L-Functions for GSp(2) $\times \operatorname{GL}(2)$: Archimedean Theory and Applications

Tomonori Moriyama

Abstract

Let Π be a generic cuspidal automorphic representation of $\operatorname{GSp}(2)$ defined over a totally real algebraic number field k whose archimedean type is either a (limit of) large discrete series representation or a certain principal series representation. Through explicit computation of archimedean local zeta integrals, we prove the functional equation of tensor product L-functions $L(s, \Pi \times \sigma)$ for an arbitrary cuspidal automorphic representation σ of $\mathrm{GL}(2)$. We also give an application to the spinor L-function of Π.

Introduction

Let G be a reductive algebraic group defined over a global field k, which is assumed to be split over k for simplicity. We fix an embedding $\iota: \widehat{\mathrm{G}} \hookrightarrow \mathrm{GL}(N, \mathbf{C})$ of the dual group $\widehat{\mathrm{G}}$ of G . Suppose that $\Pi=\otimes^{\prime} \Pi_{v}$ (resp. $\sigma=\otimes^{\prime} \sigma_{v}$) is a cuspidal automorphic representation of $\mathrm{G}_{\mathbf{A}_{k}}$ (resp. of $\mathrm{GL}(r)_{\mathbf{A}_{k}}$). Here \mathbf{A}_{k} stands for the adele ring of k . Many mathematicians (e.g., [G-PS-R]) have investigated the automorphic L-function $L(s, \Pi \times \sigma)$ arising from the tensor product representation

$$
\iota \otimes \mathrm{id}: \widehat{\mathrm{G}} \times \mathrm{GL}(r, \mathbf{C}) \rightarrow \mathrm{GL}(N r, \mathbf{C})
$$

using the method of zeta integrals as well as the Langlands-Shahidi method. Recently the latter method has made marked progress and yielded functorial liftings of Π in several cases (see [Ki] for exposition). However, in order to know arithmetic properties of these L-functions, it seems necessary to do more detailed studies through zeta integrals, including careful analysis at the archimedean and ramified finite places. In this paper, we let $G=G S p(2)$ be the symplectic group with similitude of degree two, ι a natural inclusion to $\mathrm{GL}(4, \mathbf{C})$, and $r=2$, and we investigate the L-function $L(s, \Pi \times \sigma)$ by means of the zeta integrals discovered by M. Novodvorsky in the mid1970s [No-1, No-2]. The main goal of this paper is to prove the following.

Main Theorem (See Theorem 1.1 for the precise statement.) Suppose that k is a totally real algebraic number field. Moreover we assume the following:
A. 1 The cuspidal automorphic representation Π is globally generic, in the sense that Π has a non-vanishing Whittaker model.
A. 2 The local component Π_{v} at each real place v is equivalent to either a limit of large discrete series representation or an irreducible P_{1}-principal series representation.

[^0]Then for an arbitrary cuspidal automorphic representation of $\mathrm{GL}(2)_{\mathbf{A}_{k}}$, the L-function $L(s, \Pi \times \sigma)$, originally defined for $\operatorname{Re}(s) \gg 0$, is continued to a meromorphic function on the whole s-plane and satisfies the expected functional equation. We also determine the possible poles of $L(s, \Pi \times \sigma)$.

We understand that our main results above together with the functorial lifting of Π to GL(4) can be obtained by the Langlands-Shahidi method (see [A-S-1, Section 5], [A-S-2]). Note that the description of the functorial lifting in [A-S-2] gives the location of possible poles mentioned above. We believe, however, that our concrete investigation through Novodvorsky's zeta integrals is of independent interest. To illustrate an interesting feature of the zeta integrals, we also consider the situation where a cusp form σ in the zeta integral is replaced by an Eisenstein series. Then, as in the case of the classical Rankin-Selberg convolution for GL(2) $\times \mathrm{GL}(2)$ (cf. [Shm]), the global zeta integral is decomposed into a product of two spinor L-functions of Π. As an application, we give a new proof of the entireness of the spinor L-function in the "everything unramified" situation.

Now we explain the method of this paper in some detail. Although Novodvorsky's papers are rather sketchy, D. Bump [Bu] and D. Soudry [So-1] supply the missing details on the basic identity, the local functional equation, and the evaluation of the local zeta integrals at the unramified places (see also [G-PS-R, PS-S]). Hence our main task is to evaluate the local zeta integrals $Z^{(v)}\left(s, W, W^{\prime}, f\right)$ at each real place v, where W (resp. W^{\prime}) belongs to the local Whittaker model of Π_{v} (resp. of σ_{v}) and f is a section of a certain family of principal series representations on GL(2) $)_{\mathrm{k}_{v}}$. To do the evaluation, we use the explicit formulae of local Whittaker functions on $\mathrm{G}_{\mathrm{k}_{v}} \cong \mathrm{GSp}(2, \mathbf{R})$ (and $\mathrm{GL}(2)_{\mathrm{k}_{v}} \cong \mathrm{GL}(2, \mathbf{R})$) obtained in the previous papers [Mo2] and [Mo-3] (cf. [O, Mi-O-1, Mi-O-2]). In fact, we did such computation for a special pair $\left(\Pi_{v}, \sigma_{v}\right)$ in [Mo-2, Section 3]. In the case of more general pairs $\left(\Pi_{v}, \sigma_{v}\right)$ (the "mixed weights case"), we have to choose (W, W^{\prime}, f) so as to make the integral $Z^{(v)}\left(s, W, W^{\prime}, f\right)$ computable and non-vanishing. An appropriate triplet $\left(W, W^{\prime}, f\right)$ will be constructed by using certain elements in the universal enveloping algebra $U\left(\mathfrak{g}_{v}\right)$ of $\mathfrak{g}_{v}=\operatorname{Lie}\left(\mathrm{G}_{\mathrm{k}_{v}}\right)$.

There are some related works to be mentioned here.
(i) Niwa [Ni] carried out the evaluation of the local zeta integral at the real place when both Π_{v} and σ_{v} are spherical principal series representations.
(ii) D. Soudry [So-2] (cf. [Wa, Section 7, p.361-362]) proposed another way of handling the archimedean local zeta integrals, based on the asymptotic expansion of local Whittaker functions.
(iii) Novodvorsky's zeta integral for $L(s, \Pi \times \sigma)$ works only when Π is globally generic. In particular, it cannot be applied to holomorphic cusp forms on $\mathrm{G}_{\mathrm{A}_{k}}$. M. Furusawa [Fu] and B. Heim [He] discovered other kinds of zeta integrals for $L(s, \Pi \times \sigma)$ that are applicable to such cases. To deal with Heim's zeta integrals in the mixed weights case, S. Böcherer and B. Heim [Bo-He] use certain differential operators and get non-vanishing zeta integrals.
The organization of this paper is as follows. In Section 1, we introduce some basic ingredients of this paper and formulate our main results more precisely. In Sections 2 and 3, we recall some facts about Eisenstein series on GL(2) and Novodvorsky's
zeta integrals for $\operatorname{GSp}(2) \times \operatorname{GL}(2)$, respectively. In Section 4, we write down the archimedean L - and ϵ-factors for the pair $\left(\Pi_{v}, \sigma_{v}\right)$ determined by the Langlands parameters of Π_{v} and σ_{v}. Then, in Section 5, we compute the local zeta integrals at the real places to prove the main results. In the final section, we discuss the case where the cusp form on GL(2) is replaced by an Eisenstein series.

Notation

(i) Let k be a totally real algebraic number field. For a place v of k , we denote by k_{v} the completion of k at v. The module of an element $x \in \mathrm{k}_{v}$ is denoted by $|x|_{v}$ or simply by $|x|$. If v is a finite place, \mathfrak{D}_{v} and $\mathfrak{P}_{v}=\left(\varpi_{v}\right)$ stand for the ring of integers in k_{v} and its prime ideal, respectively. We set $q_{v}:=\sharp\left(\mathfrak{D}_{v} / \mathfrak{P}_{v}\right)$. We denote the adele ring of k and \mathbf{Q} by \mathbf{A}_{k} and \mathbf{A}, respectively. The module of an element $x \in \mathbf{A}_{\mathrm{k}}$ is denoted by $|x|_{\mathbf{A}_{\mathrm{k}}}$. We fix a non-trivial character $\psi: \mathbf{A}_{\mathrm{k}} / \mathrm{k} \rightarrow \mathbf{C}^{(1)}$ by

$$
\psi(x):=\mathbf{e}_{\mathbf{A}}((\operatorname{id} \otimes \operatorname{tr})(x)), \quad x \in \mathbf{A}_{\mathrm{k}} \cong \mathbf{A} \otimes_{\mathbf{Q}} \mathrm{k}
$$

Here $\mathbf{e}_{\mathbf{A}}: \mathbf{A} / \mathbf{Q} \rightarrow \mathbf{C}^{(1)}$ is the non-trivial additive character of \mathbf{A} / \mathbf{Q} characterized by $\mathbf{e}_{\mathbf{A}}\left(t_{\infty}\right)=\exp \left(2 \pi \sqrt{-1} t_{\infty}\right)\left(t_{\infty} \in \mathbf{R}\right)$. For each place v of k , we denote by ψ_{v} the restriction of ψ to k_{v}. Let μ_{v} be the Haar measure on k_{v} which is self-dual with respect to ψ_{v}. If $k_{v} \cong \mathbf{R}$, then μ_{v} is the usual Lebesgue measure. For a finite place v, we have $\mu_{v}\left(\mathfrak{D}_{v}\right)=q_{v}^{-d_{v} / 2}$, where d_{v} is the greatest integer such that ψ_{v} is trivial on $\mathfrak{P}_{v}^{-d_{v}}$. On the other hand, we normalize the Haar measure on the multiplicative group k_{v}^{\times}by $d^{\times} t:=d t /|t|_{v}\left(\right.$ resp. $\left.d^{\times} t:=\left(1-q_{v}^{-1}\right)^{-1} d t /|t|_{v}\right)$ if v is a real place (resp. a finite place). As usual, we set $\Gamma_{\mathbf{R}}(s):=\pi^{-s / 2} \Gamma(s / 2)$ and $\Gamma_{\mathbf{C}}(s):=2(2 \pi)^{-s} \Gamma(s)(s \in \mathbf{C})$, where $\Gamma(s)$ is the Gamma function. For a character $\chi: \mathrm{k}_{v}^{\times} \rightarrow \mathbf{C}^{\times}$, we denote Tate's L - and ϵ-factors by $L(s, \chi)$ and $\epsilon\left(s, \chi, \psi_{v}\right)$, respectively. Moreover we set

$$
\gamma\left(s, \chi, \psi_{v}\right):=\epsilon\left(s, \chi, \psi_{v}\right) \times \frac{L\left(1-s, \chi^{-1}\right)}{L(s, \chi)} .
$$

(ii) Let G be the symplectic group with similitude of degree 2 defined over \mathbf{Q} :

$$
\begin{aligned}
& \mathrm{G}=\mathrm{GSp}(2):=\left\{g \in \mathrm{GL}(4) \mid{ }^{t} g J_{4} g=\nu(g) J_{4} \text { for some } \nu(g) \in \mathbf{G}_{m}\right\} \\
& J_{4}=\left(\begin{array}{cc}
0_{2} & 1_{2} \\
-1_{2} & 0_{2}
\end{array}\right)
\end{aligned}
$$

