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STRUCTURE OF A CERTAIN CLASS OF 
RINGS WITH INVOLUTION 

M. CHACRON, I. N. HERSTEIN, AND S. MONTGOMERY 

I n t r o d u c t i o n . LetR be a ring with involution *, and let Z denote the center 
of R. In R let S = ( x Ç R\x* = x} be the set of symmetr ic elements of R. 
We shall s tudy rings which are conditioned in the following way: given s £ S, 
then for some integer k = k(s) ^ 1 and some polynomial p(t), with integer 
coefficients which depend on s, sk — sk+1p(s) £ Z. W h a t can one hope to say 
about such rings? Certainly all rings in which every symmetr ic element is nil-
potent fall into this class. However, even in this part icular case, it is open 
whether or not every element of the ring must be nilpotent [12]. Fur thermore , 
even if we imposed the above condition on all elements of R, we would run into 
the problem of the s t ructure of nil rings, a problem about which vir tual ly 
nothing is known. Clearly, then, if we are to obtain any information about the 
rings in question, we must condition the si tuation a little more. One such extra 
condition which we shall impose is t ha t the k(s) above be bounded over S. 
In tha t case, satisfactory s t ructure theorems can be obtained. 

For example, for the case in which every symmetr ic element is periodic, in 
the sense t h a t sn{s) = s, n(s) > 1 for every s £ S, Montgomery has obtained 
a description of the rings [13; 14]. In case s — s2p(s) £ Z, with some further 
condition on the nature of p(s)} s t ructure theorems were obtained by Burgess 
and Chacron [3]. 

If R is a semi-simple ring in which xn — xn+lp(x) £ Z for all x £ R, when 
n is fixed, Chacron [4] has shown tha t R mus t satisfy a polynomial identi ty. 
This natural ly leads to the following question: let R be a ring with involution 
such tha t sk — sk+1p(s) £ Z for all s £ S where k is fixed. Does R then satisfy 
a polynomial identi ty? We shall show tha t this is indeed the case. Knowing 
this, the s t ructure of such rings will be fairly easy to describe. 

Fundamenta l in these discussions will be the following result in linear algebra: 
let F be a field which is algebraic over a finite field, and let * be an involution 
on Fn, the ring of n X n matrices over F. Then, as n goes to infinity, we have 
symmetr ic elements in Fn of arbitrari ly high index of nilpotence. In fact, as 
we shall see, no mat te r what the involution * may be, there is always a sym
metric ni lpotent element in Fn whose index of nilpotence is a t least [(n — l ) / 2 ] . 
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RINGS W I T H INVOLUTION 1115 

1. S y m m e t r i c n i l p o t e n t s in matr ix r ings . The result in this section 
concerns the symmetric nilpotent elements in Fn, the n X n matrices over a 
field F which is algebraic over a finite field. Our aim is to show tha t as n 
increases, Fn will contain symmetric nilpotents of ever higher index, regardless 
of the nature of the involution on Fn. The information we obtain here will be 
used, in the next section, to determine the nature of rings with involution 
whose symmetric elements satisfy certain algebraic properties. 

We first need the following well-known lemma. 

LEMMA 1. Let B(x, y) be a non-degenerate symmetric or alternate bilinear form 
on an n-dimensional vector space V over a finite field F. Then there exists a linear 
transformation on V which is self-adjoint relative to B and is nilpotent of index 
è [(n - l ) / 2 ] . 

Proof. I t is well-known [11, pp. 14-15, 23] tha t in the al ternate case, one has 
a basis such tha t the matrix of B has the form 

0 Im 

-Im 0 
where m = 

2 ' 

Then the linear transformation whose matrix is 

\A 0 
|_0 A1 

is self-adjoint. Taking A to be nilpotent of index m, we obtain the result in 
this case. 

Now assume B is not al ternate. Then it is known tha t one has a base such 
t ha t the matrix has the form 

~S 0 0 
0 0 In 

.0 Im 0 . 

where S is a k X k symmetric matrix and k = 0, 1, or 2. Here the linear 
transformation with matrix 

"0 

is self-adjoint and can be taken to be nilpotent of index m. This proves the 
lemma. 

