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Abstract

The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the
most drastic extinction rates in Earth’s History. The rapid species losses and environmental
destruction from the Chicxulub impact at 66.02 Ma made the K–Pg the most comparable past
event to today’s projected “sixth” mass extinction. The extinction famously eliminated major
clades of animals and plankton. However, for land plants, losses primarily occurred among
species observed in regional studies but left no global trace at the family or major-clade level,
leading to questions about whether there was a significant K–Pg plant extinction. We review
emerging paleobotanical data from the Americas and argue that the evidence strongly favors
profound (generally >50%), geographically heterogeneous species losses and recovery consistent
with mass extinction. The heterogeneity appears to reflect several factors, including distance
from the impact site and marine and latitudinal buffering of the impact winter. The ensuing
transformations have affected all land life, including true angiosperm dominance in the world’s
forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations
leading to many crown angiosperm clades. Although the worst outcomes are still preventable,
the sixth mass extinction could mirror the K–Pg event by eliminating comparable numbers of
plant species in a geologic instant, impoverishing and eventually transforming terrestrial
ecosystems while having little effect on global plant-family diversity.

Impact statement

The impact of an asteroid the size of San Francisco with Yucatán, Mexico at the end of the
Cretaceous period, 66million years ago, set a devastating series of events inmotion. Themassive
species losses, popularly known as the “dinosaur extinction,” eliminated an estimated 75% of
land and sea species. The end-Cretaceous is highly relevant tomodern-day projected extinctions
as the only event in Earth’s history that destroyed environments and wiped out life worldwide in
a geologic instant. Land plants are the foundation of life on land, but suitable fossil-plant
collections from the critical time interval are rare and geographically biased, leading to debate
about whether there was any significant global plant extinction. We review new records of plant
fossils fromNorth and South America, which indicate significant (>50%) plant-species losses in
each area, consistent with mass extinction. The different regions demonstrate heterogeneous
responses, which are plausibly related to variations in distance to Mexico and the severity of the
impact winter caused by atmospheric particles. Freezing the tropics, the most biodiverse region,
may have generated devastating species losses. After the disaster came transformations of
terrestrial ecosystems that define life on land today, including dramatic crown-group radiations,
the rise to true dominance of flowering plants, and the birth of hyperdiverse tropical rainforests.
Although it is not too late to avert the worst outcomes, projected losses of plant species in the
near future are similar to estimates from the end-Cretaceous extinction. Ecological transform-
ations will eventually follow, in all likelihood, too late to benefit humans.

Introduction

Critical time intervals provide insights into the projected “sixth mass extinction” from anthropo-
genic disturbances (Wake and Vredenburg, 2008; Barnosky et al., 2011; Wing and Currano,
2013). However, the 66.02 Ma Cretaceous–Paleogene (K–Pg) mass extinction (here, KPgE) or
“dinosaur extinction” stands above all known biotic crises for its suddenness. The KPgE
destroyed approximately 75% of marine species and similar numbers of land animals in a
geologic instant (see Jones et al., 2023 for a recent summary). Of the “Big Five”mass extinctions
(Raup and Sepkoski, 1982;Marshall, 2023) and other critical intervals (Kiessling et al., 2023), only
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the KPgE is directly comparable with the modern day for its speed
of killing and environmental destruction (Barnosky et al., 2011).

Since Alvarez et al. (1980) proposed their impact-extinction
hypothesis for the KPgE, the supporting evidence has grown over-
whelmingly (Schulte et al., 2010; Hull et al., 2020). The unique cause
of the KPgE was the Chicxulub bolide impact in Yucatán, Mexico
at 66.02 Ma. The collision generated a global event horizon, an era
boundary preserved at hundreds of sites from land to the deep
ocean (Schulte et al., 2010; Morgan et al., 2022). Owing to recent
drilling, the 200-km-wide Chicxulub crater’s structure is known in
outstanding detail, providing a highly resolved history of the grim
“first day of the Cenozoic” (Gulick et al., 2019; Morgan et al., 2022).
The crater’s morphology is comparable to the largest observed in
the solar system (Morgan et al., 2022). The estimated impact energy
is 1023 joules, and returning tsunamis brought charcoal from
distant forest fires back into the crater (Gulick et al., 2019). The
sky went dark for months to years from dust, iron-oxide nanopar-
ticles, aerosols, and 1014–15g of black carbon from the target rock
entering the upper atmosphere (Vajda et al., 2015; Lyons et al.,
2020), thus freezing the surface, stopping photosynthesis, and
causing the bulk of the mass extinctions.