The center of G is given by $\mathrm{Z}:=\left\{z 1_{4} \in \mathrm{G} \mid z \in \mathbf{G}_{m}\right\}$. Set $\mathrm{H}:=\left\{h=\left(h_{1}, h_{2}\right) \in\right.$ $\left.\mathrm{GL}(2) \times \mathrm{GL}(2) \mid \operatorname{det}\left(h_{1}\right)=\operatorname{det}\left(h_{2}\right)\right\}$ and regard it as an algebraic subgroup of G through the embedding

$$
\mathrm{H} \ni h=\left(h_{1}, h_{2}\right) \mapsto\left(\begin{array}{cc|c}
a_{1} & a_{2} & b_{1} \\
& a_{2} & b_{2} \\
\hline c_{1} & c_{2} & d_{1} \\
& d_{2}
\end{array}\right) \in \mathrm{G}, \quad h_{i}=\left(\begin{array}{ll}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right) .
$$

Fix a maximal unipotent subgroup $N\left(\right.$ resp. $\left.\mathrm{N}^{\mathrm{H}}\right)$ of $\mathrm{G}($ resp. of H$)$ by

$$
\left.\begin{array}{rl}
\mathrm{N} & :=\left\{n\left(x_{0}, x_{1}, x_{2}, x_{3}\right):=\left(\begin{array}{l|l}
1 & x_{1} x_{2} \\
& 1
\end{array}\right)\right. \\
\hline & x_{2} x_{3} \\
\hline & 1
\end{array}\right)\left(\begin{array}{c|c}
1 x_{0} & \\
\hline & 1
\end{array}\right)
$$

We also define algebraic subgroups B^{\prime} and N^{\prime} by

$$
\mathrm{B}^{\prime}:=\left\{\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \in \mathrm{GL}(2)\right\}, \quad \mathrm{N}^{\prime}:=\left\{\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \in \mathrm{GL}(2)\right\} .
$$

For a \mathbf{Q}-algebra R and an algebraic group L defined over \mathbf{Q}, we denote by L_{R} the group of R-valued points of L. We frequently write $\operatorname{GL}(2, R)$ and $\operatorname{GSp}(2, R)$ in place of $\operatorname{GL}(2)_{R}$ and $\operatorname{GSp}(2)_{R}$ if $R=\mathbf{R}, \mathbf{C}$. A maximal compact subgroup K (resp. K^{\prime}) of $\operatorname{GSp}(2)_{\mathbf{A}_{k}}$ (resp. GL(2) $)_{\mathbf{A}_{k}}$) is fixed as follows:

$$
\begin{aligned}
K & :=\prod_{v} K_{v}=\prod_{v: r e a l}\left(O(4) \cap \operatorname{GSp}(2)_{\mathrm{k}_{v}}\right) \times \prod_{v<\infty}\left(\mathrm{GL}\left(4, \mathfrak{D}_{v}\right) \cap \mathrm{GSp}(2)_{\mathrm{k}_{v}}\right) \\
K^{\prime} & :=\prod_{v} K_{v}^{\prime}=\prod_{v: \text { real }} O(2) \times \prod_{v<\infty} \operatorname{GL}\left(2, \mathfrak{D}_{v}\right)
\end{aligned}
$$

1 Preliminaries and the Main Result

After recalling some representation theory of $\operatorname{GL}(2, \mathbf{R})$ and $\operatorname{GSp}(2, \mathbf{R})$, we shall state our main theorem.

1.1 Representations of $\operatorname{GL}(2, \mathbf{R})$

In this subsection, we introduce two kinds of (irreducible) admissible representations of GL($2, \mathbf{R}$).
(i) Let $D_{l}(l \in \mathbf{Z},|l| \geq 1)$ be the (limit of) discrete series representation of $\operatorname{SL}(2, \mathbf{R})$ with minimal $S O(2)$-type

$$
S O(2) \ni r_{\theta}:=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \mapsto \exp (2 \pi \sqrt{-1} 1 \theta) \in \mathbf{C}^{(1)}
$$

For each $c \in \mathbf{C}$ and $l \geq 1$, we denote by $D_{l}[c]$ the irreducible admissible representation σ of $\operatorname{GL}(2, \mathbf{R})$ characterized by $\left.\sigma\right|_{\mathrm{SL}(2, \mathbf{R})}=D_{l} \oplus D_{-l}$, and $\sigma(z)=z^{c}$ $(z>0)$.
(ii) The principal series representation $I_{\mathrm{B}_{\mathbf{R}}^{\prime}}^{\mathrm{GL}(2, \mathbf{R})}\left(\epsilon_{1}, \epsilon_{2} ; c, \nu\right)$ of $\mathrm{GL}(2, \mathbf{R})$ is realized on the space of all C^{∞}-functions $f: \mathrm{GL}(2, \mathbf{R}) \rightarrow \mathbf{C}$ satisfying the relation

$$
\begin{aligned}
f\left(b h_{2}\right) & =\left|b_{1} b_{2}\right|^{c / 2} \epsilon_{1}\left(b_{1} /\left|b_{1}\right|\right) \epsilon_{2}\left(b_{2} /\left|b_{2}\right|\right)\left|b_{1} / b_{2}\right|^{(\nu+1) / 2} f(h) \\
\forall b & =\left(\begin{array}{cc}
b_{1} & * \\
0 & b_{2}
\end{array}\right) \in \mathrm{B}_{\mathrm{R}}^{\prime}, \forall h_{2} \in \mathrm{GL}(2, \mathbf{R})
\end{aligned}
$$

Here $\epsilon_{i}(i=1,2)$ is a character of $\{ \pm 1\}$ and $c, \nu \in \mathbf{C}$. The action of $\mathrm{GL}(2, \mathbf{R})$ on $I_{\mathrm{B}_{\mathrm{R}}^{\prime}}^{\mathrm{GL}(2)_{\mathrm{R}}}\left(\epsilon_{1}, \epsilon_{2} ; c, \nu\right)$ is given by right translation. It is easily checked that $I_{\mathrm{B}_{\mathbf{R}}^{\prime}}^{\mathrm{GL}(2, \mathbf{R})}\left(\epsilon_{1}, \epsilon_{2} ; c, \nu\right)$ is reducible if and only if $\nu \in \mathbf{Z}, \nu \neq 0$, and $\left(\epsilon_{1} \cdot \epsilon_{2}\right)(-1)=$ $(-1)^{\nu+1}$.

1.2 Representations of $\operatorname{GSp}(2, \mathbf{R})$

In this subsection, we introduce two kinds of (irreducible) admissible representations of $\operatorname{GSp}(2, \mathbf{R})$.
(i) Let $D_{\left(\lambda_{1}, \lambda_{2}\right)}$ be the (limit of) of large discrete series representation of $\operatorname{Sp}(2, \mathbf{R}):=$ $\{g \in \operatorname{GSp}(2, \mathbf{R}) \mid \nu(g)=1\}$ with Blattner parameter $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{Z}^{\oplus 2}$, where $\left(\lambda_{1}, \lambda_{2}\right)$ satisfies $1-\lambda_{1} \leq \lambda_{2} \leq 0$ or $1+\lambda_{2} \leq-\lambda_{1} \leq 0$. Here we refer the reader to [Mo-3, Subsection (1.2)] for the precise definition. For each $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{Z}^{\oplus 2}$ satisfying $1-\lambda_{1} \leq \lambda_{2} \leq 0$ and $c \in \mathbf{C}$, there exists an irreducible admissible representation $\pi=D_{\left(\lambda_{1}, \lambda_{2}\right)}[c]$ of $\operatorname{GSp}(2, \mathbf{R})$ characterized by

$$
\left.\pi\right|_{\mathrm{sp}(2, \mathbf{R})}=D_{\left(\lambda_{1}, \lambda_{2}\right)} \oplus D_{\left(-\lambda_{2},-\lambda_{1}\right)}, \quad \pi(z)=z^{c}, \quad(z>0)
$$

(ii) We define the Jacobi parabolic subgroup P_{1} of $\operatorname{GSp}(2, \mathbf{R})$ to be the stabilizer of the line $\mathbf{R} \cdot{ }^{t}(1,0,0,0)$ in $\operatorname{GSp}(2, \mathbf{R})$. We fix the Langlands decomposition $P_{1}=M_{1} A_{1} N_{1}$ of P_{1} as follows:

$$
\begin{aligned}
& M_{1}:=\left\{\left.\left(\begin{array}{l|l}
\epsilon_{0} & \epsilon_{0} \\
& \epsilon_{0} \\
\hline & { }_{1}
\end{array}\right)\left(\begin{array}{ll|l}
\epsilon_{1} & & \\
\hline & & b \\
\hline & c & { }^{\epsilon} 1
\end{array}\right) \right\rvert\, \epsilon_{0}, \epsilon_{1}= \pm 1,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbf{R})\right\} ; \\
& A_{1}:=\left\{z \operatorname{diag}\left(a_{1}, 1, a_{1}^{-1}, 1\right) \mid z, a_{1}>0\right\} ; \quad N_{1}:=\left\{n\left(x_{0}, x_{1}, x_{2}, 0\right) \mid x_{i} \in \mathbf{R}\right\} .
\end{aligned}
$$

Let $\left(\sigma_{n, \pm}, V_{n, \pm}\right)(n \geq 1)$ be the irreducible unitary representation of M_{1} characterized by $\left.\sigma_{n, \pm}\right|_{\mathrm{SL}(2, \mathbf{R})}=D_{n} \oplus D_{-n}$ and $\left.\sigma\right|_{\mathrm{SL}(2, \mathbf{R})}(\operatorname{diag}(-1,1,-1,1))= \pm 1$. For $\left(c, \nu_{1}\right) \in \mathbf{C}^{2}$, we define a quasi-character $\chi_{\left(c, \nu_{1}\right)}: A_{1} \rightarrow \mathbf{C}^{\times}$by

$$
\chi_{\left(c, \nu_{1}\right)}\left(z \operatorname{diag}\left(a_{1}, 1, a_{1}^{-1}, 1\right)\right)=z^{c} a_{1}^{\nu_{1}} .
$$

Then the P_{1}-principal series representation $I\left(P_{1} ; \sigma_{n, \pm}, c, \nu_{1}\right)$ of $\operatorname{GSp}(2, \mathbf{R})$ is realized on the space of all C^{∞}-functions $f: \operatorname{GSp}(2, \mathbf{R}) \longrightarrow V_{n, \pm}$ satisfying

$$
\begin{aligned}
& f(\text { mang })=\sigma_{n, \pm}(m) \chi_{\left(c, \nu_{1}+2\right)}(a) f(g) \\
& \quad \forall(m, a, n, g) \in M_{1} \times A_{1} \times N_{1} \times \operatorname{GSp}(2, \mathbf{R}),
\end{aligned}
$$

on which $\operatorname{GSp}(2, \mathbf{R})$ acts by right translation.

