J. Austral. Math. Soc. 22 (Series A) (1976), 371-379.

COMPATIBLE TIGHT RIESZ ORDERS ON C(X)

ELIZABETH LOCI

(Received 10 March 1975; revised 16 September 1975)

Abstract

The pointwise order makes the group C(X) of continuous real-valued functions on a topological space X a lattice-ordered group. We give a characterization of the compatible tight Riesz orders on C(X), and also of their maximal tangents, in terms of the zero-sets of X. The space of maximal tangents of a given compatible tight Riesz order T is studied, and consequently the concept of the T-radical of C(X) is introduced, the T-radical being the intersection of all the maximal tangents of T.

Introduction

Given a topological space X we denote by C(X) the set of continuous real-valued functions on X. If C(X) is equipped with the following order

 $f \ge 0$ if $f(x) \ge 0$ for all $x \in X$

then it becomes an abelian lattice-ordered group with

$$f \wedge g(x) = \min \{f(x), g(x)\}$$
$$f \vee g(x) = \max \{f(x), g(x)\}.$$

In order to obtain the compatible tight Riesz orders on C(X), we make use of the following result due essentially to Wirth (1973). A compatible tight Riesz order on a lattice-ordered group (G, \leq) is determined by (and determines) a subset T of the positive set $G^+ = \{x \in G : 0 \leq x\}$ of G satisfying the following conditions:

(1) T is a proper dual-ideal of G^+

- (2) T is normal in G
- (3) T = T + T

(4) $0 \le n \ x \le y$ for all positive integers *n*, for all $y \in T$, implies x = 0. In the case of C(X) we can modify the above result, since, C(X) abelian implies (2) holds for all subsets *T* of $C^+(X)$, \mathbb{R} archimedean implies (4) holds for all Elizabeth Loci

subsets T of $C^+(X)$ and C(X) divisible makes (3) easier to check. We have then that the compatible tight Riesz orders on C(X) are determined by (and determine) proper dual-ideals T of $C^+(X)$ satisfying T = T + T. By an abuse of language we shall call each such dual-ideal T a compatible tight Riesz order on C(X).

With each compatible tight Riesz order T on C(X) we associate *tangents* [cf. Miller (1973)] i.e. convex sublattice subgroups of C(X) not meeting T and *maximal tangents* i.e. convex sublattice subgroups of C(X) that are maximal with respect to not meeting T. Each maximal tangent M of T satisfies the further condition $-f \land g \in M$ implies $f \in M$ or $g \in M$ — i.e. each maximal tangent is a *prime subgroup* of C(X). Finally, if C(X) is given the open-interval topology generated by the compatible tight Riesz order T, then every tangent of T is closed.

Zero-set characterization of compatible tight Riesz orders

We proceed in analogy to Gillman and Jerison (1960).

Given $f \in C(X)$, the set $\{x \in X : f(x) = 0\}$ is called the *zero-set* of f, and will be denoted by Z(f). Any set that is a zero-set of some function in C(X) is called a zero-set in X, and we denote the set of all zero-sets in X by Z(X). Now

$$Z(f) \cup Z(g) = Z(|f|) \cup Z(|g|) = Z(|f| \land |g|)$$

and

$$Z(f) \cap Z(g) = Z(|f|) \cap Z(|g|) = Z(|f| \vee |g|)$$

whence Z(X) is closed under finite unions and intersections. Thus Z(X), ordered by inclusion, is a lattice, and we make the following (usual) definitions –

A non-empty subfamily \mathcal{F} of Z(X) is called a Z-ideal provided that:

(1) if Z₁, Z₂∈ ℱ then Z₁ ∪ Z₂∈ ℱ
(2) if Z ∈ ℱ, Z' ∈ Z(X) and Z ⊃ Z' then Z' ∈ ℱ
If in addition
(3) X∉ ℱ
then ℱ is a proper Z-ideal.
A non-empty subfamily 𝔅 of Z(X) is called a Z-filter provided that:
(1) if Z₁, Z₂ ∈ 𝔅 then Z₁ ∩ Z₂ ∈ 𝔅
(2) if Z ∈ 𝔅, Z' ∈ Z(X) and Z' ⊃ Z then Z' ∈ 𝔅.
If in addition
(3) □ ∉ 𝔅
then 𝔅 is a proper Z-filter.

Throughout this paper we will assume all Z-ideals and Z-filters to be proper.

