
JFP 13 (1): 199–204, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S0956796803002211 Printed in the United Kingdom

Chapter 20

Monad Utilities

module Monad (
MonadPlus(mzero, mplus),
join, guard, when, unless, ap,
msum,
filterM, mapAndUnzipM, zipWithM, zipWithM_, foldM,
liftM, liftM2, liftM3, liftM4, liftM5,

-- ...and what the Prelude exports
Monad((>>=), (>>), return, fail),
Functor(fmap),
mapM, mapM_, sequence, sequence_, (=<<),
) where

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

join :: Monad m => m (m a) -> m a
guard :: MonadPlus m => Bool -> m ()
when :: Monad m => Bool -> m () -> m ()
unless :: Monad m => Bool -> m () -> m ()
ap :: Monad m => m (a -> b) -> m a -> m b

mapAndUnzipM :: Monad m => (a -> m (b,c)) -> [a] -> m ([b], [c])
zipWithM :: Monad m => (a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM_ :: Monad m => (a -> b -> m c) -> [a] -> [b] -> m ()
foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]

199

https://doi.org/10.1017/S0956796803002211 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002211


200 CHAPTER 20. MONAD UTILITIES

msum :: MonadPlus m => [m a] -> m a

liftM :: Monad m => (a -> b) -> (m a -> m b)
liftM2 :: Monad m => (a -> b -> c) -> (m a -> m b -> m c)
liftM3 :: Monad m => (a -> b -> c -> d) ->

(m a -> m b -> m c -> m d)
liftM4 :: Monad m => (a -> b -> c -> d -> e) ->

(m a -> m b -> m c -> m d -> m e)
liftM5 :: Monad m => (a -> b -> c -> d -> e -> f) ->

(m a -> m b -> m c -> m d -> m e -> m f)

The Monad library defines the MonadPlus class, and provides some useful operations on monads.

20.1 Naming Conventions

The functions in this library use the following naming conventions:

� A postfix “M” always stands for a function in the Kleisli category: m is added to function
results (modulo currying) and nowhere else. So, for example,

filter :: (a -> Bool) -> [a] -> [a]
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]

� A postfix “_” changes the result type from (m a) to (m ()). Thus (in the Prelude):

sequence :: Monad m => [m a] -> m [a]
sequence_ :: Monad m => [m a] -> m ()

� A prefix “m” generalises an existing function to a monadic form. Thus, for example:

sum :: Num a => [a] -> a
msum :: MonadPlus m => [m a] -> m a

20.2 Class MonadPlus

The MonadPlus class is defined as follows:

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

The class methods mzero and mplus are the zero and plus of the monad.

https://doi.org/10.1017/S0956796803002211 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002211


20.3. FUNCTIONS 201

Lists and the Maybe type are instances of MonadPlus, thus:

instance MonadPlus Maybe where
mzero = Nothing
Nothing ‘mplus‘ ys = ys
xs ‘mplus‘ ys = xs

instance MonadPlus [] where
mzero = []
mplus = (++)

20.3 Functions

The join function is the conventional monad join operator. It is used to remove one level of
monadic structure, projecting its bound argument into the outer level.

The mapAndUnzipM function maps its first argument over a list, returning the result as a pair of
lists. This function is mainly used with complicated data structures or a state-transforming monad.

The zipWithM function generalises zipWith to arbitrary monads. For instance the following
function displays a file, prefixing each line with its line number,

listFile :: String -> IO ()
listFile nm =
do cts <- readFile nm

zipWithM_ (\i line -> do putStr (show i); putStr ": "; putStrLn line)
[1..]
(lines cts)

The foldM function is analogous to foldl, except that its result is encapsulated in a monad. Note
that foldM works from left-to-right over the list arguments. This could be an issue where (>>)
and the “folded function” are not commutative.

foldM f a1 [x1, x2, ..., xm ]
==

do
a2 <- f a1 x1
a3 <- f a2 x2
...
f am xm

If right-to-left evaluation is required, the input list should be reversed.