Our desired result now follows easily from known facts about the possible 
involutions on Fn. For, first of all, let a —•> â, a Ç F, denote the restriction of * 
to F, and let E = {f G F\f = / } . Then £ is a subfield of F, and En is a *-closed 
subring of Fn. Thus it will be enough to find symmetric nilpotents of the ap
propriate index in En\ t ha t is, we may assume tha t * is an involution of the 
first kind. 
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Now, consider Fn acting as linear transformations on a vector space V of 
dimension n over F. Then, for any involution * on Fn, it is known [8; 10] t h a t 
there exists a non-degenerate Hermit ian or skew Hermit ian scalar product g 
on V such t ha t * can be identified with the adjoint mapping relative to g. 
Now by our assumption t ha t * fixes every element of F, g mus t actually be 
a symmetr ic or a l te rnate bilinear form, and thus Lemma 1 applies. We have 
proved: 

T H E O R E M 1. Let F be afield algebraic over a finite field. Then for any involution 
in Fn, Fn will contain a symmetric nilpotent of index at least [(n — l ) / 2 ] . 

2. R i n g s w i t h s y m m e t r i e s sa t i s fy ing sk = sk+1p(s). In this section we 
want to describe the s t ructure of rings with involutions whose symmetr ic 
elements are algebraic over the integers in a ra ther restricted form. T o be 
more precise, we shall be interested in the si tuation where, given a symmetr ic 
element s £ S, then sk = sk+1p(s) with k a fixed integer and p(x) a poly
nomial with integer coefficients which depend on s. T o do so, we must first 
consider the case where subsets other than S itself are subject to such a condi
tion. This motivates the definition we are about to make. 

Definition. An addit ive subgroup U C R is said to satisfy Condition A if, 
given u £ U then uk = uk+1p(u) where k is a fixed integer and p(x) is a poly
nomial with integer coefficients which depend on u. 

We shall refer to the smallest positive integer k, in the definition above, 
which works for all ^ G U as the A-index of U. 

If, in addit ion, U is closed with respect to powers, t ha t is, if u £ U then 
ul (z U for i ^ 1, we assert t ha t Condition A assumes a much simpler form. 
We do this now. 

Let U be an addit ive subgroup of R which is closed with respect to powers 
and which satisfies Condition A. We claim tha t if u £ U then uk = uk+n(u) 

where k is the A -index of U and n(u) è 1 is an integer depending on u. 
First of all, note t ha t if u G U is ni lpotent then uk = 0; this follows trivially 

from the fact t ha t uk = uk+1p(u). Hence for such elements we certainly have 
0 = uk = uk+1. Suppose, then, t ha t u is not nilpotent. From uk = uk+lp(u) 
we easily get tha t uk — u2kq(u) where q(x) is a polynomial with integer 
coefficients. Thus e = ukq(u) is in U and satisfies e2 = e ^ 0. Moreover, 
uke = uk. Since e G U, 2e is also in U, whence (2e)k = (2e)k+1h(2e) for some 
polynomial h(x) with integer coefficients. This gives us 

(2k - 2k+lh(2))e = 0; 

since the integer 2k — 2k+lh(2) is not 0, we have tha t ne = 0 for some positive 
integer n. Thus , since uk = uke, nuk = nuke = 0. In view of this and the fact 
tha t uk is algebraic over the integers, the subring generated by uk mus t be 
finite. But then uka = ukb for some integers 1 ^ a ^ b. Pick such a relation 
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with a minimal. Now ukq(u) = e and uke = uk; thus from ukaq(u) = ukbq{u) 
we obtain, if a > 1, t ha t 

uk^a-l)ukq{u) = uk^~l)ukq(u), 

which is to say, uk(a~l)e = uk{b~1}e. The net result of this is t ha t 

violating the minimal nature of a. Hence a = 1 and wfc = ukb = uk+n(u) for 
some n(u) ^ 1. 

We have shown tha t Condition A on the U in question really assumes the 
simpler form: 

Condition A'': u £ U implies tha t uk = uk+n{u\ n(u) ^ 1 where k is a fixed 
integer. 

LEMMA 2. Le/ R be a primitive ring satisfying Condition A. Then R satisfies 
the standard identity of degree 2k, where k is the A-index of R. 

Proof. Any subring T of R satisfies Condition A and so does any homomor-
phic image T' or T. Moreover, the A -index of T' is a t most k, the A -index of R. 
In consequence, any nilpotent element of T' has index of nilpotence a t most k. 
Since R is primitive, using the argument above and the density theorem, we 
obtain t ha t R is isomorphic to Dkl, the ki X ki matrices over a division ring D, 
with ki ^ k. D also satisfies Condition A, hence Condition A'; thus in D, 

xm(x) _ x £o r a j j x wij-h w ( x ) > 1. By a well-known theorem of Jacobson [9], 
D is a field T7 and so, by the theorem of Amitsur-Levitzki [2], R = Fkl satisfies 
the s tandard identi ty of degree 2&i; since k\ ^ k, R satisfies the s tandard 
identi ty of degree 2k. 