Riesz orders

THEOREM 1. (a) If T is a proper dual-ideal of $C^+(X)$, then the family

 $Z[T] = \{Z(f): f \in T\}$

is a Z-ideal.

(b) If \mathcal{F} is a Z-ideal then the family

$$Z \leftarrow [\mathscr{F}]^* = \{ |f| : Z(f) \in \mathscr{F} \}$$

is a proper dual-ideal of $C^+(X)$.

PROOF. (a) 1. Let $Z_1, Z_2 \in Z[T]$. Choose $f_1, f_2 \in T$ satisfying $Z_1 = Z(f_1)$, $Z_2 = Z(f_2)$, then since $f_1, f_2 \in C^+(X)$ we have $Z(f_1) \cup Z(f_2) = Z(f_1 \land f_2)$, and since T is a dual-ideal, $f_1 \land f_2 \in T$. Thus $Z_1 \cup Z_2 \in Z[T]$.

2. Let $Z \in Z[T]$ and $Z' \in Z(X)$ with $Z \supset Z'$. Choose $f \in T$ and $f' \in C(X)$ satisfying Z = Z(f), Z' = Z(f') = Z(|f'|). Then $Z(f) \supset Z(|f'|)$ whence $Z(f \lor |f'|) = Z(f) \cap Z(|f'|) = Z(|f'|) = Z'$. But $f \le f \lor |f'|$ implies $f \lor |f'| \in T$, thus $Z' \in Z[T]$.

3. T proper implies $0 \notin T$ implies $X \notin Z[T]$.

(b) 1. Let f = |f|, $g = |g| \in \mathbb{Z} \leftarrow [\mathcal{F}]^*$. Then $f \land g = |f \land g|$ and $Z(f \land g) = Z(f) \cup Z(g) \in \mathcal{F}$ whence $f \land g \in \mathbb{Z} \leftarrow [\mathcal{F}]^*$.

2. Let $f = |f| \in \mathbb{Z} \leftarrow [\mathscr{F}]^*$ and let $g \in C(X)$ satisfy $f \leq g$, whence $g \in C^*(X)^*(X)$. Now $f, g \in C^*(X), f \leq g$ imply $Z(f) \supset Z(g)$ whence $Z(g) \in \mathscr{F}$. Thus $g = |g| \in \mathbb{Z} \leftarrow [\mathscr{F}]^*$.

3. $X \notin \mathcal{F}$ implies $0 \notin Z \leftarrow [\mathcal{F}]^*$.

It is worth noting that since C(X) is divisible we have that Z(f) = Z(f/2)for all $f \in C(X)$. In particular then, given \mathscr{F} a Z-ideal and $f = |f| \in Z \leftarrow [\mathscr{F}]^*$ we have $f/2 \in Z \leftarrow [\mathscr{F}]^*$. Thus, Theorem 1 may be read with 'compatible tight Riesz order on C(X)' for 'proper dual-ideal of $C^*(X)$ '.

Clearly we have the following relationships

 $Z[Z \leftarrow [\mathcal{F}]^*] = \mathcal{F}$

and

$$Z \leftarrow [Z[T]]^* \supset T$$

for all Z-ideals \mathscr{F} and compatible tight Riesz orders T. A compatible tight Riesz order T satisfying $Z \leftarrow [Z[T]]^* = T$ will be called an *algebraic* tight Riesz order.

If \mathscr{F} is a Z-ideal then $Z \leftarrow [\mathscr{F}]^*$ is an algebraic tight Riesz order. Every maximal compatible tight Riesz order is algebraic.

Using the term adjunction in the sense of MacLane (1971), we may restate our previous results as follows:

Elizabeth Loci

THEOREM 2. There is an adjunction $Z \vdash Z \leftarrow^*$ from the set of compatible tight Riesz orders on C(X), ordered by inclusion, to the set of Z-ideals of Z(X), ordered by inclusion, such that the algebras for this adjunction are just the algebraic tight Riesz orders.

COROLLARY 3. The unique minimal algebraic tight Riesz order is $T_0 = \{f \in C(X): f(x) > 0 \text{ for all } x \in X\}.$

PROOF. The unique minimal Z-ideal is $\{\Box\}$ and $Z \leftarrow [\{\Box\}]^* = T_0$.

COROLLARY 4. T_0 is contained in every algebraic tight Riesz order.

Corollaries 3 and 4 are in fact special cases of a result of Wirth (1973, Lemma 4).