Land plants are the foundational macroorganisms of terrestrial
ecosystems, and their fate at the KPgE has drawn attention since
well before 1980 (Dorf, 1940; see Nichols and Johnson, 2008).
However, plants show very different extinction patterns from ani-
mals, partly because of their dramatically different life histories
(Traverse, 1988; Wing, 2004; Cascales-Miñana and Cleal, 2014).
The plant-fossil record since the Late Cretaceous is dominated by
angiosperm leaves, which are well suited for species-level quanti-
tative analyses in regional studies. However, most are not formally
or accurately described and cannot be easily assigned to higher taxa,
restricting spatial comparability (Wilf, 2008). The result is a sharp
contrast between high-resolution regional stratigraphic studies,
which usually show significant plant-species extinction and eco-
logical shifts, and global syntheses or phylogenetic analyses,
which show no losses of plant families or major clades. This
situation has led to a debate regarding whether there was any
significant K–Pg extinction for plants (Cascales-Miñana and
Cleal, 2014; Nic Lughadha et al., 2020; Thompson and Ramírez-
Barahona, 2023). Several previous reviews have covered the

general topics of K–Pg plant extinctions, the vital contributions
of palynology, and the rich history of investigations (Wing, 2004;
McElwain and Punyasena, 2007; Nichols and Johnson, 2008; Vajda
and Bercovici, 2014).

Here, we focus on the improving macrofossil (and associated
palynological) records of the KPgE from the Americas and the
increasing understanding of heterogeneity in the event’s severity,
ecosystem effects, and legacies. Despite advances in many regions,
only the Western Hemisphere has extensive, stratigraphically well-
constrained collections of latest Cretaceous and early Paleocene
plant macrofossils (e.g., Nichols and Johnson, 2008; Vajda and
Bercovici, 2014). We find significant evidence for species losses of
land plants that fulfill any reasonable definition of mass extinction
and provide instructive analogs for the near future.

Heterogeneity

General regional differences in the K–Pg plant extinction and
recovery are well known (Wolfe, 1987; Nichols and Johnson,
2008; Vajda and Bercovici, 2014). However, a pronounced North
American sampling bias exists for nearly all significant collections
of Cretaceous (K floras) and Paleocene floras from well-dated
stratigraphic sections with well-defined K–Pg event layers
(Nichols and Johnson, 2008). The Williston Basin in the northern
Great Plains, USA, paleolatitude ca. 50°N, remains by far the best-
studied area (Johnson et al., 1989; Johnson, 2002).

Several factors are likely to promote heterogeneity. There is a
global pattern of increasing K–Pg event layer thickness and sedi-
ment disturbance with proximity to the Chicxulub crater (Schulte
et al., 2010). Thus, the first effect usually considered is the distance
from ground zero and the proximal effects of shockwaves, tsu-
namis, and large ejecta. A second factor highly relevant to plants is
maritime and latitudinal buffering of the impact winter (Figure 1;
Bardeen et al., 2017; Brugger et al., 2017; Morgan et al., 2022). Both
distance and buffering gradients predict large extinctions in west-
ern North America and the Neotropics, especially if the tropics
froze, and less severe extinctions in the maritime areas of temperate
Gondwana, where there is a growing list of survivor taxa (e.g.,
McLoughlin et al., 2011; summarized in Wilf et al., 2013). Biotic

Figure 1. Modeled surface air temperatures (A) before and (B) during the coldest impact-winter year, 3 years after the Chicxulub impact; pickaxe icons indicate the principal fossil
floras discussed in the text from (north to south) the northern Great Plains, southern Rockies, Colombia, and southern Argentina. Drafted by J. Brugger, using model output from
Brugger et al. (2021), with permission.
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variables include the diversity and traits (Berry, 2020; Butrim et al.,
2022) of pre-impact and recovery floras.