We need an easy, general result about primitive rings which certainly must 
be known, bu t for which we could not locate a precise reference. Hence we 
prove it here. 

LEMMA 3. Let R be a primitive ring; suppose that the right ideal p ^ O satisfies 
a polynomial identity. Then R has a minimal right ideal. 

Proof. Let T = {x G p\xp = 0} ; T is an ideal of p and p = p/T is a primitive 
ring. Since p satisfies a polynomial identity, so does p, hence by Kaplansky 's 
theorem p is a finite-dimensional simple algebra. Thus p has a minimal right 
ideal p0 ^ 0. Let p0 be the inverse image of po in p. We claim tha t pop is a 
minimal right of R. Since p0 9e 0, we have pop ^ 0. If / ^ 0 is a right ideal of 
R and / C Pop, the minimality of p0 in p gives / C T or / + T = p0. If / C T 
then Ip = 0, which is not possible, since R is primitive. So, I -\- T = p0. T h u s 

Pop = ( / + T)p = Ip C I C Pop, 

t ha t is, / = pop. This finishes the proof. 
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Note tha t the proof did not use the full force of the fact t ha t p satisfies a 
polynomial identi ty. The same proof works if we merely assume that p/T has 
a minimal right ideal. 

We now turn to rings with involution whose symmetr ic elements, S, satisfy 
Condition A. 

LEMMA 4. Let R be a primitive ring with involution in which S satisfies Condi
tion A. Then R must satisfy the standard identity of degree 4 (k + 1 ), where k is 
the A -index of S. 

Proof. Since 5 satisfies Condition A, as we have seen, it must satisfy Condi
tion A'\ t ha t is, iî s £ S then sk = sk+n{s) where k is the yl-index of S, and 
where n(s) ^ 1. 

If there are no non-zero nilpotent elements in 5 then the relation above 
implies t ha t (s — sn(s)+l)k = 0, hence 5 = sn(s)+l. By a result due to Mont
gomery [13; 14], we would have t ha t R is a t most 4-dimensional over its 
center, so satisfies the s tandard ident i ty of degree 4. 

Suppose, then, t ha t there exists an element 5 ^ 0 in 5 such t ha t s2 = 0. 
Let B = sR; if x £ R then sx* + xs £ S, hence 

(sx* + xs)k = (sx* + xs)k+n 

where « ^ 1 depends on sx* + xs. Mult iplying this on the left by s and on 
the right by x yields, on using s2 = 0, t ha t 

(sx)k+1 = (sx)k+l+n. 

Hence the ring B satisfies Condition A with A -index a t most k + 1. If T = 
{x Ç B\xB = 0}, then B/T is a primitive ring satisfying Condit ion A; by 
Lemma 2, B/T must satisfy a polynomial identi ty, and so B satisfies a poly
nomial identi ty. Since B is a right ideal of R, using Lemma 3, we obtain tha t R 
has a minimal right ideal. 

Since R is a primitive ring with involution having a minimal right ideal, by 
a result of Kaplansky [10, Theorem 1, p. 82], if R is not simple ar t inian it would 

r x o~l 
contain all infinite matrices of the form where x is any matr ix in Dn, 
for any n, over a division ring D. Moreover, the * of R induces an involution 
on Dn such tha t D* = D. Since the symmetr ic elements of D must satisfy 
Condition A, D must be a field algebraic over a finite field. Since the sym
metric elements in Dn which are nilpotent have index of nilpotence a t most k, 
by Theorem 1, we would have the contradiction n ^ 2k + 2. T h u s R is a 
simple art inian ring; hence R is isomorphic to some D t for some division ring D. 
As we just saw, D must be a field and t ^ 2k -\- 2. T h u s R satisfies the s tandard 
ident i ty of degree 2/, hence t ha t of degree 4& + 4. T h e lemma is proved. 

We now prove 

T H E O R E M 2. Let R be a ring with involution such that S satisfies Condition A. 
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Then R must satisfy a polynomial identity. If R is semi-simple then it satisfies 
the standard identity of degree 4(2& + 1). 

Proof. Let P be a primitive ideal of R. We divide the argument according 
as P * = P or P * ^ P . 