THEOREM 5. If T is an algebraic tight Riesz order on C(X) there is an adjunction $Z^T \vdash Z \leftarrow^{*T}$ from the set of convex sublattice subgroups of C(X) not meeting T, ordered by inclusion, to the set of Z-filters of Z(X) not meeting Z[T], ordered by inclusion, such that the algebras for this adjunction include the maximal tangents of T.

PROOF. Let T be an algebraic tight Riesz order and G a convex sublattice subgroup (vector lattice ideal) of C(X) not meeting T. Consider Z[G]. (1) $\Box \notin Z[G]$, for suppose otherwise, then there exists $f \in G$ such that $f(x) \neq 0$ for all $x \in X$ i.e. $|f| \in G \cap T_0$, a contradiction, since by Corollary 4, $T_0 \subset T$. (2) Let $Z_1, Z_2 \in Z[G]$. Choose $f, g \in G \cap C^+(X)$ such that $Z_1 = Z(f)$ and $Z_2 = Z(g)$. Then $Z_1 \cap Z_2 = Z(f \lor g) \in Z[G]$ since G is a sublattice. Thus Z[G] is a filterbase and we denote the Z-filter generated by Z[G] by $Z[G]^T$, i.e. $Z[G]^T = \{Z \in Z(X): Z \supset Z(f) \text{ for some } f \in G\}$. Suppose $Z[G]^T$ meets Z[T]. Then there exists $f \in T$, $g \in G$ such that $Z(f) \supset Z(g)$. But T an algebraic tight Riesz order and $Z(f) \supset Z(g)$ imply $|g| \in T$, i.e. $|g| \in G \cap T$, a contradiction. Thus $Z[G]^T$ is a Z-filter potential Z[T].

Conversely, let \mathscr{F} be a Z-filter not meeting Z[T]. Consider $N = Z \leftarrow [\mathscr{F}]^*$. (1) Given $g \in N$ and $0 \leq f \leq g$ we have $Z(f) \supset Z(g)$ whence $Z(f) \in \mathscr{F}$, i.e. N is convex.

(2) Given $f, g \in N$ we have that $f \wedge g \in N$ since $Z(f \wedge g) = Z(f) \cup Z(g)$ $\supset Z(g) \in \mathcal{F}$ and that $f \vee g \in N$ since $Z(f \vee g) = Z(f) \cap Z(g) \in \mathcal{F}$. Thus N is a sublattice.

(3) Moreover (N, +) is a subsemigroup of C(X), since given $f, g \in N$ we have $Z(f+g) = Z(f) \cap Z(g) \in \mathcal{F}$.

(4) $N \cap T = \Box$ for if $f \in N \cap T$ then $Z(f) \in \mathscr{F} \cap Z[T]$, a contradiction. Thus N is a convex sublattice subsemigroup not meeting T. Remembering that every directed subgroup is generated by its positive elements we have that $Z \leftarrow [\mathscr{F}]^{*T} = \{f - g : f, g \in N\}$ is a convex sublattice subgroup not meeting T.

Recall that $Z \leftarrow [Z[T']]^* \supset T'$ for all dual-ideals T' of $C^+(X)$. Similarly $Z \leftarrow [Z[G]]^{*^T} \supset G$ for all convex sublattice subgroups of C(X) not meeting T. Thus $Z \leftarrow [Z[M]]^{*^T} = M$ for all maximal tangents of T.

COROLLARY 6. If T is an algebraic tight Riesz order on C(X) there is a one-one correspondence between maximal tangents of T and Z-filters maximal with respect to not meeting Z[T].

The following result is due to Gillman and Jerison (1960),

THEOREM 7. If \mathscr{F} is a Z-filter, then the family $Z \leftarrow [\mathscr{F}] = \{f : Z(f) \in \mathscr{F}\}$ is a ring-ideal of C(X).

Using this criterion for obtaining ring-ideals of C(X) we prove the following:

THEOREM 8. If \mathbf{F} is an algebraic tight Riesz order then each maximal tangent of T is a ring-ideal of C(X).

PROOF. Let T be an algebraic tight Riesz order and let M be a maximal tangent of T. Corollary 6 tells us that $Z[M]^T = \{Z \in Z(X): Z \supset Z(f) \text{ for some } f \in M\}$ is a Z-filter and moreover that Z(g) = Z(f) for some $f \in M$ implies $|g| \in M$.

