Lemma 23 Let p∗n be an optimal approximant to 1/ f in Dα1 ,α2 and suppose p∗n(z) =
(w0 − z1z2)Q(z) for some Q ∈ C[z1 , z2] with Q(z) ≠ 0 for z ∈ D2.

If α1 ≥ 0 and α2 ≥ 0, then p∗n does not vanish in the bidisk. If α1 < 0 and α2 < 0, then
p∗n does not vanish in D(0, 2(α1+α2)/2) × D(0, 2(α1+α2)/2).

One can imagine variations of the above argument for other special factors such as
P(z1 , z2) = z1, but it would clearly be desirable to find a general methods for analyzing
zero sets of optimal approximants in several variables.

Question 24 Let {p∗n} be optimal approximants to f ∈ Dα/{0}. Is there a compact
set K ⊂ D2 such that p∗n(z) ≠ 0 for z ∈ K and all n?

Similarly, if {p∗n} are optimal approximants to f ∈ H2
d , is there a compact set K ⊂

B
d such that p∗n(z) ≠ 0 for z ∈ K and all n?

6 Explicit computations for f = 1 − a(z1 + z2)

In this section, we record some observations concerning optimal approximants and
orthogonal polynomials associated with a polynomial that vanishes at a single bound-
ary point. More precisely, we consider f = 1 − a(z1 + z2) which can be viewed as a
natural analog of the classical one-variable weight 1 − z. In the case of the Drury–
Arveson space H2

2 in B2, we take a = 1√
2 and are able to exhibit closed formulas for

some of the optimal approximants. Then, we turn to the bidisk, set a = 1/2, compute
some low-degree optimal approximants and orthogonal polynomials for Dirichlet-
type spaces, and note that the situation is more complicated. This gives an example
where the ball and bidisk theories are different. In Section 2, we were able to use a
diagonal embedding to handle both B2 and D2, but here, we exploit the fact that the
ball, unlike the bidisk, is invariant under unitary transformations.

Throughout, we use degree lexicographical ordering, as in Section 2.2.

6.1 Optimal approximants and orthogonal polynomials for H2
2

Consider f (z1 , z2) = 1 − 1√
2 (z1 + z2), which vanishes at ( 1√

2 , 1√
2 ) in the unit sphere

S
2. Using the Grammian method described in Section 2.3, we compute the first
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optimal approximants for 1/ f :

p∗0 =
1
2

p∗1 =
1

12
(7 + 2

√
2z1)

p∗2 =
1
6
(4 +

√
2z1 +

√
2z2)

p∗3 =
1

48
(33 + 10

√
2z1 + 8

√
2z2 + 6z2

1 )

p∗4 =
1

48
(35 + 12

√
2z1 + 10

√
2z2 + 6z2

1 + 12z1z2)

p∗5 =
1
8
(6 + 2

√
2z1 + 2

√
2z2 + z2

1 + 2z1z2 + z2
2).

From these, we can compute orthogonal polynomials in the weighted space as dis-
cussed in Section 4.1:

ϕ0 = 1

ϕ1 =
1

12
(1 + 2

√
2z1)

ϕ2 =
1

12
(1 + 2

√
2z2)

ϕ3 =
1

48
(1 + 2

√
2z1 + 3z2

1 )

ϕ4 =
1

24
(1 +

√
2z1 +

√
2z2 + 6z1z2)

ϕ5 =
1

48
(1 + 2

√
2z2 + 3z2

2)

ϕ6 =
1

160
(1 + 2

√
2z1 + 6z2

1 + 8
√

2z3
1 )

ϕ7 =
3

160
+ 1

40
√

2z1 +
1

80
√

2z2 +
3

80
z2

1 +
3

40
z1z2 +

3
20
√

2z2
1 z2

ϕ8 =
3

160
+ 1

80
√

2z1 +
1

40
√

2z2 +
3

40
z1z2 +

3
80

z2
2 +

3
20
√

2z1z2
2

ϕ9 =
1

160
+ 1

80
√

2z2 +
3

80
z2

2 +
1

20
√

2z3
2 .

The appearances of p∗2 and p∗5 are easy to explain.

Proposition 25 Let N ∈ N be such that PN contains all two-variable monomials of
total degree n, and no monomials of total degree n + 1.