If P * = P then * induces an involution on R = R/P which is a primitive 
ring. Moreover, if s is symmetric in P then s2 is the image of a symmetric 
element in R, hence s2k = s2k+1p(s2). Therefore the symmetric elements of R 
satisfy Condition A, and have A -index a t most 2k. By Lemma 4, R satisfies 
the s tandard identi ty of degree 4(2k + 1). 

If P * 9^ P then Â = (P* + P)/P is a non-zero ideal in the primitive ring 
R = R/P. If x G Â then x = x + x* where x £ P * ; since x + x* Ç 5 we get 
x* = xfc+1^>(x). Since 4̂ is primitive, Lemma 2 shows tha t Â satisfies the 
s tandard identi ty of degree 2k. Hence Â must be a finite-dimensional simple 
algebra; thus Â has a unit element ë, Â = Rë = ëR. But then 0 7e ë is a central 
idempotent in P . Since P is primitive we obtain tha t ë = 1, hence 4̂ = P . 
Therefore P satisfies the s tandard identity of degree 2k. 

Let J(R) be the radical of R. Since 7 ( P ) = O P over all primitive ideals 
P of P , by the preceding discussion we see tha t R/J(R) satisfies the s tandard 
identi ty of degree m = 4(2& + 1). If / denotes this s tandard identity, then 
for Si, . . . , sm Ç S, b = f(si, . . . , sm) is in J(R). Moreover, since m is divisible 
by 4, b must be symmetric. Hence b (z S C\ J(R). Thus bk = bk+lp(b). Because 
b 6 J(R) this last relation forces bk = 0. In other words, 5 satisfies 
f(s1, . . . , sm)k = 0. By a result of Amitsur [1] we conclude tha t P satisfies a 
polynomial identity. 

We make a short digression from our central theme. The result we get gives 
an affirmative answer to a special case of the following open question: If A is 
an algebra over a field, with involution, all of whose symmetric elements are 
algebraic, is A itself algebraic? 

COROLLARY. Let R be an algebra with involution over afield F, F algebraic over 
a finite field. Suppose that the symmetric nilpotent elements in R are of bounded 
index of nilpotence. Then, if the symmetric elements of R are algebraic over F, R 
itself must be algebraic over F. 

Proof. Since s Ç 5 is algebraic over F, and F is algebraic over a finite field, 
5 generates a finite ring, hence sm = sn with m > n. Thus (s — sm~n+l)sn~1 = 0; 
this gives (s — s

m~n+iyn = o. Since s — sm~n+l is a symmetric nilpotent, 
(s — s

m~n+1)k = 0, where k is the bound of nilpotence of the symmetric nil-
potent elements. Hence sk = sk+1p(s) where p(s) is a polynomial with integer 
coefficients. Theorem 2 then tells us tha t R satisfies a polynomial identity. 
By a theorem of Montgomery [15], since R satisfies a polynomial identi ty and 
its symmetric elements are algebraic, R must be algebraic. 

3. S o m e t e c h n i c a l l e m m a s . We shall prove some highly technical and 
special results now tha t will enable us to generalize the principal theorem of 
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Section 2. Many of these results are of a field-theoretic na tu re ; with them in 
hand we can extend some known results about division rings to domains. 

LEMMA 5. Let F ^ C be an algebraic extension of the field C which is not purely 
inseparable over C. Suppose that A is a subring of F such that: 

(i) Given x £ F then x = a\ where a £ A, X £ C. 
(ii) For any a £ A, ak — ak+1p(a) £ C where k and p(t) depend on a, and 

p(t) is a polynomial with integer coefficients. 
Then F is algebraic over a finite field. 

Proof. Suppose t ha t F is not algebraic over a finite field. Since F is not 
purely inseparable over C, by a result of [16] there exist two non-archimedean 
valuat ions v\ and v2 on F which coincide on C. Now if v\ and v2 coincide on A, 
since every x 6 F is of the form x = a\, a £ A, X £ C we would get t ha t 
Vi(x) = v2(x), contrary to V\ ^ v2. T h u s there is an a £ A such t h a t V\(a) ^ 
v2(a). 

We claim tha t it is impossible t ha t both V\(a) < 1 and v2{a) < 1. For, since 
b = ak + riak+1 + . . . + rna

k+n is in C, with rt integers, we have V\{b) = v2(b). 
Now, on the integers, V\{rt) ^ 1, v2(rt) ^ 1 and since V\{a) < 1 and the valua
tion is non-archimedean, V\(b) = Vi{ak) = Vi(a)k; for the same reason, v2(b) = 
v2(a)k. Bu t then V\(a)k = V\(b) = v2(b) = v2(a)k, giving the contradict ion 
Vi(a) = v2(a). 