North America

In the Williston Basin near Marmarth, North Dakota, more than
160 plant-macrofossil localities spanning ca. 67.4–65.2 Ma were
placed in precise stratigraphic positions measured to the well-
preserved K–Pg event bed (Johnson et al., 1989; Johnson, 2002).
The total number of paleobotanical specimens exceeds 22,000, with
a significant representation of K and Paleocene floras. A conserva-
tive, robust estimate of macrofloral species extinction from these
collections is 57%, based only on the species present in the upper-
most 5 m (approximately 70 Kyr) of Cretaceous strata (Wilf and
Johnson, 2004; Figure 2A). No other location has comparable
sampling density and temporal precision, which must be con-
sidered when comparing extinction percentages (Figure 2B). Simi-
lar patterns of severe plant-species extinction, low early Paleocene
diversity (“disaster floras”), and ca. 10 million years of recovery are
known from significant but less complete datasets throughout the
northern Great Plains (Wing et al., 1995; Hotton, 2002; Nichols and
Johnson, 2008; Wilson et al., 2021). The regional Paleocene floras
are well understood systematically and include many lineages that
remain abundant in living north-temperate floras, such as taxo-
dioid Cupressaceae, Cornales, Fagales, and Platanaceae (Brown,
1962; Hickey, 1977; Manchester, 2014).

The Southern Rockies present an emerging record of early
Paleocene sites, several of which have much higher plant diversity
than the northern Great Plains; however, few latest Cretaceous
floras are known for comparison. The region is closer than the
Williston Basin to Chicxulub, refuting distance from the crater as
an explanation for the elevated Paleocene diversity and pointing to
latitudinal effects combined with lower continentality (Figure 1B).
Some sites in Colorado and New Mexico are said to preserve
“tropical” forests (Johnson and Ellis, 2002; Flynn and Peppe,
2019), despite their location in temperate latitudes. This use of
“tropical” to refer to warm past climates at middle latitudes is
common in paleontology; however, the term is best applied only
to the latitudinal tropics (<23.5°), where insolation and its effects on

plant life are far more significant (e.g., Jaramillo and Cárdenas,
2013).

Flynn and Peppe (2019) reported diverse early Paleocene (<350
Kyr after the K–Pg) floras from the San Juan Basin in NewMexico;
there is no event horizon preserved, nor are K floras available for
comparison. These assemblages represent frost-free conditions but
lack characteristic tropical plant taxa (e.g., Carvalho et al., 2021).
Instead, they appear to preserve a mixture of warm-temperate
lineages similar to those found throughout the Paleocene north
temperate zone, including species of Cupressaceae, Platanaceae,
and Cornales. Further north, the Raton Basin of New Mexico and
Colorado preserves a well-defined K–Pg event bed and was the
primary location of early work on K–Pg plant extinctions following
the publication of the Alvarez hypothesis (Tschudy et al., 1984;
Wolfe and Upchurch, 1986). The area has received renewed atten-
tion, particularly concerning the basalmost Paleocene floras (Berry,
2019, 2023).

A rich macrofloral record comes from over 150 Late Cretaceous
and Paleogene sites in the Denver Basin, Colorado (Johnson et al.,
2003). The sites were stratigraphically positioned using a detailed
basin age-depth model anchored to a well-defined K–Pg event
horizon exposed at West Bijou Creek and found in the subsurface
in the Kiowa Core (Barclay et al., 2003; Raynolds et al., 2007;
Clyde et al., 2016). A showcase geochronology study combined
paleomagnetic stratigraphy and U–Pb dating of a series of volcanic
ashes at West Bijou Creek, constraining the age of the K–Pg
boundary to 66.021 ± 0.024 Ma (Clyde et al., 2016).

We note that the exact age control of the KPgE represents
decades of advances in geochronologic methods and inter-
laboratory cooperation (Gradstein et al., 2012), in contrast to the
continuing absence of geological benchmarks and standards that
are needed to align molecular divergence dates with the inter-
national geologic time scale (Wilf and Escapa, 2016). We remain
skeptical of the substantial molecular-dating literature that assigns
whole genome duplications (WGDs) in many plant lineages to an
algorithmically-approximated “K”-“Pg” “boundary,” implying that
WGDs were beneficial for survival or recovery (e.g., Vanneste et al.,
2014; Lohaus and Van de Peer, 2016; Koenen et al., 2021). This
work also used few well-defined geological or phylogenetic criteria
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Figure 2. Plant extinction in theWilliston Basin, North Dakota. (A) Ranges in the composite section of 141macrofossil species occurring inmore than one stratigraphic bin, with 99%
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for fossil calibrations (contra Sauquet et al., 2012; Ramírez-
Barahona et al., 2020) and followed the widespread practice of
appropriating the language of geochronology despite the absence
of analyzed rocks, thereby conflating different sources of evidence.
At a minimum, molecular age estimates should use a distinctive
labeling system (e.g., Figure 3B).