Then, the Nth optimal approximant to 1/(1 − 1√
2 (z1 + z2)) is given by

p∗N(z1 , z2) = rN(
z1 + z2√

2
),

where rn(x) = 1
n+1 ∑

n
k=0(k + 1)zk .
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Proof Let

U = 1√
2
( 1 1
−1 1 ) ∈ U2(C)

act on C2 by left multiplication and note that

f = F ○U ,

where F = 1 − z1. Now let p ∈ PN . Since p∗N defined above is in PN , we can write p =
p∗N + (p − p∗N) = Q1 + Q2, and using the invariance of the H2

2-norm under unitaries,
we obtain

∥p f − 1∥H2
2
= ∥Q1 f − 1 + Q2 f ∥H2

2
= ∥rN F − 1 + (Q2 ○U−1) ⋅ F∥H2

2
;

note that rn and F are one-variable functions. Since monomials are orthogonal in H2
2 ,

we obtain a lower bound by stripping out contributions that do not only depend on z1:

∥p f − 1∥H2
2
≥ ∥rN F − 1 + (Q2 ○U−1)(⋅, 0) ⋅ F∥H2

2
.

Since rN is the Nth order optimal approximant to 1/F in the Hardy space H2(D), and
since the H2

2-norm restricted to functions of z1 only reduces to the one-variable Hardy
norm, the norm on the right is bounded below by ∥rN F − 1∥H2 . In the above argument,
we have equality throughout provided Q2 = 0, and the result now follows. ∎

As a corollary, we get from the one-variable results in [3, 20] that f = 1 − 1√
2 (z1 +

z2) is cyclic in the Drury–Arveson space, with distance estimate

νN(1 − (z1 + z2)/
√

2, H2
2) ≍

1
N + 1

.

By contrast, in Example 6, we noted that

ν⊘N(1 −
√

2z1z2 , H2
2) ≍

1√
N + 1

.

This seems to suggest that having a bigger boundary zero set may increase the optimal
distance of a polynomial (cf. the discussion in [4, Section 5]).

A more comprehensive study of polynomials in the ball associated with f = 1 −
1√
2 (z1 + z2), including a full determination of H2

2-optimal approximants and orthog-
onal polynomials, is presented in [35].

6.2 Optimal approximants and orthogonal polynomials for Dα

We now turn to the bidisk and f (z1 , z2) = 2 − z1 − z2, and present some optimal
approximants for 1/ f in three Dirichlet-type spaces.

Remarks (Negative coefficients) Even for this simple target function, for higher
order approximants, some coefficients are negative. This is in contrast to the one
variable situation with f (z) = (1 − z)a , a ≥ 0 real, where coefficients of the optimal
approximants can be found as positively weighted sums of the Taylor coefficients of
1/ f . (Explicit computation of optimal approximants for f (z) = (1 − z)a can be found
in [3, 7].)
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As observed below, there appears to be a relationship between the value of α and
the first p∗n in which negative coefficients appear; roughly that more Dirichlet-like
spaces (α > 0) have negative coefficients appearing sooner and that more Bergman-
like spaces (α < 0) have them occurring later, although we have not carefully examined
this.

Example 26 (The Hardy Space, α = 0) Again using Grammians, we begin by
computing some optimal approximants. Interestingly, while the z5

1 coefficient in p∗20
is negative, the z5

1 coefficient is positive when that term first appears in p∗15, and is first
negative in p∗17.

p∗0 =
1
3

p∗1 =
1
8
(3 + z1)

p∗2 =
1

17
(7 + 2z1 + 2z2)

p∗3 =
1

223
(93 + 30z1 + 26z2 + 10z2

1 )

p∗4 =
1

2039
(897 + 342z1 + 310z2 + 80z2

1 + 204z1z2)

p∗5 =
1

205
(91 + 34z1 + 34z2 + 8z2

1 + 20z1z2 + 8z2
2)

⋮
p∗20 = 0.4767094 + 0.2150641z1 + 0.2150641z2 + 0.08684609z2

1

+ 0.1891688z1z2 + 0.08684609z2
2 + 0.02794644z3

1 + 0.1121122z2
1 z2

+ 0.1121122z1z2
2 + 0.02794644z3

2 + 0.005193106z4
1 + 0.04785621z3

1 z2

+ 0.08249469z2
1 z2

2 + 0.04785621z1z3
2 + 0.005193106z4

2

+ (−0.0002349534)z5
1 + 0.01179593z4

1 z2 + 0.03555798z3
1 z2

2

+ 0.03555798z2
1 z3

2 + 0.01179593z1z4
2 + (−0.0002349534)z5

2

We next compute orthogonal polynomials in the corresponding weighted space, again
as discussed in Section 4.1.