This allows us to rule out the case of characterist ic 0 immediately. For in 
this case V\ = v2 on the integers and induces a £>-adic valuat ion, hence for 
some integer m ^ 0 we can arrange it so t ha t V\{ma) < 1 and v2(ma) < 1. By 
the above, V\{ma) = v2(ma), giving us V\(a) = v2(a), a contradict ion. 

T h u s we may suppose t ha t F is of characterist ic p ^ 0. If b = ak + riak+l + 
. . . + r„a*+1 is in C, where the rt are integers and rw ^ 0 then Vi(6) = v2(b). 
If ^i(a) < 1, as above, we get V\(b) = fli(a)* < 1. T h u s v2(b) < 1; now we 
know tha t v2(a) ^ 1. H 02(a) > 1 then 1 > v2(b) = v2(rna

n+k) = v2(a
n+k) = 

v2(a)n+k, giving the contradiction v2{a) < 1. T h e only possibility is v2{a) = 1. 
Now v2(b) = V\(b) < 1, hence if 6 ^ 0, Vi(ab) < 1 and v2(ab) < 1 ; by the 
above, Vi(ab) = v2(ab) giving us V\(a) = v2(a). If b = 0 then a is algebraic 
over GF(p) ; this would give the contradict ion V\(a) = v2(a) = 1. So Ui(a) < 1 
is not possible. 

If vi(a) > 1 then v^b) = 0i(rwaw+*) = ^(a)w + A ; > 1. Hence v2(6) > 1. Bu t 
1 < v2(b) < sup v2(rta

k+1); this yields t h a t v2(a) > 1. Bu t then v2(b) = 
i^Ov^**) = ^2(<^)W+A:, ending up inz;i(a) = ^ ( a ) . 

Since ^i(a) 9^ v2(a), wi thout loss of generality V\(a) < 1 or t/i(a) > 1, 
neither of which is possible. This completes the proof. 

Recall t ha t a domain, commuta t ive or non-commutat ive , is a ring wi thout 
zero divisors. We wish to extend a result on division rings, proved in [6], to 
domains. Bu t first we introduce: 

Condition B. A subset A (Z R is said to satisfy Condition B if, given a £ A 
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then ak — ak+1p(a) G Z for some integer k depending on a, and some poly
nomial p(t). with integer coefficients, depending on a. 

LEMMA 6. Let Rbe a domain satisfying Condition B. Then R is commutative. 

Proof. Let Z\ be the subset of non-zero elements of Z If Zi is empty then 
xk = xk+lp(x) for every x G R; since R is a domain this would yield xp(x) = 1, 
and this would force Zi not to be empty. Let A = RZr1 = {a/\\a G R, X G Zi} 
be the localization of R with respect to Z\. I t is trivial to verify t ha t A is a 
division ring, and tha t the center Z of A is the ring of fractions of Z, the center 
of R. If x G A then x = az~l, a G R, z G Z\\ since a is algebraic over Z it 
follows t ha t x is algebraic over Z. If i? 7e Z then A ^ Z ; hence there is an 
element x0 = a0X0

_1, a0 d R, X0 G Z, which is separable over Z. Let F = 
Z(x0) be the subfield of A generated by Z and x0. Then F is an algebraic, 
separable extension of Z. By the very nature of x0 = a0Xo_1, F = Z(ao)\ since 
Z = Z Z i - 1 , F = Z ( a 0 ) Z i _ 1 = ^4Z where 4̂ = Z[a0]. I t is clear, now, t ha t A, 
C = Z and F satisfy the conditions of Lemma 5. Thus F is algebraic over a 
finite field. But then Z is algebraic over a finite field; since A is algebraic over Z, 
A is algebraic over a finite field. By Jacobson's theorem, A must be commuta
t ive; since R C A, R is commutat ive . 

We generalize Lemma 6 to the case of rings with involution. 

LEMMA 7. Let Rbe a domain with involution and suppose that S, the symmetric 
elements of R, satisfies Condition B. Then all elements of the form xx* and 
x + x* are in the center of R. (So, if the characteristic of R is not 2, 5 C Z ) . 