Consider
$$Z \leftarrow [Z[M]^T] = \{g : Z(g) \supset Z(f) \text{ for some } f \in M\}$$
. Now
 $g \in Z \leftarrow [Z[M]^T] \Rightarrow Z(|g|) \cap Z(|f|) = Z(f) \text{ for some } f \in M$
 $\Rightarrow |g| \lor |f| \in M$
 $\Rightarrow |g| \text{ whence } g \in M, M \text{ a convex subgroup.}$

Thus $Z \leftarrow [Z[M]^T] \subset M$. The converse is trivially true, so by Theorem 7, M is a ring-ideal of C(X).

Given T an algebraic tight Riesz order on C(X) we define the T-radical of C(X) to be the intersection of all the maximal tangents of T. Clearly the T-radical of C(X) is a ring-ideal of C(X).

The space of maximal tangents of an algebraic tight Riesz order

Let T be an algebraic tight Riesz order. The set of all maximal tangents of T is denoted by Max (T). Given $f \in C^+(X)$ define

$$U(f) = \{ M \in \operatorname{Max}(T) : f \notin M \}.$$

Then we have the following:

LEMMA 9. $\{U(f) : f \in C^+(X)\}$ is a base topology, say U, on Max(T).

Elizabeth Loci

PROOF. (1) $f \in T$ implies U(f) = Max(T), so that $Max(T) = \bigcup \{U(f): f \in C^+(X)\}$.

(2) Let $M \in Max(T)$, and $f_1, f_2 \in C^+(X)$. Now $f_1 \in M$ or $f_2 \in M$ implies $f_1 \wedge f_2 \in M$ (*M* convex) whence $f_1 \wedge f_2 \notin M$ implies $f_1 \notin M$ and $f_2 \notin M$, i.e. $U(f_1 \wedge f_2) \subseteq U(f_1) \cap U(f_2)$. Conversely, $f_1 \wedge f_2 \in M$ implies $f_1 \in M$ or $f_2 \in M$ (*M* prime) whence $f_1 \notin M$ and $f_2 \notin M$ imply $f_1 \wedge f_2 \notin M$, i.e. $U(f_1) \cap U(f_2) \subset$ $U(f_1 \wedge f_2)$.

Thus $U(f_1) \cap U(f_2) = U(f_1 \wedge f_2)$.

Similarly to (2) in the above proof we can show $U(f_1) \cup U(f_2) = U(f_1 \vee f_2)$.

PROPOSITION 10. (Max (T), U) is a T_1 -space.

PROOF. Let M_1 and M_2 be distinct members of Max(T). Then there exist $f_1 \in (M_2 \cap C^+(X)) \setminus M_1$ and $f_2 \in (M_1 \cap C^+(X)) \setminus M_2$, i.e. $M_1 \in U(f_1)$, $M_2 \notin U(f_1)$ and $M_2 \in U(f_2)$, $M_1 \notin U(f_2)$.

PROPOSITION 11. (Max(T), U) is compact.

PROOF. Basic closed sets being complements of basic open sets are of the form $V(f) = \{M \in Max(T): f \in M\}, f \in C^*(X)$. Let $\{V(f_{\lambda}): \lambda \in \Lambda\}$ be a collection of basic closed sets with the finite intersection property, i.e. $V(f_{\lambda_1}) \cap \cdots \cap V(f_{\lambda_n}) \neq \Box$ for all finite subsets $\{\lambda_1, \dots, \lambda_n\}$ of Λ .

Consider $I \cdots$ the ideal generated by $\{f_{\lambda}\}_{\lambda \in \Lambda}$. *I* does not meet *T*, for if so there exists $g \in T$ such that $g \leq f_{\lambda_1} \vee \cdots \vee f_{\lambda_n}$ for some $\lambda_1, \cdots, \lambda_n \in \Lambda$. But then $f_{\lambda_1} \vee \cdots \vee f_{\lambda_n} \in T$ so that $V(f_{\lambda_1} \vee \cdots \vee f_{\lambda_n}) = \Box$. However $V(f_{\lambda_1} \vee \cdots \vee f_{\lambda_n}) = V(f_{\lambda_1}) \cap \cdots \cap V(f_{\lambda_n}) \neq \Box$ so that *I* is a proper *l*-ideal containing $\{f_{\lambda}\}_{\lambda \in \Lambda}$ and not meeting *T*.

Suppose $\bigcap_{\lambda \in \Lambda} V(f_{\lambda}) = \Box$. This says that there exists no *l*-ideal containing all the f_{λ} 's and not meeting *T*. This however is clearly false, since *I* meets all these requirements. Thus $\bigcap_{\lambda \in \Lambda} V(f_{\lambda}) \neq \Box$, whence (Max (*T*), *U*) is compact.