1.3 Main Results

Let $\Pi=\otimes^{\prime} \Pi_{v}$ (resp. $\sigma=\otimes^{\prime} \sigma_{v}$) be a cuspidal automorphic representation of $\mathrm{G}_{\mathrm{A}_{\mathrm{k}}}$ (resp. of GL(2) $)_{\mathbf{A}_{k}}$) with unitary central character $\omega_{\Pi}: \mathbf{A}_{\mathrm{k}}^{\times} \rightarrow \mathbf{C}^{(1)}$ (resp. $\omega_{\sigma}: \mathbf{A}_{\mathrm{k}}^{\times} \rightarrow$ $\left.\mathbf{C}^{(1)}\right)$. Throughout this paper, we make two fundamental assumptions on Π. In order
to state our first assumption, we define the global Whittaker function $\mathcal{W}_{F}(g)$ attached to a cusp form $F \in \Pi$ by

$$
\mathcal{W}_{F}(g):=\int_{\mathrm{N}_{\mathrm{k}} \backslash \mathrm{~N}_{\mathrm{A}_{\mathrm{k}}}} F(n g) \psi_{\mathrm{N}}\left(n^{-1}\right) d n, \quad g \in \mathrm{G}_{\mathrm{A}_{k}}
$$

Here $\psi_{\mathrm{N}}: \mathrm{N}_{\mathrm{A}_{\mathrm{k}}} \rightarrow \mathbf{C}^{(1)}$ is a non-degenerate unitary character defined by

$$
\psi_{\mathrm{N}}\left(n\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right)=\psi\left(-x_{0}-x_{3}\right) \in \mathbf{C}^{(1)}
$$

Our first assumption is:
A. 1 For some cusp form F in Π, the global Whittaker function \mathcal{W}_{F} attached to F does not vanish.
Note that this assumption implies that the representation Π_{v} of $\mathrm{G}_{\mathrm{k}_{v}}$ for each place v can be realized as a subspace of

$$
\left\{W: \mathrm{G}_{\mathrm{k}_{v}} \rightarrow \mathbf{C} \mid \text { smooth, } W(n g)=\psi_{\mathrm{N}}(n) W(g), \quad \forall(n, g) \in \mathrm{N}_{\mathrm{k}_{v}} \times \mathrm{G}_{\mathrm{k}_{v}}\right\}
$$

We denote this subspace by $\mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right)$ and call it the local Whittaker model of Π_{v} (cf. [Mo-3, Section 3]). For a real place v, this means that the representation Π_{v} must be large in the sense of Vogan.
A. 2 For each real place v, the representation Π_{v} of $\operatorname{GSp}(2)_{\mathbf{k}_{v}} \cong \operatorname{GSp}(2, \mathbf{R})$ is equivalent to either $D_{\left(\lambda_{1}, \lambda_{2}\right)}[c]$ or an irreducible P_{1}-principal series representation $I\left(P_{1} ; \sigma_{n, \pm}, c, \nu_{1}\right)$.
On the other hand, we make no restrictions on $\sigma=\otimes^{\prime} \sigma_{v}$. For a cusp form $\varphi \in \sigma$ on $\operatorname{GL}(2)_{\mathbf{A}_{k}}$, the global Whittaker function $\mathcal{W}_{\varphi}\left(h_{2}\right)$ attached to φ is defined by

$$
\mathcal{W}_{\varphi}\left(h_{2}\right):=\int_{\mathrm{k} \backslash \mathbf{A}_{\mathrm{k}}} \varphi\left(\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) h_{2}\right) \psi(-x) d x, \quad h_{2} \in \mathrm{GL}(2)_{\mathbf{A}_{\mathrm{k}}} .
$$

It is well known that $\mathcal{W}_{\varphi}\left(h_{2}\right)$ does not vanish for $\varphi \neq 0$. Hence each local component σ_{v} of a cuspidal automorphic representation σ can be realized as a subspace of

$$
\begin{aligned}
\left\{W^{\prime}: \mathrm{GL}(2)_{\mathrm{k}_{v}} \rightarrow \mathbf{C} \mid W^{\prime} \text { is smooth and } W^{\prime}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) g\right) & =\psi_{v}(x) W^{\prime}(g) \\
\forall(x, g) & \left.\in \mathrm{k}_{v} \times \mathrm{GL}(2)_{\mathrm{k}_{v}}\right\}
\end{aligned}
$$

We denote this subspace by $\mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right)$ and call it a local Whittaker model of σ_{v}. For a real place v, the existence of local Whittaker models implies that σ_{v} is equivalent to one of the representations introduced in Subsection 1.1. For each finite place v, we define the local L-factor $L\left(s, \Pi_{v} \times \sigma_{v}\right)$ and ϵ-factor $\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)$ as in Subsection 3.3 below. For almost all finite places $v, L\left(s, \Pi_{v} \times \sigma_{v}\right)$ are Euler factors of degree eight. On the other hand, for each real place v, we define $L\left(s, \Pi_{v} \times \sigma_{v}\right)$ and $\epsilon\left(s, \Pi_{v} \times\right.$ $\left.\sigma_{v}, \psi_{v}\right)$ through the Langlands parameters of Π_{v} and σ_{v}, whose explicit forms are given in Section 4. Then we have the L-function $L(s, \Pi \times \sigma)$ for $\Pi \times \sigma$ and its ϵ-factor $\epsilon(s, \Pi \times \sigma)$ by

$$
L(s, \Pi \times \sigma):=\prod_{v} L\left(s, \Pi_{v} \times \sigma_{v}\right), \quad \epsilon(s, \Pi \times \sigma):=\prod_{v} \epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)
$$

where v runs through all the places of k. Next we set

$$
\begin{array}{rlrl}
\Pi^{\vee} & :=\{\widetilde{F} \mid F \in \Pi\}, & \widetilde{F}(g):=\omega_{\Pi}(\nu(g))^{-1} F(g), \\
\sigma^{\vee}:=\{\widetilde{\varphi} \mid \varphi \in \sigma\}, & \widetilde{\varphi}(h):=\omega_{\sigma}(\operatorname{det}(h))^{-1} \varphi(h) .
\end{array}
$$

Then the cuspidal automorphic representations $\Pi^{\vee}=\otimes^{\prime} \Pi_{v}^{\vee}$ and $\sigma^{\vee}=\otimes^{\prime} \sigma_{v}^{\vee}$ are the contragredient representations of Π and σ, respectively. Since Π^{\vee} also satisfies the assumptions A. 1 and A.2, we can define the L-function for $\Pi^{\vee} \times \sigma^{\vee}$:

$$
L\left(s, \Pi^{\vee} \times \sigma^{\vee}\right):=\prod_{v} L\left(s, \Pi_{v}^{\vee} \times \sigma_{v}^{\vee}\right)
$$

Now we can state our main results.
Theorem 1.1 Under the assumptions A. 1 and A.2, we have the following assertions:
(i) The L-function $L(s, \Pi \times \sigma)$ is continued to a meromorphic function on the whole s-plane and satisfies the following functional equation

$$
L(s, \Pi \times \sigma)=\epsilon(s, \Pi \times \sigma) \times L\left(1-s, \Pi^{\vee} \times \sigma^{\vee}\right)
$$

(ii) If $\omega_{\Pi} \cdot \omega_{\sigma}=|\cdot|_{\mathbf{A}_{k}}^{\lambda}$ with some $\lambda \in \sqrt{-1} \mathbf{R}$, then the possible poles of $L(s, \Pi \times \sigma)$ are located at $s=-\lambda / 2,-\lambda / 2+1$, and are at most simple. Otherwise, $L(s, \Pi \times \sigma)$ is an entire function.

2 A Review of the Eisenstein Series on GL(2)

In this section, we review some of the basics about the Eisenstein series on GL(2), which will be used to define the global zeta integral in the next section. The main reference is [J-2].

2.1 Induced Representation (Local)

In this subsection, we fix a finite or an infinite place v of k . Let $\chi_{i}: \mathrm{k}_{v}^{\times} \rightarrow \mathbf{C}^{(1)}(i=$ $1,2)$ be two unitary characters of k_{v}^{\times}. We define the principal series representation $I\left(\chi_{1}, \chi_{2}\right)$ by

$$
\begin{aligned}
I\left(\chi_{1}, \chi_{2}\right):= & \left\{f: \mathrm{GL}(2)_{\mathrm{k}_{v}} \rightarrow \mathbf{C} \mid f\left(b h_{1}\right)=\chi_{1}\left(b_{1}\right) \chi_{2}\left(b_{2}\right) f\left(h_{1}\right),\right. \\
& \left.\forall b=\left(\begin{array}{cc}
b_{1} & * \\
0 & b_{2}
\end{array}\right) \in \mathrm{B}_{\mathrm{k}_{v}}^{\prime}, \forall h_{1} \in \mathrm{GL}(2)_{\mathrm{k}_{v}}\right\} .
\end{aligned}
$$

The action of GL $(2)_{\mathrm{k}_{v}}$ on $I\left(\chi_{1}, \chi_{2}\right)$ is given by right translation. We regard the disjoint union

$$
I\left(\chi_{1}, \chi_{2} ; s\right):=\bigsqcup_{s \in \mathrm{C}} I\left(\chi_{1}|\cdot|^{s}, \chi_{2}|\cdot|^{-s}\right)
$$

as a vector bundle on the base space \mathbf{C}.

Definition 2.1 (i) A function $f: \mathbf{C} \times \mathrm{GL}(2)_{\mathrm{k}_{v}} \rightarrow \mathbf{C}$ is said to be a standard section of $I\left(\chi_{1}, \chi_{2} ; s\right)$ if the following two conditions hold:
(a) for each fixed $s \in \mathbf{C}$, the function $\mathrm{GL}(2)_{\mathrm{k}_{v}} \ni h_{1} \mapsto f\left(s, h_{1}\right) \in \mathbf{C}$ is a right K_{v}^{\prime}-finite vector in the principal series representation $I\left(\chi_{1}|\cdot|^{s}, \chi_{2}|\cdot|^{-s}\right)$;
(b) the functions $K_{v}^{\prime} \ni u \mapsto f(s, u) \in \mathbf{C}$ are independent of $s \in \mathbf{C}$.