Proof. Let Z+ = Z C\ S and let Z i + be the set of non-zero elements in Z + . 
Localizing R a t Z\+ it is easy to see tha t we get a division ring A all of whose 
symmetric elements are algebraic over the center, Z(A) , of A. If every sym
metric element in A is purely inseparable over Z(A) , then the conclusion we 
desire follows from [5, Theorem 4]. If some 5 G A, s* = s, s d Z ( A ) i s separable 
over Z(A) , then let F be the subfield obtained by adjoining 5 to the subfield 
Z ( A ) + of symmetric elements of Z(A) . If x G F, x = aX_1, a G S, X G Z i + ; 
so, if A = F H 5, A is a subring of R, lies in F and F = AZ(A)+. These sub-
rings satisfy the conditions of Lemma 5, hence F is algebraic over a finite field. 
Thus , Z(A)+, whence Z(A) , is algebraic over a finite field. But A is algebraic 
over Z(A) . By Jacobson's theorem, we get tha t A is commutat ive , hence R is. 
With this contradiction the lemma is proved. 

Recall t ha t a ring R with involution is *-prime if AB = 0, A* = A, B* = B 
ideals of R implies t ha t A = 0 or B = 0. 

We are now ready to prove. 

LEMMA 8. Let Rbe a *-prime ring whose symmetric elements satisfy Condition B. 
Suppose that R has no non-trivial symmetric idempotents. If the symmetric nil-
potent elements of R are of bounded index of nilpotence, then all x + x* and xx* 
are in the center of R. (In particular, if char R ^ 2, then S C Z ) . 
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Proof. Before proving the lemma, note tha t the condition t h a t symmetr ic 
nilpotents be of bounded index is automatical ly satisfied in domains, and in 
rings where, in Condition B, the integer k = k(s) is bounded. 

H s G 5 is a zero divisor then sk — sk+1p(s) G Z is also a zero divisor. By the 
*-primeness of R this yields t ha t sk = sk+1p(s), and so sk = 0 or skq(s) is a 
non-zero idempotent for some polynomial q(s) with integer coefficients. Since 
there are no non-trivial symmetr ic idempotents , we have sk = 0 or 5 is in-
vert ible; 5 is not invertible, so sk = 0. T h u s any symmetr ic element is regular 
or ni lpotent of index k. 

Localize R a t Z + = Z H S. T h e ring Ri we obtain is *-prime and every 
symmetr ic element is ni lpotent of index k or invertible. Ri must be semi-
simple, for any symmetr ic element in its radical is ni lpotent of index k; as is 
well known, this gives rise to a ni lpotent ideal. T h u s we can invoke Theorem 7 
of [7] to obtain t ha t Ri is an order in the 2 X 2 matrices over a field relative 
to the symplectic involution, a division ring, or the direct sum of a division 
ring and its opposite. If Ri is the 2 X 2 matrices with symplectic involution, 
all xx* and x + x* are central in J\i, hence certainly also in R. If Ri is a division 
ring, R is a domain; by Lemma 7 the result follows. Finally, if Ri is a direct 
sum of a division ring and its opposite, R is a subdirect sum of a domain and its 
opposite, and furthermore this domain satisfies Condition B. By Lemma 6, 
this domain is commuta t ive , hence R is commuta t ive . This finishes the proof. 

4 . T h e objective of this final section is to describe the s t ruc ture of rings 
with involution which satisfy Condition B in a bounded form. T o do so, we 
first need a result which parallels tha t of Lemma 8. 

LEMMA 9. Let R be a *-prime ring whose symmetric elements satisfy Condition B, 
with k bounded (i.e., for a fixed integer k, sk — sk+1p(s) G Z for all s G S). 
Suppose that R does not satisfy Condition A. Then all x + x* and xx* are in the 
center of R. In particular, R is quadratic over Z and satisfies the standard identity 
of degree 4. 

Proof. We claim tha t R cannot contain a non-trivial symmetr ic idempotent . 
For suppose tha t e2 = e = e* and e 9e 0, 1. If X ^ 0 is a symmetr ic element 
in Z, then \e is symmetr ic , hence satisfies (\e)k — (\e)k+1p(\e) G Z. Bu t 
(\e)k — (Xe)k+lp(\e) = (\k — \k+1p(\)e is then a symmetr ic zero divisor in Z ; 
by the *-primeness of R we conclude tha t \k = \k+1p(\), and so 1 = \p(\). 
Since the coefficients of £>(A) are integers, and this holds for all A* = A in Z, 
we get t ha t A is algebraic over a finite field, hence An(X) = A for some w(A) > 1. 
If s G 5 then A = sk — sk+1p(s) is a symmetr ic element of Z, hence by the 
above, sk — sk+1p(s) = (sk — sk+lp(s))n(X). This gives sk = sk+1q(s) for some 
polynomial q{x) with integer coefficients. In short , R would satisfy Condition 
A, a contradiction. T h u s R has no non-trivial symmetr ic idempotents . Also, 
if s G S is ni lpotent then since sk — sk+1p(s) G Z we quickly get, since this is 
a zero divisor, t ha t sk = sk+1p(s) and so sk = 0. T h u s the nilpotent symmetr ic 
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elements in R are of bounded index of nilpotence. Thus R satisfies the hypo
theses of Lemma 8; therefore we have tha t xx* and x + x* are all in Z. 