PROPOSITION 12. Let T and T' be algebraic tight Riesz orders such that $T \subseteq T'$. Then each maximal tangent of T' is contained in a unique maximal tangent of T.

PROOF. Let $M' \in Max(T')$. Then M' is a prime subgroup not meeting T. Since the class of convex sublattice subgroups lying above a prime subgroup is totally-ordered by inclusion [Holland (1963)] we have that M' is contained in a unique maximal tangent M of T.

THEOREM 13. Let T and T' be algebraic tight Riesz orders such that $T \subseteq T'$. If (Max(T'), U') is Hausdorff then the map $m : (Max(T'), U') \rightarrow (Max(T), U)$ given by m(M') = M — the unique maximal tangent of T containing M' — is continuous.

PROOF. Given a basic open set $U(f) = \{M \in Max(T): f \notin M\}$ we want to see that $S = \{M' \in Max(T'): m(M') \in U(f)\}$ is open in (Max(T'), U'), and we do so by seeing that $Max(T') \setminus S$ is compact.

Let $\{Max(T') \setminus U'(f_{\lambda}) \cap Max(T') \setminus S : \lambda \in \Lambda\}$ be a collection of basic closed subsets of $Max(T') \setminus S$ with the finite intersection property, where $U'(f_{\lambda}) =$ $\{M' \in Max(T') : f_{\lambda} \notin M'\}$ for $f_{\lambda} \in C^{+}(X)$. Then for each finite subset $\{\lambda_{1}, \dots, \lambda_{n}\}$ of Λ we have

(1)
$$S \cup U'(f_{\lambda_1}) \cup \cdots \cup U'(f_{\lambda_n}) \neq \operatorname{Max}(T')$$

If $f \vee f_{\lambda_1} \vee \cdots \vee f_{\lambda_n} \in T$ for some finite subset $\{\lambda_1, \dots, \lambda_n\}$ of Λ then $U(f \vee f_{\lambda_1} \vee \cdots \vee f_{\lambda_n}) = U(f) \cup U(f_{\lambda_1}) \cup \cdots \cup U(f_{\lambda_n}) = Max(T)$. By assumption (equation (1)) there exists $M' \in Max(T')$ such that $M' \notin S$ and $M' \notin U'(f_{\lambda_i})$, $i = 1, 2, \dots, n$. Then $m(M') \notin U(f)$ so that $m(M') \in U(f_{\lambda_i})$ for some *i*, which implies $M' \in U'(f_{\lambda_i}) - a$ contradiction. Thus, for every finite subset $\{\lambda_1, \dots, \lambda_n\}$ of Λ , $f \vee f_{\lambda_1} \vee \cdots \vee f_{\lambda_n} \notin T$. Similarly, for every finite subset $\{\lambda_1, \dots, \lambda_n\}$ of Λ , $f_{\lambda_1} \vee \cdots \vee f_{\lambda_n} \notin T$. Hence, since by both (Max(T), U) and (Max(T'), U') are compact (Proposition 11), there is an $M' \in Max(T')$ containing all $f_{\lambda} : \lambda \in \Lambda$, and an $M \in Max(T)$ containing M' and f. Then m(M') = M, so we have $M' \notin S$ and $M' \notin U'(f_{\lambda})$, for all $\lambda \in \Lambda$, i.e. $Max(T') \land S$ is compact.

In proving the above theorem we made use of the fact that (Max(T'), U') was Hausdorff. We now consider necessary and sufficient conditions for such a space to be Hausdorff.

PROPOSITION 14. (Max (T), U) is Hausdorff if and only if given M_1 and M_2 distinct members of Max (T) there exist $f_1 \in C^+(X) \setminus M_1$ and $f_2 \in C^+(X) \setminus M_2$ such that $f_1 \wedge f_2 \in T$ -radical of $C(X) = \cap \{M : M \in Max(T)\}$. The proof is obvious.

THEOREM 15. M_1 and M_2 distinct members of Max(T) can be Hausdorff separated for U if either M_1 or M_2 is minimal prime.