We denote the totality of standard sections by $\mathcal{J}^{s t d}\left(\chi_{1}, \chi_{2} ; s\right)$.
(ii) A function $f: \mathbf{C} \times \mathrm{GL}(2)_{\mathrm{k}_{v}} \rightarrow \mathbf{C} \cup\{\infty\}$ is said to be a holomorphic (resp. meromorphic) section of $I\left(\chi_{1}, \chi_{2} ; s\right)$ if there exist standard sections $f_{i} \in \mathcal{J}^{s t d}\left(\chi_{1}, \chi_{2} ; s\right)$ and holomorphic (resp. meromorphic) functions $a_{i}(s)$ on $\mathbf{C}(1 \leq i \leq N)$ such that

$$
f\left(s, h_{1}\right)=\sum_{i=1}^{N} a_{i}(s) f_{i}\left(s, h_{1}\right)
$$

Next we introduce a useful class of meromorphic sections, which we call Jacquet sections. If v is a finite place (resp. a real place), then we define the space $\mathcal{S}\left(\mathrm{k}_{v}^{2}\right)$ of Schwartz-Bruhat functions on k_{v}^{2} by

$$
\mathcal{S}\left(\mathrm{k}_{v}^{2}\right):=\left\{\Phi: \mathrm{k}_{v}^{2} \rightarrow \mathbf{C} \mid \text { locally constant, the support of } \Phi \text { is compact }\right\}
$$

$$
\left(\text { resp. } \mathcal{S}\left(\mathrm{k}_{v}^{2}\right):=\left\{\Phi(x, y)=P(x, y) \exp \left(-\pi\left(x^{2}+y^{2}\right)\right) \mid P \in \mathbf{C}[X, Y]\right\}\right)
$$

For each $\Phi \in \mathcal{S}\left(\mathrm{k}_{v}^{2}\right)$, we set

$$
f_{\Phi}^{(v)}\left(s, h_{1}\right):=\chi_{1}\left(\operatorname{det}\left(h_{1}\right)\right)\left|\operatorname{det}\left(h_{1}\right)\right|_{v}^{s} \int_{\mathrm{k}_{v}^{\times}} \Phi\left((0, t) h_{1}\right)\left(\chi_{1} \cdot \chi_{2}^{-1}\right)(t)|t|^{2 s} d^{\times} t
$$

Proposition 2.2 The integral $f_{\Phi}^{(v)}\left(s, h_{1}\right)$ converges absolutely for $\operatorname{Re}(s)>0$ and defines a meromorphic section of $I\left(\chi_{1}, \chi_{2} ; s\right)$ by analytic continuation. If $\chi_{1} \cdot \chi_{2}^{-1}=|\cdot|^{\lambda}$ for some $\lambda \in \sqrt{-1} \mathbf{R}$, then $f_{\Phi}^{(v)}\left(s, h_{1}\right)$ is holomorphic except for having possible simple poles at

$$
s \in \frac{-\lambda}{2}+\frac{\pi \sqrt{-1} \mathbf{Z}}{\log q_{v}}
$$

Otherwise, $f_{\Phi}^{(v)}\left(s, h_{1}\right)$ is a holomorphic section.
We call $f_{\Phi}^{(v)}\left(s, h_{1}\right)$ the Jacquet section attached to Φ. We denote the totality of holomorphic sections (resp. that of meromorphic sections, that of Jacquet sections) by $\mathcal{J}^{\text {holo }}\left(\chi_{1}, \chi_{2} ; s\right),\left(\right.$ resp. $\left.\mathcal{J}^{\text {mero }}\left(\chi_{1}, \chi_{2} ; s\right), \mathcal{J}^{J}\left(\chi_{1}, \chi_{2} ; s\right)\right)$.

2.2 Local Intertwining Operators

In this subsection, we recall some basic facts on local intertwining integrals for $\mathrm{GL}(2)_{\mathrm{k}_{v}}$.
Proposition 2.3 For a meromorphic section $f\left(s, h_{1}\right) \in \mathcal{J}^{\text {mero }}\left(\chi_{1}, \chi_{2} ; s\right)$, we define the local intertwining integral $M_{v} f\left(s, h_{1}\right)$ by

$$
M_{v} f\left(s, h_{1}\right):=\int_{\mathrm{k}_{v}} f\left(s, w_{0}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) h_{1}\right) d x, \quad w_{0}:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

If $\operatorname{Re}(s)>1 / 2$, then the integral $M_{v} f\left(s, h_{1}\right)$ converges absolutely except for the poles of $f\left(s, h_{1}\right)$. Moreover, $M_{v} f\left(s, h_{1}\right)$ defines a meromorphic section of $I\left(\chi_{2}, \chi_{1} ; 1-s\right)$ by analytic continuation.

By Proposition 2.3, we have a linear map

$$
M_{v}: \mathcal{J}^{\text {mero }}\left(\chi_{1}, \chi_{2} ; s\right) \rightarrow \mathfrak{J}^{\text {mero }}\left(\chi_{2}, \chi_{1} ; 1-s\right) .
$$

In order to describe the behavior of Jacquet sections under the intertwining operator M_{v}, we define the Fourier transform $\widehat{\Phi} \in S\left(\mathrm{k}_{v}^{2}\right)$ of a Schwartz-Bruhat function $\Phi \in$ $S\left(\mathrm{k}_{v}^{2}\right)$ by

$$
\widehat{\Phi}(u, v):=\int_{\mathbf{k}_{v}^{2}} \Phi(x, y) \psi_{v}(-y u+x v) d x d y .
$$

Moreover we set

$$
\widetilde{f}_{\widehat{\Phi}}\left(s, h_{1}\right):=\chi_{2}\left(\operatorname{det}\left(h_{1}\right)\right)\left|\operatorname{det}\left(h_{1}\right)\right|_{v}^{1-s} \int_{k_{v}^{\times}} \widehat{\Phi}\left((0, t) h_{1}\right)\left(\chi_{2} \cdot \chi_{1}^{-1}\right)(t)|t|^{2-2 s} d^{\times} t
$$

Then we have the following.
Proposition 2.4 ([J-2, pp. 14-15]) The image $M_{v} f_{\Phi}$ of a Jacquet section $f_{\Phi} \in$ $\mathcal{J}^{J}\left(\chi_{1}, \chi_{2}, s\right)$ is given by

$$
\begin{equation*}
\left(\chi_{1} \cdot \chi_{2}^{-1}\right)(-1) \times \gamma\left(2 s-1, \chi_{1} \cdot \chi_{2}^{-1}, \psi_{v}\right)^{-1} \times \widetilde{f}_{\widehat{\Phi}}\left(s, h_{1}\right) \tag{2.1}
\end{equation*}
$$

Taking (2.1) into consideration, we define the normalized intertwining operator M_{v}^{*} by

$$
M_{v}^{*}=\left(\chi_{1} \cdot \chi_{2}^{-1}\right)(-1) \gamma\left(2 s-1, \chi_{1} \cdot \chi_{2}^{-1}, \psi_{v}\right) M_{v}: \mathcal{J}^{J}\left(\chi_{1}, \chi_{2} ; s\right) \rightarrow \mathcal{J}^{J}\left(\chi_{2}, \chi_{1} ; 1-s\right) .
$$

We need some examples of local Jacquet sections:
Example (i) Let v be a finite place such that ψ_{v} is unramified (i.e., $d_{v}=0$). Suppose that the characters $\chi_{i}(i=1,2)$ are both unramified (i.e., the restriction of χ_{i} to $\mathfrak{D}_{v}^{\times}$ is trivial). Let $\Phi_{v}^{0}(x, y) \in \mathcal{S}\left(\mathrm{k}_{v}^{2}\right)$ be the characteristic function of \mathfrak{D}_{v}^{2}. We define a Jacquet section $f_{J, 0}^{(v)}\left(s, h_{1}\right)$ by $f_{J, 0}^{(v)}\left(s, h_{1}\right):=f_{\Phi_{v}^{0}}^{(v)}\left(s, h_{1}\right)$. Then we have

$$
f_{J, 0}^{(v)}(s, u)=L\left(2 s, \chi_{1} \cdot \chi_{2}^{-1}\right)=\left[1-\chi_{1} \cdot \chi_{2}^{-1}\left(\varpi_{v}\right) q_{v}^{-2 s}\right]^{-1}, \quad u \in K_{v}^{\prime} .
$$

Since $\widehat{\Phi}_{v}^{0}=\Phi_{v}^{0}$, we know that $M_{v}^{*} f_{\Phi_{v}^{0}}\left(s, h_{1}\right)=\widetilde{f}_{\Phi_{v}^{0}}\left(s, h_{1}\right)$.
(ii) Suppose that $\mathrm{k}_{v} \cong \mathbf{R}$. We define a basis $\left\{\Phi_{m}(x, y) \mid m \in \mathbf{Z}\right\}$ of $\mathcal{S}\left(\mathrm{k}_{v}^{2}\right)$ as follows:

$$
\Phi_{m}(x, y):= \begin{cases}(-x \sqrt{-1}+y)^{m} \exp \left(-\pi\left(x^{2}+y^{2}\right)\right) & \text { if } m \geq 0 \\ (x \sqrt{-1}+y)^{-m} \exp \left(-\pi\left(x^{2}+y^{2}\right)\right) & \text { if } m \leq 0\end{cases}
$$

We define Jacquet sections $f_{J, m}^{(v)}\left(s, h_{1}\right)$ and $\widetilde{f}_{J, m}^{(v)}\left(s, h_{1}\right)$ by $f_{J, m}^{(v)}\left(s, h_{1}\right):=f_{\Phi_{m}}^{(v)}\left(s, h_{1}\right)$ and $\widetilde{f}_{J, m}^{(v)}\left(s, h_{1}\right):=\widetilde{f}_{\Phi_{m}}^{(v)}\left(s, h_{1}\right)$. Then it is easy to see that

$$
\begin{aligned}
& f_{J, m}^{(v)}\left(s,\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\right)= \\
& \qquad e^{\sqrt{-1} m \theta} \Gamma_{\mathbf{R}}\left(2 s+|m|+c_{v}\right) \times \begin{cases}1 & \text { if }(-1)^{m}=\left(\chi_{1} \cdot \chi_{2}^{-1}\right)(-1) ; \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Here the constant $c_{v} \in \sqrt{-1} \mathbf{R}$ is defined by $\left(\chi_{1} \cdot \chi_{2}\right)(t)=t^{c_{v}}(t>0)$. Since $\widehat{\Phi}_{m}=\Phi_{m}$ $(m \geq 0)$ and $\widehat{\Phi}_{m}=(-1)^{m} \Phi_{m}(m \leq 0)$, we know that

$$
\left[M_{v}^{*} f_{J, m}^{(v)}\right]\left(s, h_{1}\right)= \begin{cases}\widetilde{f}_{J, m}^{(v)}\left(s, h_{1}\right) & \text { if } m \geq 0 \\ (-1)^{m} \widetilde{f}_{J, m}^{(v)}\left(s, h_{1}\right) & \text { if } m \leq 0\end{cases}
$$

2.3 Eisenstein Series

In this subsection, we fix a unitary idele class character $\omega: \mathbf{A}_{\mathrm{k}}^{\times} / \mathrm{k}^{\times} \rightarrow \mathbf{C}^{(1)}$ and denote the restriction of ω to k_{v}^{\times}by $\omega_{v}: \mathrm{k}_{v}^{\times} \rightarrow \mathbf{C}^{(1)}$. Let $S_{\omega, \psi}$ be a finite set of places of k consisting of (i) all the real places and (ii) all the finite places v such that ω_{v} is ramified or $d_{v}>0$. We define the space $\mathcal{S}\left(\mathbf{A}_{\mathrm{k}}^{2}\right)$ of Schwartz-Bruhat functions on $\mathbf{A}_{\mathrm{k}}^{2}$ as the restricted tensor product $\otimes^{\prime} \mathcal{S}\left(\mathrm{k}_{v}^{2}\right)$ with respect to $\left\{\Phi_{v}^{0} \mid v \notin S_{\omega, \psi}\right\}$. For any $\Phi \in \mathcal{S}\left(\mathrm{A}_{\mathrm{k}}^{2}\right)$, we set

$$
\begin{equation*}
f_{\Phi}\left(s, h_{1}\right):=\left|\operatorname{det}\left(h_{1}\right)\right|_{\mathbf{A}_{k}}^{s} \int_{\mathbf{A}_{k}^{\times}} \Phi\left((0, t) h_{1}\right) \omega(t)|t|_{\mathbf{A}_{k}}^{2 s} d^{\times} t, \quad\left(s, h_{1}\right) \in \mathbf{C} \times \mathrm{GL}(2)_{\mathbf{A}_{k}} \tag{2.2}
\end{equation*}
$$