Since x2 — (x + %*)% + %*x = 0, R is quadrat ic over Z. Since P is semi-
prime we immediately have tha t R satisfies the s tandard identi ty of degree 4. 

We now come to the final theorem of the paper. 

T H E O R E M 3. Let R be a *-prime ring whose symmetric elements satisfy 
sk — sk+1p(s) £ Z, where k is a fixed integer and p(x) is a polynomial with 
integer coefficients which depend on s. Then R is one of the following types: 

(1) an order in a simple algebra of dimension at most 4 over its center; 
(2) an order in the direct sum of a field with itself, where * is the exchange 

involution; 
(3) Fnj the ring ofnXn matrices over a field F which is algebraic over a 

finite field, with n ^ 2{k + I); or 
(4) the direct sum of Fn with itself, F as in Part 3, with n ^ k, relative to the 

exchange involution. 

Proof. If R does not satisfy Condition A, by Lemma 9 R satisfies the s tandard 
identi ty of degree 4. If R is prime, by Posner's theorem R must be an order 
in a simple algebra of dimension a t most 4 over its center. If R is not prime, 
then it contains a prime ideal P ^ 0 such tha t P Pi P * = 0. Since, by Lemma 9, 
all x + x* G Z, we immediately get from P C\ P * = 0 tha t P must be con
tained in Z, and so P + P * is a commutat ive *-ideal of R and lies in Z. But 
then the *-primeness of R forces R to be commutat ive, and R is an order in 
F 0 F where F is the field of quotients of R/P. In other words, if R satisfies 
Condition B bu t not Condition A then it is either of type 1 or 2 in the assertion 
of the theorem. 

Suppose then tha t R satisfies Condition A. If R is prime then, by Theorem 2 
it satisfies a polynomial identi ty so, by Posner's theorem, R must be an order 
in a simple algebra Q which is finite-dimensional over its center C, and Q = 
RC. Moreover, by a result of Rowen [17], the center C of Q is the field of 
quotients of the center Z of R. But if X T^ 0 is in Z, we saw tha t XW(X) = 1 for 
some n(\) > 1, hence X -1 £ Z. Thus C = Z, and so, Q = R. Since Z is alge
braic over a finite field we get tha t R is isomorphic to Fn (where F = Z). 
Because R satisfies Condition A, every symmetric nilpotent element in R has 
index of nilpotence a t most k. The isomorphism of R with Fn then tells us t ha t 
every symmetric nilpotent element in Fn has index of nilpotence a t most k. 
Invoking Theorem 1, we get t ha t n < 2{k + 1). Therefore R is of type 3 in 
the assertion of the theorem. 

Finally, if R is *-prime but not prime, and satisfies Condition A, then R has 
a prime ideal 0 ^ P such tha t P C\ P* = 0. Now, every element x in the 
non-zero ideal T = (P + P*)/P in the prime ring R/P is the image of an 
element of the form x + x* where x G P* , hence xk = xk+1p(x). T is a prime 
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ring and satisfies Condition A ; it follows easily from Lemma 2 t h a t T mus t 
satisfy a polynomial identi ty. Also, the center of T is algebraic over a finite 
field, as a consequence of Condition A. Again invoking Posner 's theorem and 
the result of Rowen used in the paragraph above gives us t h a t T is a simple 
algebra finite dimension over its center. T h u s T has a uni t e lement; since 
T 5^ 0 is an ideal in R/P, the uni t element of T mus t be a central idempotent 
in the prime ring R/P, hence must be 1. T h u s ( P + P*)/P = T = R/P, 
whence R = P 0 P * is isomorphic to (R/P) 0 (R/P*). Since T, and so R/P, 
satisfies Condition A with A -index k, R/P mus t satisfy the s tandard ident i ty 
of degree 2k by Lemma 2. T h u s we get R/P to be isomorphic to Fn where 
n ^ k and F is a field algebraic over a finite field. In short , in this last case, 
R is of type 4 of the theorem. Wi th this the theorem is proved. 