The when and unless functions provide conditional execution of monadic expressions. For ex-
ample,

https://doi.org/10.1017/S0956796803002211 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002211


202 CHAPTER 20. MONAD UTILITIES

when debug (putStr "Debugging\n")

will output the string "Debugging\n" if the Boolean value debug is True, and otherwise do
nothing.

The monadic lifting operators promote a function to a monad. The function arguments are scanned
left to right. For example,

liftM2 (+) [0,1] [0,2] = [0,2,1,3]
liftM2 (+) (Just 1) Nothing = Nothing

In many situations, the liftM operations can be replaced by uses of ap, which promotes function
application.

return f ‘ap‘ x1 ‘ap‘ ... ‘ap‘ xn

is equivalent to

liftMn f x1 x2 ... xn

20.4 Library Monad

module Monad (
MonadPlus(mzero, mplus),
join, guard, when, unless, ap,
msum,
filterM, mapAndUnzipM, zipWithM, zipWithM_, foldM,
liftM, liftM2, liftM3, liftM4, liftM5,

-- ...and what the Prelude exports
Monad((>>=), (>>), return, fail),
Functor(fmap),
mapM, mapM_, sequence, sequence_, (=<<),
) where

-- The MonadPlus class definition

class (Monad m) => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

-- Instances of MonadPlus

instance MonadPlus Maybe where
mzero = Nothing

Nothing ‘mplus‘ ys = ys
xs ‘mplus‘ ys = xs

instance MonadPlus [] where
mzero = []
mplus = (++)

https://doi.org/10.1017/S0956796803002211 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002211


20.4. LIBRARY MONAD 203

-- Functions

msum :: MonadPlus m => [m a] -> m a
msum xs = foldr mplus mzero xs

join :: (Monad m) => m (m a) -> m a
join x = x >>= id

when :: (Monad m) => Bool -> m () -> m ()
when p s = if p then s else return ()

unless :: (Monad m) => Bool -> m () -> m ()
unless p s = when (not p) s

ap :: (Monad m) => m (a -> b) -> m a -> m b
ap = liftM2 ($)

guard :: MonadPlus m => Bool -> m ()
guard p = if p then return () else mzero

mapAndUnzipM :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
mapAndUnzipM f xs = sequence (map f xs) >>= return . unzip

zipWithM :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM f xs ys = sequence (zipWith f xs ys)

zipWithM_ :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ f xs ys = sequence_ (zipWith f xs ys)

foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
foldM f a [] = return a
foldM f a (x:xs) = f a x >>= \ y -> foldM f y xs

filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
filterM p [] = return []
filterM p (x:xs) = do { b <- p x;

ys <- filterM p xs;
return (if b then (x:ys) else ys)

}

liftM :: (Monad m) => (a -> b) -> (m a -> m b)
liftM f = \a -> do { a’ <- a; return (f a’) }

liftM2 :: (Monad m) => (a -> b -> c) -> (m a -> m b -> m c)
liftM2 f = \a b -> do { a’ <- a; b’ <- b; return (f a’ b’) }

liftM3 :: (Monad m) => (a -> b -> c -> d) ->
(m a -> m b -> m c -> m d)

liftM3 f = \a b c -> do { a’ <- a; b’ <- b; c’ <- c;
return (f a’ b’ c’) }

liftM4 :: (Monad m) => (a -> b -> c -> d -> e) ->
(m a -> m b -> m c -> m d -> m e)

liftM4 f = \a b c d -> do { a’ <- a; b’ <- b; c’ <- c; d’ <- d;
return (f a’ b’ c’ d’) }

liftM5 :: (Monad m) => (a -> b -> c -> d -> e -> f) ->
(m a -> m b -> m c -> m d -> m e -> m f)

liftM5 f = \a b c d e -> do { a’ <- a; b’ <- b; c’ <- c; d’ <- d;
e’ <- e; return (f a’ b’ c’ d’ e’) }

https://doi.org/10.1017/S0956796803002211 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002211


 

https://doi.org/10.1017/S0956796803002211 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002211