We call $f_{\Phi}\left(s, h_{1}\right)$ the global Jacquet section attached to Φ. Then the totality $\mathcal{J}^{J}\left(1, \omega^{-1} ; s\right)$ of global Jacquet sections can be identified with the restricted tensor product $\otimes_{\nu}^{\prime} \mathcal{J}^{J}\left(1, \omega_{v}^{-1} ; s\right)$ with respect to $\left\{f_{J, 0}^{(v)} \mid v \notin S_{\omega, \psi}\right\}$. For a global Jacquet section $f \in \mathcal{J}^{J}\left(1, \omega^{-1} ; s\right)$, we define the Eisenstein series $E\left(s, h_{1} ; f\right)$ on GL(2) $)_{\mathbf{A}_{k}}$ by

$$
E\left(s, h_{1} ; f\right):=\sum_{\gamma \in \mathrm{B}_{\mathrm{k}}^{\prime} \backslash \mathrm{GL}(2)_{\mathrm{k}}} f\left(s, \gamma h_{1}\right) .
$$

This converges absolutely and uniformly on every compact subset in $\operatorname{Re}(s)>1$ except for the poles of $f\left(s, h_{1}\right)$. For each $h_{1} \in \mathrm{GL}(2)_{\mathbf{A}_{\mathrm{k}}}, E\left(s, h_{1} ; f\right)$ is continued to a meromorphic function on the whole s-plane and defines an automorphic form on $\mathrm{GL}(2)_{\mathbf{A}_{k}}$ except for its poles. Similarly, we set

$$
E\left(s, h_{1} ; M f\right):=\sum_{\gamma \in \mathrm{B}_{\mathrm{k}}^{\prime} \backslash \operatorname{GL}\left(2_{\mathrm{k}}\right.} M f\left(s, \gamma h_{1}\right), \quad \forall f\left(s, h_{1}\right) \in \mathcal{J}^{J}\left(1, \omega^{-1} ; s\right),
$$

where M stands for the global intertwining operator defined by

$$
M f\left(s, h_{1}\right):=\int_{\mathbf{A}_{k}} f\left(s, w_{0}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) h_{1}\right) d x
$$

Note that $M=\otimes_{v}^{\prime} M_{v}=\otimes_{v}^{\prime} M_{v}^{*}$. Then $E\left(s, h_{1} ; M f\right)$ converges absolutely for $\operatorname{Re}(s)<0$ except for the poles of $M f\left(s, h_{1}\right)$ and is continued to a meromorphic function on the whole s-plane. The most basic analytic properties of the Eisenstein series $E\left(s, h_{1} ; f\right)$ are summarized as follows:

Proposition 2.5 (c.f. [J-2, p. 119], [J-S, Lemma 4.2]) (i) For a Schwartz-Bruhat function $\Phi \in \mathcal{S}\left(\mathbf{A}_{\mathrm{k}}^{2}\right)$ we have $E\left(s, h_{1} ; f_{\Phi}\right)=E\left(s, h_{1} ; M f_{\Phi}\right)$.
(ii) If $\omega \neq|\cdot|^{\lambda}$ for any $\lambda \in \sqrt{-1} \mathbf{R}$, then the Eisenstein series $E\left(s, h_{1} ; f_{\Phi}\right)$ is an entire function in $s \in \mathbf{C}$.
(iii) If $\omega=|\cdot|^{\lambda}$ for some $\lambda \in \sqrt{-1} \mathbf{R}$, then there exists a constant $c>0$ such that

$$
E\left(s, h_{1} ; f_{\Phi}\right)=\frac{c\left|\operatorname{det}\left(h_{1}\right)\right|^{(s+\lambda / 2)-1} \widehat{\Phi}(0)}{(s+\lambda / 2)-1}-\frac{c\left|\operatorname{det}\left(h_{1}\right)\right|^{-(s+\lambda / 2)} \Phi(0)}{(s+\lambda / 2)}+R\left(s, h_{1}\right) .
$$

Here $R\left(s, h_{1}\right)$ is an entire function in $s \in \mathbf{C}$ for each $h_{1} \in \mathrm{GL}(2)_{\mathbf{A}_{k}}$.

3 Zeta Integrals and the Basic Identity

In this section, we recall Novodvorsky's zeta integrals, which express the L-functions for generic cusp forms on $\operatorname{GSp}(2) \times \operatorname{GL}(2)$. Basic references are [Bu, Section 3], [No-1,No-2], and [So-1].

3.1 Global Zeta Integrals

Recall that Π (resp. σ) is a cuspidal automorphic representation of $\mathrm{G}_{\mathrm{A}_{k}}$ (resp. of $\left.\operatorname{GL}(2)_{\mathrm{A}_{k}}\right)$. Set $\omega:=\omega_{\Pi} \cdot \omega_{\sigma}$. For a pair $(F, \varphi) \in \Pi \times \sigma$ of cusp forms and a global Jacquet section $f_{\Phi} \in \mathcal{J}^{J}\left(1, \omega^{-1} ; s\right)$, we define the global zeta integrals $Z\left(s, F \otimes \varphi, f_{\Phi}\right)$ and $\widetilde{Z}\left(s, F \otimes \varphi, f_{\Phi}\right)$ by

$$
\begin{aligned}
Z\left(s, F \otimes \varphi, f_{\Phi}\right) & :=\int_{Z_{A_{k}} H_{k} \backslash H_{A_{k}}} F(h) \varphi\left(h_{2}\right) E\left(s, h_{1} ; f_{\Phi}\right) d h \quad \text { and } \\
\widetilde{Z}\left(s, F \otimes \varphi, f_{\Phi}\right) & :=\int_{Z_{A_{k}} H_{k} \backslash H_{A_{k}}} \widetilde{F}(h) \widetilde{\varphi}\left(h_{2}\right) \omega\left(\operatorname{det}\left(h_{1}\right)\right) E\left(s, h_{1} ; M f_{\Phi}\right) d h,
\end{aligned}
$$

respectively. The two integrals $Z\left(s, F \otimes \varphi, f_{\Phi}\right)$ and $\widetilde{Z}\left(s, F \otimes \varphi, f_{\Phi}\right)$ converge absolutely except for the poles of the Eisenstein series and define meromorphic functions in $s \in \mathbf{C}$. In view of Proposition 2.5, we have the following.

Proposition 3.1 (i) We have the functional equation

$$
\widetilde{Z}\left(s, F \otimes \varphi, f_{\Phi}\right)=Z\left(s, F \otimes \varphi, f_{\Phi}\right)
$$

(ii) If $\omega \neq|\cdot|^{\lambda}$ for any $\lambda \in \sqrt{-1} \mathbf{R}$, then the zeta integral $Z\left(s, F \otimes \varphi, f_{\Phi}\right)$ is an entire function in $s \in \mathbf{C}$.
(iii) If $\omega=|\cdot|^{\lambda}$ for some $\lambda \in \sqrt{-1} \mathbf{R}$, then $Z\left(s, F \otimes \varphi, f_{\Phi}\right)$ is holomorphic except for possible simple poles at $s=1-\lambda / 2,-\lambda / 2$. Moreover we have

$$
\begin{aligned}
\operatorname{Res}_{s=1-\lambda / 2} Z\left(s, F \otimes \varphi, f_{\Phi}\right) & =c \times \widehat{\Phi}(0) \times \int_{Z_{A_{k}} H_{k} \backslash H_{A_{k}}} F(h) \varphi\left(h_{2}\right) d h ; \\
\operatorname{Res}_{s=-\lambda / 2} Z\left(s, F \otimes \varphi, f_{\Phi}\right) & =-c \times \Phi(0) \times \int_{Z_{\mathrm{Z}_{k}} H_{k} \backslash H_{A_{k}}} F(h) \varphi\left(h_{2}\right) d h .
\end{aligned}
$$

Here the constant $c>0$ is the same as that in Proposition 2.5.

3.2 Local Zeta Integrals and the Basic Identity

Now we suppose that the cusp forms F and φ are decomposable in the restricted tensor product $\Pi=\otimes^{\prime} \Pi_{v}$ and $\sigma=\otimes^{\prime} \sigma_{v}$, respectively. Then the local multiplicity one property of Whittaker models ([Sha, Theorem 3.1], [Wa, Theorem 8.8(1)], [Ro, Theorem 3]) implies that \mathcal{W}_{F} (resp. $\left.\mathcal{W}_{\varphi}\right)$ is decomposed into a product of local Whittaker functions:

$$
\begin{gathered}
\mathcal{W}_{F}(g)=\prod_{v} \mathcal{W}_{F}^{(v)}\left(g_{v}\right), \quad \text { for } g=\left(g_{v}\right) \in \mathrm{G}_{\mathrm{A}_{k}}, \\
\mathcal{W}_{\varphi}\left(h_{2}\right)=\prod_{v} \mathcal{W}_{\varphi}^{(v)}\left(h_{2, v}\right), \quad \text { for } h_{2}=\left(h_{2, v}\right) \in \operatorname{GL}(2)_{\mathbf{A}_{k}}
\end{gathered}
$$

Here $\mathcal{W}_{F}^{(v)}\left(g_{v}\right)$ (resp. $\left.\mathcal{W}_{\varphi}^{(v)}\left(h_{2, v}\right)\right)$ belongs to the local Whittaker model $\mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right)$ (resp. $\mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right)$). Moreover we take a global Jacquet section $f \in \mathcal{J}^{J}\left(1, \omega^{-1} ; s\right)$ of the form

$$
f\left(s, h_{1}\right)=\prod_{v} f^{(v)}\left(s, h_{1, v}\right), \quad f^{(v)} \in \mathcal{J}^{J}\left(1, \omega_{v}^{-1} ; s\right)
$$