T h e s t ructure of *-prime rings expressed in Theorem 3 immediately t rans
lates into a s t ructure theorem for semi-prime rings with involution, since those 
semi-prime rings are subdirect sums of *-prime rings. However, in passing to 
a *-prime homomorphic image of R, if this image is of characteristic 2, it may 
be tha t not all symmetr ic elements in the image came from symmetr ic elements 
in R. However, the square of every symmetr ic element in this *-prime ring is 
the image of a symmetr ic element in R. This may lead to a doubling of the k 
in Theorem 3 for some of the homomorphic images of R. Wi th this we can 
s ta te the 

COROLLARY 1. Let R be a semi-prime ring with involution. Suppose that every 
symmetric element in R satisfies sk — sk+lp(s) £ Z where k is a fixed integer and 
p(x) is a polynomial with integer coefficients which depend on s. Then R is a 
subdirect sum of rings of the following types: 

(1) an order in a simple algebra of dimension at most 4 over its center; 
(2) an order in the direct sum of a field with itself, relative to the exchange 

involution; 
(3) Fn, the ring of n X n matrices over a field F which is algebraic over a finite 

field, with n ^ 2(2k + 1); or 
(4) the direct sum of Fn with itself, F as in Part 3, with n ^ 2k, relative to 

the exchange involution. 

A special case of Corollary 1, which may have some interest, is the si tuation 
in which ^ — s2p(s) £ Z for all 5 £ S, p(t), as usual, a polynomial with integer 
coefficients depending on 5. This is 

COROLLARY 2. Let R be a semi-prime ring in which s — s2p(s) £ Z for all 
s G S. Then R satisfies the standard identity of degree 4. 

Proof. Let R be a *-prime image of R. If a £ R is symmetr ic , then a1 = 
ââ* = ââ* is the image of a symmetr ic element of R, hence a1 — âAp(â2) Ç Z, 
the center of R. In particular, if â is nilpotent, since Z has no nilpotent sym
metric elements in R which is *-prime, we have a1 = 0. 
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If the symmetric elements of R satisfy Condition A, this above remark tells 
us t ha t the A -index of the symmetric elements in R must be 2. But then, as 
we have seen in looking a t Conditions A and A', we must have 

£2 _ fr2+n(b) 

n(b) > 1 for all symmetric b in R. If / = x + x* = x + x*, then t2 = t2+n{t) 

yields 

But 

c = t - r ( Y ) + 1 

is the image of a symmetric element in R, so c — c2q(c) £ Z. Since c2 = 0, we 
have c £ Z is a nilpotent symmetric. In short, c = 0. Thus 

/ = tn(î)+1 

for all traces I £ R. By the results of Montgomery [13; 14] we then have tha t 
R satisfies the s tandard identi ty of degree 4. 

On the other hand, if the symmetric elements of R do not satisfy Condition 
A, since they do satisfy b2 — b4p(b2) £ Z, according to Lemma 9 R satisfies 
the s tandard identi ty of degree 4. 

Hence in all cases R satisfies the standard identi ty of degree 4. Since R is 
a subdirect sum of all these R, we have tha t R satisfies the identi ty of degree 4. 
This proves the corollary. 

But more can be said. Even if the ring R has nilpotent ideals we can say 
tha t it must satisfy an identi ty of fairly low degree, namely 14. We show 
this now. 

Let R be a ring with * such tha t 5 — s2p(s) is in Z for all s ^ S. Let TV be 
the lower radical of R; certainly N* = N.lis(zNr^S then, i terating 5 — 
s2p(s) G Z, we get s — s2npn{s) G Z where pn{s) is a polynomial with integer 
coefficients. But s is nilpotent, so s2U = 0 for some n; this results in s Ç Z. In 
particular, if x £ N then x + x* G N C\ S and x*x G N C\ S, so, by the above, 
x + x* G Z and x*x G Z. Since x2 — (x + x*) + x*x = 0, we have tha t N is 
quadrat ic over Z. If y G R and x G N then x2^ — yx2 — (x + x*) (xy — yx) = 0 
which gives (x23> — yx2){xy — yx) = (xy — yx)(x2y — yx2). Now A/" is the 
intersection of all the *-prime ideals P of R and R/P satisfies the s tandard 
identi ty of degree 4, / ( x i , x2, x3, x4) . So if ch, a2, (h, and a4 are in i? then 
x = / ( a i , «2, «3, (i\) € iV so (x2;y — 3>x2)(x;y — 3>x) = (xy — yx)(x2y — yx2) 
gives us a polynomial identi ty of degree 14 for R. 
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