PROOF. M_1 and M_2 distinct implies that there exist $f_1 \in (M_2 \cap C^+(X)) \setminus M_1$ and $f_2 \in (M_1 \cap C^+(X)) \setminus M_2$. Suppose M_2 is minimal prime. Then there exists $f \in C^+(X) \setminus M_2$ such that $f_1 \wedge f = 0$. Moreover $f \notin M_2$ implies $f \wedge f_2 \in M_1 \setminus M_2 \cap$ $C^+(X)$ (primality). Thus $U(f_1) \cap U(f \wedge f_2) = U(f_1 \wedge f \wedge f_2) = U(0) = \Box$. A similar argument holds if M_1 is minimal prime.

THEOREM 16. If T is dual-prime then (Max(T), U) is a singleton.

PROOF. Let $M \in Max(T)$. Then

 $f \notin M \Leftrightarrow |f| \lor |g| \in T \text{ for some } g \in M$ $\Leftrightarrow |f| \in T \quad (T \text{ dual-prime})$

i.e. there is but one maximal tangent of T.

The quotient space C(X)/A

Thoughout this section we assume X to be a compact Hausdorff space and T to be an algebraic tight Riesz order on C(X). We denote the T-radical of C(X) by A i.e. $A = \bigcap \{M \colon M \in Max(T)\}$.

As a result of Proposition 14, we see that A plays an important role in determining whether or not (Max(T), U) is Hausdorff. For this reason we make a brief study of A and consequently of the quotient space C(X)/A.

Being an intersection of maximal tangents of T, A is a tangent — hence an l-ideal (not necessarily prime), and so we may consider C(X)/A as the factor group of C(X) with respect to the l-ideal A. Then C(X)/A is a lattice-ordered group and the canonical mapping $\rho: C(X) \to C(X)/A$ preserves the order relation and lattice operations, (Fuchs (1963)). We use the same symbol \leq to denote the lattice-order in both C(X) and C(X)/A, and we denote $\{f + A : 0 + A \leq f + A\}$ by $C(X)/A^+$, where we have $0 + A \leq f + A$ if and only if $0 \leq f + a$ for some $a \in A$.

We consider the action of the canonical mapping $\rho: C(X) \rightarrow C(X)/A$.

THEOREM 17. ρT is a compatible tight Riesz order on C(X)/A.

PROOF. This follows immediately from Theorem 8° of Miller (1973).

THEOREM 18. Let M be a maximal tangent of T then ρM is a maximal tangent of ρT .

PROOF. Put $M' = \rho M = M + A$, $T' = \rho T = T + A$. Then

(1) Since ρ preserves the order relation and lattice operations we have immediately that M' is a convex sublattice of C(X)/A.

(2) M' is non-empty since M is non-empty. Moreover, it is straightforward to show that M' is closed under addition and that each element in M' has an additive inverse in M'. Thus M' is a subgroup of C(X)/A.

(3) Suppose $f + A \in M' \cap T'$. Now $f + A \in M + A$ implies f + A = m + A for some $m \in M$ i.e. $f - m \in A \subset M$ for some $m \in M$. In other words $f \in M$. Similarly $f + A \in T + A$ implies $f - t \in M$ for some $t \in T$. Then $f = (f - t) = t \in M$ for some $t \in T$, a contradiction. Thus $M' \cap T' = \Box$.

(4) Suppose $M' \subset N'$ where N' is a convex sublattice subgroup of C(X)/A not meeting T'. Put $N = \{f: f + A \in N'\}$. Then N is a convex sublattice subgroup of

[8]

Riesz orders

379

C(X) not meeting T. Moreover $M \subset N$. Thus M = N and M' = N' since M is a maximal tangent of T.

In other words, M' is a maximal tangent of the compatible tight Riesz order T'.

COROLLARY 19. Let \mathcal{M} be the set of maximal tangents of ρT , then $\cap \{M; M \in \mathcal{M}\} = 0 + A$.

PROOF. This follows since ρ preserves intersections.

References

L. Fuchs (1963), Partially Ordered Algebraic Systems (Pergamon Press, Oxford, 1963).

L. Gillman and M. Jerison (1960), Rings of Continuous Functions (Van Nostrand, Princeton, 1960).

- C. Holland (1963), 'The lattice-ordered group of automorphisms of an ordered set', Mich. Math J. 10, 399–408.
- Saunders Maclane (1971), Categories for the Working Mathematician (Springer-Verlag, New York, 1971).
- J. B. Miller (1973), 'Quotient groups and realization of tight Riesz groups', J. Austral. Math. Soc. 16, 416–430.
- A. Wirth (1973), 'Compatible tight Riesz orders', J. Austral. Math Soc. 15, 105-111.

Department of Mathematics, La Trobe University, Victoria 3083, Australia.