For each place v of k , we define the two local zeta integrals $Z^{(v)}\left(s, \mathcal{W}_{F}^{(v)}, \mathcal{W}_{\varphi}^{(v)}, f^{(v)}\right)$ and $\widetilde{Z}^{(v)}\left(s, \mathcal{W}_{F}^{(v)}, \mathcal{W}_{\varphi}^{(v)}, f^{(v)}\right)$ by

$$
Z^{(v)}\left(s, \mathcal{W}_{F}^{(v)}, \mathcal{W}_{\varphi}^{(v)}, f^{(v)}\right):=\int_{Z_{\mathrm{k}_{v}} \nu_{\mathrm{k}_{v}} \backslash \mathrm{H}_{\mathrm{k}_{v}}} \mathcal{W}_{F}^{(v)}\left(h_{v}\right) \mathcal{W}_{\varphi}^{(v)}\left(h_{2, v}\right) f^{(v)}\left(s, h_{1, v}\right) d h_{v}
$$

and

$$
\begin{aligned}
\widetilde{Z}^{(v)}\left(s, \mathcal{W}_{F}^{(v)}, \mathcal{W}_{\varphi}^{(v)}, f^{(v)}\right):=\int_{Z_{\mathrm{k}_{v}} N_{\mathrm{k}_{v}} \backslash \mathrm{H}_{\mathrm{k}_{v}}} \mathcal{W}_{F}^{(v)}\left(h_{v}\right) \mathcal{W}_{\varphi}^{(v)}\left(h_{2, v}\right) M_{v}^{*} f^{(v)}\left(s, h_{1, v}\right) d h_{v} \\
=\int_{\left.\mathrm{Z}_{\mathrm{k}_{v}} \mathrm{NH}_{\mathrm{k}_{v}}\right\rangle \mathrm{H}_{\mathrm{k}_{v}}} \widetilde{\mathcal{W}}_{F}^{(v)}\left(h_{v}\right) \widetilde{\mathcal{W}}_{\varphi}^{(v)}\left(h_{2, v}\right) \omega_{v}\left(\operatorname{det}\left(h_{1, v}\right)\right) M_{v}^{*} f^{(v)}\left(s, h_{1, v}\right) d h_{v},
\end{aligned}
$$

where we set

$$
\widetilde{\mathcal{W}}_{F}^{(v)}\left(g_{v}\right):=\omega_{\Pi}\left(\nu\left(g_{v}\right)\right)^{-1} \mathcal{W}_{F}^{(v)}\left(g_{v}\right), \quad \widetilde{\mathcal{W}}_{\varphi}^{(v)}\left(h_{2, v}\right):=\omega_{\sigma}\left(\operatorname{det}\left(h_{2, v}\right)\right)^{-1} \mathcal{W}_{\varphi}^{(v)}\left(h_{2, v}\right)
$$

Here we remark that $\omega_{v}\left(\operatorname{det}\left(h_{1, v}\right)\right) M_{v}^{*} f^{(v)}\left(s, h_{1, v}\right) \in \mathcal{J}^{J}\left(1, \omega_{v} ; 1-s\right)$.
By an unfolding procedure, we have the following basic identity (cf. [Bu, Section 3]).

Proposition 3.2 (i) Suppose that the local zeta integral $Z^{(v)}\left(s, \mathcal{W}_{F}^{(v)}, \mathcal{W}_{\varphi}^{(v)}, f^{(v)}\right)$ at each real place v converges absolutely for $\operatorname{Re}(s)>e_{\infty}$. Then the integral

$$
\int_{Z_{\mathrm{A}_{k}} N^{H_{A_{k}}} \backslash H_{A_{k}}} \mathcal{W}_{F}(h) \mathcal{W}_{\varphi}\left(h_{2}\right) f\left(s, h_{1}\right) d h
$$

converges absolutely for $\operatorname{Re}(s)>\max \left\{3, e_{\infty}\right\}$ (except for the poles of f) and is equal to $Z(s, F \otimes \varphi, f)$.
(ii) Suppose that the local zeta integral $\widetilde{Z}^{(v)}\left(s, \mathcal{W}_{F}^{(v)}, \mathcal{W}_{\varphi}^{(v)}, f^{(v)}\right)$ at each real place v converges absolutely for $\operatorname{Re}(s)<e_{\infty}^{\prime}$. Then the integral

$$
\int_{Z_{A_{k}} N^{H} A_{A_{k}} \backslash H_{A_{k}}} \mathcal{W}_{F}(h) \mathcal{W}_{\varphi}\left(h_{2}\right) M f\left(s, h_{1}\right) d h
$$

converges absolutely for $\operatorname{Re}(s)<\min \left\{-2, e_{\infty}^{\prime}\right\}$ (except for the poles of $M f$) and is equal to $\widetilde{Z}(s, F \otimes \varphi, f)$.

The above proposition implies that

$$
\begin{aligned}
& Z(s, F \otimes \varphi, f)=\prod_{v} Z^{(v)}\left(s, \mathcal{W}_{F}^{(v)}, \mathcal{W}_{\varphi}^{(v)}, f^{(v)}\right) ; \\
& \widetilde{Z}(s, F \otimes \varphi, f)=\prod_{v} \widetilde{Z}^{(v)}\left(s, \mathcal{W}_{F}^{(v)}, \mathcal{W}_{\varphi}^{(v)}, f^{(v)}\right)
\end{aligned}
$$

3.3 The Local Functional Equation at the Finite Places

D. Soudry [So-1, Section 2] proved the following local functional equations at the finite places.
Proposition-Definition 3.3 Suppose that v is a finite place of k . Let Π_{v} (resp. σ_{v}) be an irreducible admissible representation of $\mathrm{G}_{\mathrm{k}_{v}}$ (resp. of $\left.\mathrm{GL}(2)_{\mathrm{k}_{v}}\right)$ which has a local Whittaker model $\mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right)\left(\right.$ resp. $\left.\mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right)\right)$.
(i) There exists a unique polynomial $P_{v}(X) \in \mathbf{C}[X]$ such that $P_{v}(0)=1$ and that

$$
\text { C-span }\left\{Z^{(v)}\left(s, W, W^{\prime}, f^{(v)}\right) \mid W \in \mathrm{~Wh}\left(\pi_{v}, \psi_{v}\right), W^{\prime} \in \mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right)\right.
$$

$$
\left.f^{(v)} \in \mathcal{J}^{J}\left(1, \omega_{v}^{-1} ; s\right)\right\}
$$

$$
=P_{v}\left(q_{v}^{-s}\right)^{-1} \mathbf{C}\left[q_{v}^{-s}, q_{v}^{s}\right]
$$

We define the L-factor $L\left(s, \Pi_{v} \times \sigma_{v}\right)$ for the pair $\left(\Pi_{v}, \sigma_{v}\right)$ by

$$
L\left(s, \Pi_{v} \times \sigma_{v}\right):=P_{v}\left(q_{v}^{-s}\right)^{-1}
$$

(ii) There exists a monomial $\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)=a q_{v}^{-b s}\left(a \in \mathbf{C}^{\times}, b \in \mathbf{Z}\right)$ in q_{v}^{-s} such that the equation

$$
\frac{\widetilde{Z}^{(v)}\left(s, W, W^{\prime}, f\right)}{L\left(1-s, \Pi_{v}^{\vee} \times \sigma_{v}^{\vee}\right)}=\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right) \times \frac{Z^{(v)}\left(s, W, W^{\prime}, f\right)}{L\left(s, \Pi_{v} \times \sigma_{v}\right)}
$$

holds for all $\left(W, W^{\prime}, f\right) \in \mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right) \times \mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right) \times \mathcal{J}^{J}\left(1, \omega_{v}^{-1} ; s\right)$.

3.4 Unramified Computation

In this subsection, we recall the computation of the local zeta integrals at the unramified places (cf. [$\mathrm{Bu}, \mathrm{G}-\mathrm{PS}-\mathrm{R}]$). Let $S_{\Pi, \sigma, \psi}$ be a finite set of places of k satisfying the following condition: if $v \notin S_{\Pi, \sigma, \psi}$, then v is a finite place such that ψ_{v} is unramified and the representation of Π_{v} (resp. σ_{v}) has a vector fixed by K_{v} (resp. by K_{v}^{\prime}). Then we have $S_{\omega, \psi} \subset S_{\Pi, \sigma, \psi}$. Fix a place $v \notin S_{\Pi, \sigma, \psi}$. Since we have assumed that Π_{v} and σ_{v} have a local Whittaker model, the representations Π_{v} and σ_{v} are equivalent to some unramified principal series representations ($[\mathrm{Ba}-\mathrm{M}, \mathrm{Li}, \mathrm{Re}]$). Let $W^{0} \in \mathrm{~Wh}\left(\Pi_{v}, \psi_{v}\right)$ (resp. $W^{\prime 0} \in \mathrm{~Wh}\left(\sigma_{v}, \psi_{v}\right)$) be the K_{v}-fixed local Whittaker function normalized so that $W^{0}\left(I_{4}\right)=1$ (resp. $W^{\prime 0}\left(I_{2}\right)=1$). Then the local zeta integral $Z^{(v)}\left(s, W^{0}, W^{\prime 0}, f_{J, 0}^{(v)}\right)$ equals
$L\left(2 s, \omega_{v}\right) \times \sum_{k, l \geq 0} W^{0}\left(\operatorname{diag}\left(\varpi_{v}^{k+l}, \varpi_{v}^{l}, \varpi_{v}^{-k}, 1\right)\right) W^{\prime 0}\left(\operatorname{diag}\left(\varpi_{v}^{l}, 1\right)\right) \omega_{v}\left(\varpi_{v}^{k}\right) q_{v}^{-(2 k+l) s+2(k+l)}$.
Suppose that the Satake parameter $A_{v}\left(\right.$ resp. $\left.B_{v}\right)$ of $\Pi_{v}\left(\right.$ resp. of $\left.\sigma_{v}\right)$ is given by

$$
\begin{aligned}
& A_{v}=\operatorname{diag}\left(\alpha_{0} \alpha_{1}, \alpha_{0} \alpha_{2}, \alpha_{1}^{-1}, \alpha_{2}^{-1}\right) \in \widehat{\mathrm{G}}:=\operatorname{GSp}(2, \mathbf{C}), \\
& B_{v}=\operatorname{diag}\left(\beta_{1}, \beta_{2}\right) \in \operatorname{GL}(2, \mathbf{C})
\end{aligned}
$$

where $\widehat{\mathrm{G}}$ (resp. GL(2, C)) is the dual group of G (resp. of GL(2)) (cf. Subsection 4.3 below). Then, by virtue of Kato-Casselman-Shalika formulae [C-S], we have

$$
\begin{aligned}
& W^{0}\left(\operatorname{diag}\left(\varpi_{v}^{k+l}, \varpi_{v}^{l}, \varpi_{v}^{-k}, 1\right)\right) \\
& = \begin{cases}\alpha_{0}^{l} \times q_{v}^{(-4 k-3 l) / 2} \times \frac{\sum_{\sigma \in \mathscr{E}_{2}} \sum_{\epsilon_{j}= \pm 1} \operatorname{sgn}(\sigma) \epsilon_{1} \epsilon_{2} \alpha_{\sigma(1)}^{\epsilon_{1}(k+2)} \alpha_{\sigma(2)}^{\epsilon_{2}^{(k+1)}}}{\left(\alpha_{1}+\alpha_{1}^{-1}-\alpha_{2}-\alpha_{2}^{-1}\right)\left(\alpha_{1}-\alpha_{1}^{-1}\right)\left(\alpha_{2}-\alpha_{2}^{-1}\right)} & \text { if } k, l \geq 0 ; \\
0 & \text { otherwise; }\end{cases} \\
& W^{\prime 0}\left(\operatorname{diag}\left(\varpi_{v}^{l}, 1\right)\right)= \begin{cases}q_{v}^{-l / 2} \times \frac{\beta_{1}^{l+1}-\beta_{2}^{l+1}}{\beta_{1}-\beta_{2}} & \text { if } l \geq 0 ; \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