Returning to the Denver Basin, many of its early Paleocene
floras are similar in composition and have low species diversity,
like those of the northern Plains. However, several intriguing
exceptions exist (Johnson et al., 2003), including the Corral Bluffs
and Castle Rock floras. The Corral Bluffs (Lyson et al., 2019)
exposures contain a well-dated sequence of ca. 66.2–65.2 Ma floras
that co-occur with well-preserved mammalian remains, allowing
direct correlations between floral recovery stages and increases in
mammalian body size. The event horizon is not preserved, but the
ages of the fossils are well constrained from a U–Pb dated ash layer,
paleomagnetic stratigraphy, and a characteristic earliest Paleocene
fern-spore spike. The sampling of K floras at Corral Bluffs is limited
but sufficient to show a loss of more than half of the angiosperm
species, consistent with the Williston Basin. Taxonomic work is at
an early stage, but an exciting occurrence is the oldest definitive
fossil legume fruit (Fabaceae); most elements, including Juglanda-
ceae, Platanaceae, and palms, appear to be consistent with typical
early Paleocene floras.

The ca. 63.8 Ma Castle Rock flora (Johnson and Ellis, 2002; Ellis
et al., 2003; Erdei et al., 2019) was the first to break the mold of low-
diversity, homogenous early Paleocene assemblages. The estimated
richness of more than 100 species at Castle Rock is several times
that of typical Paleocene floras from the western USA. Variable
composition at the local scale (beta diversity) and prevalence of
notably large leaves with drip tips indicate warm and humid
conditions, leading to the flora’s initial description as a “tropical
rainforest in Colorado” (Johnson and Ellis, 2002). Large angio-
sperm leaves are easily fragmented and rarely preserved as fossils
(e.g., Merkhofer et al., 2015), and they only occur in the modern
world in humid, warm habitats (Wright et al., 2017). Thus, Castle
Rock represents a minimally transported assemblage that records
small-scale compositional variation and a warm, at least seasonally
wet environment (Ellis et al., 2003). These observations led to the

hypothesis that vegetation adjacent to the Laramide Front Range
received abundant orographic rainfall, which fostered high floral
diversity (Johnson and Ellis, 2002). An alternative idea would be
that Castle Rock more faithfully preserves large leaves and diversity
than other early Paleocene sites but does not represent fundamen-
tally different source vegetation similar to a tropical rainforest.
Taxonomic studies of the Castle Rock macroflora that would
address this issue are limited (Erdei et al., 2019). The elements
identified to date appear to represent widespread clades in
temperate-zone Paleocene floras, such as Platanaceae, Malvaceae,
Lauraceae, and rare cycads (Ellis et al., 2003; Erdei et al., 2019). The
palynoflora from Castle Rock contains standard early Paleocene
taxa for the region, and no distinctive tropical rainforest elements
have been reported (Nichols and Fleming, 2002).

Neotropics

Thewet tropical forests of SouthAmerica, Africa, and Southeast Asia
hold most of the Earth’s biodiversity (Slik et al., 2015; Pillay et al.,
2022); however, the effects of the KPgE in the tropics have been
largely unknown. The situation changed with investigations of three
outstanding macrofloras in Colombia, from the late Maastrichtian
(ca. 68 Ma) Guaduas Formation and the middle-late Paleocene
(ca. 60–58 Ma) Cerrejón and Bogotá formations (e.g., Doria et al.,
2008; Wing et al., 2009; Correa et al., 2010; Carvalho et al., 2011;
Martínez et al., 2015; Herrera et al., 2019). The Paleocene floras
represent the world’s oldest true Neotropical rainforests, based on
family-level composition, leaf traits, and isotopic indicators for
closed-canopy environments (Wing et al., 2009; Graham et al.,
2019). The large fossil legumes and palm fruits are also typical of
tropical forests (Gómez-Navarro et al., 2009; Herrera et al., 2019).
The three fossil sites are not as close to the KPgE in age as the others
discussed here but far closer than any other tropical localities.
Carvalho et al. (2021) recently merged the macrofloral data with a
finely resolved palynological dataset from Colombia covering the
72–58 Ma interval, integrating 2,053 Maastrichtian macrofossils,
4,898 Paleocene macrofossils, and 53,029 pollen occurrences of
1,048 taxa from 39 outcrop and well sections. The age estimates rely
on well-established biostratigraphic correlations, and preservation
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of the K–Pg event horizon in one of the well sections provides a
definitive constraint for pre- and post-extinction palynofloras (de la
Parra et al., 2022). Notably, the Colombian locations are much closer
to Chicxulub (ca. 2000 vs. 3,000 km) than the areas discussed in
the western USA and would have frozen during the impact winter
according to climate models (Figure 1).