ϕ0 = 1

ϕ1 =
1

24
(1 + 3z1)

ϕ2 =
1

136
(5 − z1 + 16z2)

ϕ3 =
2

3791
(10 + 32z1 − 2z2 + 85z2

1 )

ϕ4 =
6

454697
(1734 + 2516z1 + 2686z2 − 425z2

1 + 7582z1z2)

ϕ5 =
4

417995
(416 − 187z1 + 1444z2 − 22z2

1 − 260z1z2 + 4078z2
2)
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Example 27 (The Dirichlet Space, α = 1) Again, we compute optimal approximants
to 1/ f where f (z1 , z2) = 2 − z1 − z2. The negative coefficients appear sooner here, with
the z3

1 term being negative first in p∗8 , although it is positive when it first appears
in p∗6 .

p∗0 =
1
4

p∗1 =
1

52
(15 + 4z1)

p∗2 =
1

60
(19 + 4z1 + 4z2)

p∗3 =
1

6324
(2029 + 484z1 + 412z2 + 132z2

1 )

p∗4 =
1

60260
(20941 + 6092z1 + 5660z2 + 792z2

1 + 3188z1z2)

p∗5 =
1

1372
(479 + 136z1 + 136z2 + 18z2

1 + 70z1z2 + 18z2
2)

⋮
p∗9 = 0.368042 + 0.118042z1 + 0.118042z2 + 0.0242648z2

1 + 0.0781293z1z2

+ 0.0242648z2
2 + (−0.0000894141)z3

1 + 0.0245889z2
1 z2

+ 0.0245889z1z2
2 + (−0.0000894141)z3

2

The first few corresponding orthogonal polynomials are

ϕ0 = 1

ϕ1 =
1

26
(1 + 2z1)

ϕ2 =
1

390
(11 − 4z1 + 26z2)

ϕ3 =
1

2635
(11 + 26z1 − 4z2 + 55z2

1 )

ϕ4 =
1

23817765
(635209 + 584998z1 + 685420z2 − 184107z2

1 + 1260057z1z2)

ϕ5 =
1

10334590
(16686 − 20358z1 + 53730z2 − 243z2

1 − 19467z1z2 + 135585z2
2).

Example 28 (The Bergman Space, α = −1) For f (z1 , z2) = 2 − z1 − z2, in the
Bergman space, the first occurrence of a negative coefficient is for the z9

1 coefficient
in p∗47, although similarly to the previous cases, the z9

1 coefficient is positive when
it first appears in p∗45. In p∗54 where the z9

2 term first appears, its coefficient is also
negative. We only present the first few optimal approximants for 1/ f , as the 47th or
54th polynomials are prohibitively long.

p∗0 =
2
5

p∗1 =
1

143
(62 + 24z1)
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p∗2 =
1

73
(34 + 12z1 + 12z2)

p∗3 =
1

9587
(4502 + 1764z1 + 1572z2 + 672z2

1 )

p∗4 =
1

16211
(7802 + 3450z1 + 3138z2 + 1092z2

1 + 2334z1z2)

p∗5 =
1

1547
(750 + 328z1 + 328z2 + 104z2

1 + 220z1z2 + 104z2
2)

From these, we can find the orthogonal polynomials.

ϕ0 = 1

ϕ1 =
24
715

(1 + 5z1)

ϕ2 =
12

10439
(28 − 3z1 + 143z2)

ϕ3 =
2688

699851
(+ 13728

699851
z1 −

288
699851

z2 +
672

9587
z2

1 )

ϕ4 =
6

155414857
(302642 + 746491z1 + 766719z2 − 70798z2

1 + 3729343z1z2)

ϕ5 =
2

148393
(262 − 59z1 + 1369z2 − 10z2

1 − 131z1z2 + 4988z2
2)

We hope to further explore optimal approximants and orthogonal polynomials in
several variables, including the examples in this subsection, in a systematic way in
future work.
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