By inserting these explicit formulae, we obtain

$$
\begin{aligned}
& Z^{(v)}\left(s, W^{0}, W^{\prime 0}, f_{J, 0}^{(v)}\right)=\left[\operatorname{det}\left(I_{8}-A_{v} \otimes B_{v} \cdot q_{v}^{-s}\right)\right]^{-1} \\
& \widetilde{Z}^{(v)}\left(s, W^{0}, W^{\prime 0}, f_{J, 0}^{(v)}\right)=\left[\operatorname{det}\left(I_{8}-A_{v}^{\vee} \otimes B_{v}^{\vee} \cdot q_{v}^{-(1-s)}\right)\right]^{-1}
\end{aligned}
$$

Here A_{v}^{\vee} (resp. B_{v}^{\vee}) stands for the Satake parameter of the unramified principal series representation Π_{v}^{\vee} (resp. of σ_{v}^{\vee}), which is given by $A_{v}^{\vee}=\omega_{\Pi}\left(\varpi_{v}\right)^{-1} \cdot A_{v} \in \operatorname{GSp}(2, \mathbf{C})$ (resp. $B_{v}^{\vee}=\omega_{\sigma}\left(\varpi_{v}\right)^{-1} \cdot B_{v} \in \mathrm{GL}(2, \mathbf{C})$). Note that A_{v}^{\vee} (resp. B_{v}^{\vee}) is conjugate to $A_{v}^{-1}\left(\right.$ resp. $\left.B_{v}^{-1}\right)$ in $\operatorname{GSp}(2, \mathbf{C})$ (resp. in $\mathrm{GL}(2, \mathbf{C})$). In view of the Iwasawa decomposition, for each $W \in \mathrm{~Wh}\left(\Pi_{v}, \psi_{v}\right)$ (resp. $W^{\prime} \in \mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right)$), there exists a Laurent
polynomial $P_{W} \in \mathbf{C}\left[Y_{1}^{ \pm}, Y_{2}^{ \pm}\right]$(resp. $P_{W^{\prime}} \in \mathbf{C}\left[Y_{1}^{ \pm}\right]$) and $\epsilon>0$ such that

$$
\begin{aligned}
W\left(\operatorname{diag}\left(y_{1} y_{2}, y_{1}, y_{2}^{-1}, 1\right)\right) & =P_{W}\left(\left|y_{1}\right|_{v},\left|y_{2}\right|_{v}\right) W^{0}\left(\operatorname{diag}\left(y_{1} y_{2}, y_{1}, y_{2}^{-1}, 1\right)\right), \text { and } \\
W^{\prime}\left(\operatorname{diag}\left(y_{1}, 1\right)\right) & =P_{W^{\prime}}\left(\left|y_{1}\right|_{v}\right) W^{\prime 0}\left(\operatorname{diag}\left(y_{1}, 1\right)\right)
\end{aligned}
$$

for all $y_{i} \in \mathrm{k}_{v}^{\times}$with $\left|y_{i}\right|<\epsilon(i=1,2)$. From these asymptotic expansions, we conclude that

$$
\begin{aligned}
L\left(s, \Pi_{v} \times \sigma_{v}\right) & =\left[\operatorname{det}\left(I_{8}-A_{v} \otimes B_{v} \cdot q_{v}^{-s}\right)\right]^{-1} \\
L\left(s, \Pi_{v}^{\vee} \times \sigma_{v}^{\vee}\right) & =\left[\operatorname{det}\left(I_{8}-A_{v}^{\vee} \otimes B_{v}^{\vee} \cdot q_{v}^{-s}\right)\right]^{-1}
\end{aligned}
$$

Hence we have $\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)=1\left(\forall v \notin S_{\Pi, \sigma, \psi}\right)$.

4 The L - and ϵ-Factors at the Real Places Via the Langlands
 Parameters

In this section, we fix a real place v of k . Recall that Π_{v} (resp. σ_{v}) is the local component at v of a cuspidal automorphic representation Π (resp. σ) satisfying A. 1 and A. 2 in Subsection 1.3. Define three complex numbers $c_{v}^{\prime}, c_{v}^{\prime \prime}$, and $c_{v} \in \mathbf{C}$ by

$$
\Pi_{v}\left(z I_{4}\right)=z^{c_{v}^{\prime}}(z>0) ; \quad \sigma_{v}\left(z I_{2}\right)=z^{c_{v}^{\prime \prime}}(z>0) ; \quad c_{v}:=c_{v}^{\prime}+c_{v}^{\prime \prime}
$$

Denote the Langlands parameter of Π_{v} (resp. σ_{v}) by $\phi\left[\Pi_{v}\right]: W_{\mathbf{R}} \rightarrow \operatorname{GSp}(2, \mathbf{C})$ (resp. $\phi\left[\sigma_{\nu}\right]: W_{\mathbf{R}} \rightarrow \mathrm{GL}(2, \mathbf{C})$). Then we have the eight-dimensional representation

$$
\phi\left[\Pi_{v}\right] \otimes \phi\left[\sigma_{v}\right]: W_{\mathbf{R}} \rightarrow \operatorname{GL}(8, \mathbf{C})
$$

Denote the corresponding L - and ϵ-factors by $L\left(s, \Pi_{v} \times \sigma_{v}\right)$ and $\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)$, respectively. We shall write down the Langlands parameters for Π_{v} and σ_{v} and determine the local factors $L\left(s, \Pi_{v} \times \sigma_{v}\right)$ and $\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)$ explicitly.

4.1 The Representations of the Weil Group W_{R}

The Weil group $W_{\mathbf{R}}$ for the field \mathbf{R} is given by $W_{\mathbf{R}}:=\mathbf{C}^{\times} \sqcup \mathbf{C}^{\times} \cdot j \subset \mathbf{H}^{\times}$. Here we regard $W_{\mathbf{R}}$ as a subgroup of the multiplicative group \mathbf{H}^{\times}of the Hamilton quaternion algebra $\mathbf{H}=\mathbf{C} \oplus \mathbf{C} \cdot j\left(j^{2}=-1, j z j^{-1}\right.$ equals the complex conjugate of $\left.z, z \in \mathbf{C}\right)$. We recall all the irreducible continuous representations of W_{R} and the corresponding L and ϵ-factors.
(i) Characters. A character of $W_{\mathbf{R}}$ is given by ϕ_{μ}^{+}or $\phi_{\mu}^{-},(\mu \in \mathbf{C})$, where

$$
\phi_{\mu}^{ \pm}(z)=|z|^{2 \mu}=|z|_{\mathbf{C}}^{\mu}, \quad \phi_{\mu}^{ \pm}(j)= \pm 1
$$

We define the corresponding L - and ϵ-factors by

$$
\begin{aligned}
L\left(s, \phi_{\mu}^{+}\right):=\Gamma_{\mathbf{R}}(s+\mu), & & \epsilon\left(s, \phi_{\mu}^{+}, \psi_{\infty}\right):=1, \\
L\left(s, \phi_{\mu}^{-}\right):=\Gamma_{\mathbf{R}}(s+\mu+1), & & \epsilon\left(s, \phi_{\mu}^{-}, \psi_{\infty}\right):=\sqrt{-1}
\end{aligned}
$$

The set of characters of the Weil group $W_{\mathbf{R}}$ parameterizes the set of characters of \mathbf{R}^{\times} via

$$
\phi_{\mu}^{+} \leftrightarrow\left[\mathbf{R}^{\times} \ni x \mapsto|x|^{\mu} \in \mathbf{C}^{\times}\right], \quad \phi_{\mu}^{-} \leftrightarrow\left[\mathbf{R}^{\times} \ni x \mapsto|x|^{\mu} \operatorname{sgn}(x) \in \mathbf{C}^{\times}\right]
$$

(ii) Two-dimensional representations. We define two-dimensional representations $\phi_{\mu, N}: W_{\mathbf{R}} \rightarrow \mathrm{GL}(2, \mathbf{C})\left(\mu \in \mathbf{C}, N \in \mathbf{Z}_{\geq 0}\right)$ as follows

$$
\begin{aligned}
& \phi_{\mu, N}\left(r e^{\sqrt{-1} \theta}\right)=\left(\begin{array}{cc}
r^{2 \mu-N} e^{-\sqrt{-1} N \theta} & 0 \\
0 & r^{2 \mu-N} e^{+\sqrt{-1} N \theta}
\end{array}\right) \\
& \phi_{\mu, N}(j)=\left(\begin{array}{cc}
0 & (-1)^{N} \\
1 & 0
\end{array}\right)
\end{aligned}
$$

The representation $\phi_{\mu, N}$ is irreducible for $N>0$, while $\phi_{\mu, 0}$ is equivalent to a sum of two characters ϕ_{μ}^{+}and ϕ_{μ}^{-}. The characters $\phi_{\mu}^{ \pm}$together with the two dimensional representations $\phi_{\mu, N}(N>0)$ make up all the irreducible continuous representations of $W_{\mathbf{R}}$. The L - and ϵ-factors corresponding to the representations $\phi_{\mu, N}(N>0)$ are given by

$$
L\left(s, \phi_{\mu, N}\right):=\Gamma_{\mathbf{C}}(s+\mu), \quad \epsilon\left(s, \phi_{\mu, N}, \psi_{\infty}\right):=(\sqrt{-1})^{N+1}
$$

Here we note the following.

Lemma 4.1 (tensor products) We have the following equivalences:

$$
\begin{aligned}
\phi_{\mu_{1}, N_{1}} \otimes \phi_{\mu_{2}}^{ \pm} & \cong \phi_{\mu_{1}+\mu_{2}, N_{1}}, \\
\phi_{\mu_{1}, N_{1}} \otimes \phi_{\mu_{2}, N_{2}} & \cong \phi_{\mu_{1}+\mu_{2}, N_{1}+N_{2}} \oplus \phi_{\mu_{1}+\mu_{2}-N_{2}, N_{1}-N_{2}}
\end{aligned}
$$

if $N_{1} \geq N_{2}$.

4.2 L - and ϵ-Factors at the Real Places

In what follows, we shall separate our argument into two cases (a) and (b) depending on types of the representations Π_{v} in assumption A.2. Moreover each case is divided into two subcases ($\mathrm{x}-\mathrm{i}$) and ($\mathrm{x}-\mathrm{ii})(x=a, b)$ corresponding to types of the representations σ_{v}.