The Carvalho et al. (2021) analysis produced several significant
outcomes,most prominently the direct linkage of theKPgEwith the
emergence of the first tropical rainforests. Pollen data indicated an
extinction peak of ca. 45% at 66 Ma, one of the highest recorded
globally, significant increases in angiosperm abundance at the
expense of gymnosperms, a clear cluster separation of Cretaceous
and Paleocene composition, and a ca. 6 Myr recovery of diversity.
We note that these palynological results are based on composite
stratigraphy, and therefore the extinction estimates are not fully
comparable with single, continuous sections. The floristic shift is
also striking in the macrofloras. The Guaduas flora contains a
generalized mixture of plant families, including Rhamnaceae, Dil-
leniaceae, and Zingiberales. However, the Paleocene floras have
plant-family composition and relative abundance impressively
similar to the modern day, dominated by legumes and palms with
Melastomataceae, Menispermaceae, Euphorbiaceae, and Malva-
ceae among the supporting taxa (Figure 3A). The findings from
Colombia provide new, detailed evidence that the rise of angio-
sperms to true ecological dominance, shaping terrestrial biodiver-
sity in the last phase of the Angiosperm Terrestrial Revolution (see
Benton et al., 2022), was a direct legacy of the KPgE and the
opportunities it created. The results mesh well with a state-of-
the-art molecular clock study that used 238 well-constrained cali-
bration fossils (Ramírez-Barahona et al., 2020). Those authors
found that angiosperms achievedmuch of their phylogenetic diver-
sity as stem lineages in the Cretaceous, and crown-group families
mostly evolved after the KPgE (Figure 3B).

Patagonia

Until recently, detailed knowledge of the K–Pg plant extinction in
the SouthernHemisphere wasmainly limited to palynological work
in New Zealand, which showed a fern-spore spike associated with
an event horizon and iridium anomaly, ecological disruption, and
minimal overall extinction (Vajda et al., 2001; Vajda and Raine,
2003). This situation changed with a series of investigations on
Maastrichtian and Danian coastal lowland macrofloras from Chu-
but, Patagonian Argentina (paleolatitude ca. 50°S); these assem-
blages were intensively collected andwell dated using combinations
of radiometric, paleomagnetic, and biostratigraphic constraints
(Barreda et al., 2012; Scasso et al., 2012; Clyde et al., 2014; Vellekoop
et al., 2017; Clyde et al., 2021). More than 5,000 specimens were
collected from the latest Maastrichtian portion of the Lefipán
Formation (ca. 66.5–66 Ma) and the Danian Salamanca (ca. 65–
64Ma) and Las Flores (ca. 62Ma) formations, as well as smaller but
systematically informative samples from theMaastrichtian-Danian
La Colonia Formation (e.g., Iglesias et al., 2007, 2021; Cúneo et al.,
2014). The K–Pg event bed is not preserved in these strata, but the
stratigraphic interval that brackets the event or its hiatus is con-
strained to only a few meters of section in the Lefipán and La
Colonia study areas (Barreda et al., 2012; Clyde et al., 2021).

The Patagonian floras have been well-studied systematically.
The Lefipán and La Colonia assemblages include Araceae, lotuses,
diverse aquatic ferns, and several conifer families (Cúneo et al.,
2014; Wilf et al., 2017; Andruchow-Colombo et al., 2018, 2022).

The Salamanca Formation and correlative strata uniquely preserve
diverse fossil reproductive structures from the earliest Cenozoic
of the Southern Hemisphere (Figure 4), providing extraordinary
direct evidence of likely KPgE survivor taxa. Examples include
multiple organs of Agathis, cocosoid palm fruits (Attaleinae),
Rhamnaceae flowers (probable ziziphoid clade), two genera of
Cunoniaceae flowers (Schizomerieae and an unknown clade of
the family crown-group), and aMenispermaceae (Stephania) endo-
carp (Futey et al., 2012; Jud et al., 2017; Escapa et al., 2018; Jud
et al., 2018a,b; Jud and Gandolfo, 2021). Fossil leaves from the
Salamanca include species of Podocarpaceae (Dacrycarpus and an
extinct scale-leaved genus), Akaniaceae, Anacardiaceae, Fabaceae,
Lauraceae, Nothofagaceae, and Rosaceae (Quiroga et al., 2016;
Andruchow-Colombo et al., 2019; Iglesias et al., 2021). Most of
these taxa continued to be prominent elements of later Patagonian
fossil assemblages and living Gondwana-derived rainforest floras.

Palynological analysis of the Lefipán, which includes early
Danian pollen, provided the only detailed view of K–Pg plant
turnover in Patagonia in one continuous section (Barreda et al.,
2012). The results included a transient disruption followed by the
recovery of nearly all Cretaceous taxa, broadly similar to prior
findings from New Zealand (Vajda et al., 2001), and an intriguing
spike in the earliest Danian, not of ferns but of the extinct conifer
family Cheirolepidiaceae (Classopollis pollen). The palynology
from all the Patagonian formations shows very similar composition
(e.g., Barreda et al., 2012; Clyde et al., 2014; Stiles et al., 2020; Clyde
et al., 2021), indicating minimal variation in higher plant taxa
(as typically represented by palynomorphs; e.g., Nichols and
Johnson, 2008) across the K–Pg or among basins.

An early study of fossil leaves indicated that the Danian Sala-
manca leaf floras were more diverse than the most comparable
Paleocene floras from the western USA (Iglesias et al., 2007). Later,
Stiles et al. (2020) produced the first quantitative analysis of macro-
floral turnover in the Southern Hemisphere, based on the Lefipán
and Salamanca dicot-leaf assemblages (n > 3,500 leaves). The
authors found a sharp K–Pg drop in rarefied species diversity
consistent with an extinction event (Figure 5A). Notably, both
the Lefipán and Salamanca samples were more speciose than
comparable North American samples (Figure 5A). Only five ‘sur-
vivor’ species were found, suggesting a > 90% face-value extinction
far exceeding the North Dakota baseline of 57%. This comparison
and the overall decrease in diversity (Figure 5A) strongly support
significant species losses but illustrate the importance of age control
when comparing extinction estimates. Given its larger age uncer-
tainty, the Lefipán sample could correspond to any of several time
slices of the Hell Creek Formation that, if taken alone for strict
comparability, would also yield 90% or comparable species extinc-
tion (Figure 2B). Morphospace analysis of all leaf species unexpect-
edly showed that the Danian floras retained and expanded on
Cretaceous morphologies, particularly by exhibiting new lobed
and toothed leaf forms (Figure 5B). Because the Salamanca floras
appear to primarily contain paleo-endemic taxa (Iglesias et al.,
2021), this result supported in situ adaptation and evolution in
response to an overall cooling trend (Stiles et al., 2020).

Discussion

The paleobotanical data reviewed here have greatly expanded the
understanding of geographic heterogeneity in the K–Pg plant extinc-
tion, while illustrating how variations in temporal, spatial, and taxo-
nomic resolution, among other factors, limit comparisons and
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Figure 4. Early Danian reproductive fossils from the Salamanca Formation, Chubut, Argentina. (A) Agathis immortalis (Araucariaceae) branch with leaves and axillary pollen cones
(see Escapa et al., 2018). (B) Notiantha grandensis (Rhamnaceae) flowers side-by-side in transverse and longitudinal views (see Jud et al., 2017). (C) Stephania psittaca
(Menispermaceae) endocarp (see Jud et al., 2018b). Lacinipetalum spectabilum (Cunoniaceae) flower, detail of ovary surface covered in trichomes and entrapped pollen grains,
glowing under epifluorescence (see Jud et al., 2018a). All the specimens are housed at Museo Paleontolόgico Egidio Feruglio, Trelew, Chubut. Credits: A, C, D: P. Wilf; B, N. Jud, used
with permission.
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insights. Despite the advances from the Americas, there are very few
well-dated, well-preserved macrofloras of appropriate age elsewhere
(Nichols and Johnson, 2008). For example, the most suitable assem-
blage in Europe is probably the ca. 60–61MaMenat Fossil Pit in Puy-
de-Dôme, France, which preserves notably diverse plants and insect-
feeding damage (Wappler et al., 2009).Much remains to be learned to
better trace the evolutionary and biogeographic legacies of the KPgE
in the living world flora, and well-constrained paleobotanical data
from new areas remain fundamental.

Maritimeand latitudinal buffering of impact-winter temperatures
may be top-level variables for KPgE severity (Figure 1). Most plant
species are frost-intolerant, and the Earth’s surface was largely frost-
free at the time (Scotese, 2021), suggesting that the terminal Cret-
aceous vegetation was highly vulnerable to the impact winter. The
potential freezing of the tropics is particularly critical for understand-
ing the dramatic turnovers observed in Colombia. The faster recov-
eries in the southern vs. northern Rockies directly support buffering,
whereas the minimal palynological extinctions in Patagonia and
New Zealand could reflect both buffering and distance from the
crater. The contrasting palynological andmacrofloral data from the
same strata in Patagonia support the idea (see Introduction) that
the K–Pg plant extinction primarily occurred at lower taxonomic
levels. Conversely, Colombia’s ca. 45% pollen extinction could
indicate both drastic species losses and significant elimination of
higher taxa.

The end-Cretaceous plant extinction has been questioned
because of the apparent lack of significant global losses at the family
or major-clade level (Cascales-Miñana and Cleal, 2014; Sauquet
and Magallón, 2018; Thompson and Ramírez-Barahona, 2023).
However, we hold that the K–Pg event included a massive extinc-
tion of plants and more. Estimates of extinction rates based on
phylogenies of living taxa are highly uncertain (Louca and Pennell,
2020), particularly towards deeper nodes (O’Meara and Beaulieu,
2021). Attempts to quantify the KPgE should rely on the fossil
record. Even though fossil data are probably insufficient to address
this question globally and above the species level, every regional
macrofossil study with large sample sizes and well-constrained
stratigraphy shows significant species losses (usually >50%;
Figures 2A, 5A). Species losses are also extinctions, and species
conservation is the goal ofmostmodern conservation efforts. Given
the wide distribution and high species diversity of angiosperms by
the end of the Cretaceous, significant family-level extinctions were
probably statistically unlikely. This situation parallels the even
more diverse insects, which also show no global extinctions at the
family level in large temporal bins bracketing the KPgE (Labandeira
and Sepkoski, 1993). However, the disappearances of specialized
insect-damage morphotypes on many of the same floras discussed
here suggest widespread herbivore losses (Labandeira et al., 2002;
Donovan et al., 2014, 2017). The K–Pg event was more than a mass
extinction for land plants because it instantaneously transformed
terrestrial ecosystems, initiating developments of paramount
importance for understanding and conserving today’s biotas. These
included the radiations and biogeographic movements of the sur-
vivor lineages from the KPgE to the present, novel plant–animal
interactions, extensive crown-group angiosperm radiations, and
the rise of Neotropical and Gondwanan rainforests.

The future

The KPgE is probably the most relevant deep-time analog for the
projected modern-day extinctions, which are also occurring nearly

instantaneously in geologic time. Although the worst outcomes are
still avoidable (Dinerstein et al., 2020), the coming centuries are
projected to bring devastating species and ecosystem losses
(Barnosky et al., 2011; Armstrong McKay et al., 2022); these will
surely qualify as a mass extinction, even if few plant families
disappear. The predictions, although challenging to compare with
fossil data, are nevertheless on a scale similar to that of the regional
paleobotanical studies reviewed here. For example, a meta-analysis
of conservation databases found that extinction currently threatens
39.4% of plant species (Nic Lughadha et al., 2020). If the projected
extinctions become a reality, new evolutionary radiations and
ecosystems will eventually transform the biosphere as in the geo-
logic past, but most likely far too late to benefit humans.
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