Case (a): the case where $\Pi_{v} \cong D_{\left(\lambda_{1}, \lambda_{2}\right)}\left[c_{v}^{\prime}\right]$ with $1-\lambda_{1} \leq \lambda_{2} \leq 0$. Then the composition of $\phi\left[\Pi_{v}\right]$ with the natural inclusion $\iota: \operatorname{GSp}(2, \mathbf{C}) \hookrightarrow \operatorname{GL}(4, \mathbf{C})$ is given by

$$
\begin{equation*}
\iota \circ \phi\left[\Pi_{\nu}\right] \cong \phi_{\mu_{1}, N_{1}} \oplus \phi_{\mu_{2}, N_{2}} \tag{4.1}
\end{equation*}
$$

with

$$
\begin{array}{ll}
\mu_{1}=\left(c_{v}^{\prime}+\lambda_{1}-\lambda_{2}-1\right) / 2, & N_{1}=\lambda_{1}-\lambda_{2}-1 \\
\mu_{2}=\left(c_{v}^{\prime}+\lambda_{1}+\lambda_{2}-1\right) / 2, & N_{2}=\lambda_{1}+\lambda_{2}-1
\end{array}
$$

which will be proved in the next subsection.
Case (a-i): the case of $\sigma_{v} \cong D_{l}\left[c_{v}^{\prime \prime}\right]$. The Langlands parameter $\phi\left[\sigma_{v}\right]$ of σ_{v} is given by

$$
\begin{equation*}
\phi\left[\sigma_{v}\right]=\phi_{\mu_{3}, N_{3}}, \quad \text { with } \quad \mu_{3}=\left(c_{v}^{\prime \prime}+l-1\right) / 2, \quad N_{3}=l-1 . \tag{4.2}
\end{equation*}
$$

By Lemma 4.1, the L - and ϵ-factor for $\Pi_{v} \times \sigma_{v}$ is given by

$$
\begin{aligned}
L\left(s, \Pi_{v} \times \sigma_{v}\right)= & \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+\lambda_{1}-\lambda_{2}+l-2}{2}\right) \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+\left|\lambda_{1}-\lambda_{2}-l\right|}{2}\right) \\
& \times \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+\lambda_{1}+\lambda_{2}+l-2}{2}\right) \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+\left|\lambda_{1}+\lambda_{2}-l\right|}{2}\right), \\
\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)= & \begin{cases}1 & \text { if }\left|l-\lambda_{1}\right| \geq-\lambda_{2} ; \\
(-1)^{l+\lambda_{1}-\lambda_{2}} & \text { if }\left|l-\lambda_{1}\right| \leq-\lambda_{2} .\end{cases}
\end{aligned}
$$

Case (a-ii): the case of $\sigma_{v} \cong I_{\mathrm{B}_{\mathrm{R}}^{\prime}}^{\mathrm{GL}(2) \mathrm{R}}\left(\epsilon_{1}, \epsilon_{2} ; c_{v}^{\prime \prime}, \nu\right)$. The Langlands parameter $\phi\left[\sigma_{v}\right]$ of σ_{v} is given by

$$
\begin{equation*}
\phi\left[\sigma_{v}\right]=\phi_{\mu_{4}}^{\epsilon_{1}} \oplus \phi_{\mu_{5}}^{\epsilon_{1}} \quad \mu_{4}=\left(c_{v}^{\prime \prime}+\nu\right) / 2, \quad \mu_{5}=\left(c_{v}^{\prime \prime}-\nu\right) / 2 \tag{4.3}
\end{equation*}
$$

Here we identify ϵ_{i} with the signature \pm of $\epsilon_{i}(-1)$. By Lemma 4.1, the L - and ϵ-factors for $\Pi_{v} \times \sigma_{v}$ are given by

$$
\begin{aligned}
& L\left(s, \Pi_{v} \times \sigma_{v}\right)= \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+\lambda_{1}-\lambda_{2}+\nu-1}{2}\right) \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+\lambda_{1}-\lambda_{2}-\nu-1}{2}\right) \\
& \times \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+\lambda_{1}+\lambda_{2}+\nu-1}{2}\right) \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+\lambda_{1}+\lambda_{2}-\nu-1}{2}\right), \\
& \epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)=1
\end{aligned}
$$

Case (b): the case where $\Pi_{v} \cong I\left(P_{1} ; \sigma_{n, \pm}, c, \nu_{1}\right)$. Then the composition of $\phi\left[\Pi_{v}\right]$ and the natural inclusion $\iota: \operatorname{GSp}(2, \mathrm{C}) \hookrightarrow \mathrm{GL}(4, \mathbf{C})$ is given by

$$
\begin{equation*}
\iota \circ \phi\left[\Pi_{v}\right] \cong \phi_{\mu_{1}, N_{1}} \oplus \phi_{\mu_{2}, N_{2}} \tag{4.4}
\end{equation*}
$$

with

$$
\mu_{1}=\left(c_{v}^{\prime}+n+\nu_{1}-1\right) / 2, \quad \mu_{2}=\left(c_{v}^{\prime}+n-\nu_{1}-1\right) / 2, \quad N_{1}=N_{2}=n-1,
$$

which will be proved in the next subsection, too.
Case (b-i): the case of $\sigma_{v} \cong D_{l}\left[c_{v}^{\prime \prime}\right]$. Then Lemma 4.1 plus (4.2) and (4.4) implies that

$$
\begin{aligned}
L\left(s, \Pi_{v} \times \sigma_{v}\right)= & \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+n+l+\nu_{1}-2}{2}\right) \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+|n-l|+\nu_{1}}{2}\right) \\
& \times \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+n+l-\nu_{1}-2}{2}\right) \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+|n-l|-\nu_{1}}{2}\right), \\
\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)=1 . &
\end{aligned}
$$

Case (b-ii): the case of $\sigma_{v} \cong I_{\mathrm{B}_{\mathrm{R}}^{\prime}}^{\mathrm{GL}(2)_{\mathrm{R}}}\left(\epsilon_{1}, \epsilon_{2} ; c_{v}^{\prime \prime}, \nu\right)$. Then Lemma 4.1 plus (4.3) and (4.4) implies that

$$
\begin{aligned}
L\left(s, \Pi_{v} \times \sigma_{v}\right)= & \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+n+\nu_{1}+\nu-1}{2}\right) \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+n-\nu_{1}+\nu-1}{2}\right) \\
& \times \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+n+\nu_{1}-\nu-1}{2}\right) \Gamma_{\mathbf{C}}\left(s+\frac{c_{v}+n-\nu_{1}-\nu-1}{2}\right) \\
\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)=1 &
\end{aligned}
$$

4.3 Langlands Parameters of Π_{v}

In this subsection, we shall prove (4.1) and (4.4). Until the end of this subsection, we identify $\mathrm{G}_{\mathrm{k}_{v}}$ with $\operatorname{GSp}(2, \mathbf{R})$ and write c in place of c_{v}^{\prime}. We fix a maximal torus T (resp. $\widehat{\mathrm{T}})$ of $\mathrm{G}($ resp. of $\widehat{\mathrm{G}}=\operatorname{GSp}(2, \mathbf{C}))$ as $\mathrm{T}:=\left\{t=\operatorname{diag}\left(t_{0} t_{1}, t_{0} t_{2}, t_{1}^{-1}, t_{2}^{-1}\right) \mid t_{i} \in \mathrm{GL}(1)\right\}$ (resp. $\widehat{\mathrm{T}}:=\left\{a=\operatorname{diag}\left(a_{0} a_{1}, a_{0} a_{2}, a_{1}^{-1}, a_{2}^{-1}\right) \mid a_{i} \in \mathbf{C}^{\times}\right\}$). Define a basis $\left\{e_{i} \mid 0 \leq i \leq\right.$ $2\}$ (resp. $\left\{f_{i}^{\prime} \mid 0 \leq i \leq 2\right\}$) of the character group $X^{*}(\mathrm{~T})$ (resp. $\left.X^{*}(\widehat{\mathrm{~T}})\right)$ by $e_{i}(t)=t_{i}$ (resp. $f_{i}^{\prime}(a)=a_{i}$). We denote by $\left\{f_{i} \mid 0 \leq i \leq 2\right\}$ (resp. $\left\{e_{i}^{\prime} \mid 0 \leq i \leq 2\right\}$) the basis of the cocharacter group $X_{*}(\mathrm{~T})$ (resp. $X^{*}(\widehat{\mathrm{~T}})$) dual to $\left\{e_{i} \mid 0 \leq i \leq 2\right\}$ (resp. $\left.\left\{f_{i}^{\prime} \mid 0 \leq i \leq 2\right\}\right)$. The identification $X^{*}(\mathrm{~T})$ with $X_{*}(\widehat{\mathrm{~T}})$ is given by

$$
e_{0}=2 e_{0}^{\prime}-e_{1}^{\prime}-e_{2}^{\prime}, \quad e_{1}=-e_{0}^{\prime}+e_{1}^{\prime}+e_{2}^{\prime}, \quad e_{2}=-e_{0}^{\prime}+e_{1}^{\prime}
$$

If we denote the Lie algebra of T_{R} by t, then there is a natural identification

$$
\mathrm{t}_{\mathbf{C}}^{*}:=\operatorname{Hom}_{\mathbf{R}}(\mathrm{t}, \mathbf{C}) \cong X^{*}(\mathrm{~T}) \otimes \mathbf{C} \cong X_{*}(\widehat{\mathrm{~T}}) \otimes \mathbf{C}
$$

We first prove (4.4). By [Bo, 11.3], we have

$$
\phi\left[I\left(P_{1} ; \sigma_{n, \pm}, c, \nu_{1}\right)\right](w)=\left(\begin{array}{c|c}
A(w) & \tag{4.5}\\
\hline & D(w)
\end{array}\right) \quad\left(\forall w \in W_{\mathbf{R}}\right)
$$

with

$$
A(w)=\phi_{\mu_{1}, N_{1}}(w), \quad D(w)=\phi_{-\nu_{1}}^{ \pm}(w) \operatorname{det}\left(\phi_{\mu_{1}, N_{1}}(w)\right)^{t} \phi_{\mu_{1}, N_{1}}(w)^{-1}
$$

where $\left(\mu_{1}, N_{1}\right)$ is as in (4.4). By Lemma 4.1, we have (4.4). We also note that the infinitesimal character of the representation $I\left(P_{1} ; \sigma_{n, \pm}, c, \nu_{1}\right)$ is given by

$$
\frac{1}{2}\left(c+\nu_{1}+n-1\right) e_{0}+\nu_{1} e_{1}+(n-1) e_{2} .
$$

Next we prove (4.1). Note that the infinitesimal character of $D_{\left(\lambda_{1}, \lambda_{2}\right)}[c]$ is given by

$$
\left.\begin{array}{rl}
\frac{1}{2}\left(c+\lambda_{1}-1-\lambda_{2}\right) e_{0}+ & \left(\lambda_{1}-1\right) e_{1}+\left(-\lambda_{2}\right) e_{2}
\end{array}\right)
$$

If $1-\lambda_{1}<\lambda_{2}<0$, then we know from [Bo, 11.2] that

$$
\phi\left[\Pi_{v}\right](w)=\left(\begin{array}{cc|cc}
a_{1} & & b_{1} & \\
& a_{2} & b_{2} \\
\hline c_{1} & & b_{1} \\
& c_{2} & & d_{2}
\end{array}\right) \quad\left(\forall w \in W_{\mathbf{R}}\right)
$$

with $\left(\begin{array}{c}a_{i} \\ c_{i} \\ c_{i} \\ d_{i}\end{array}\right)=\phi_{\mu_{i}, N_{i}}(w),(i=1,2)$. Here $\left(\mu_{i}, N_{i}\right)$ are as in (4.1). In order to treat the case where $1-\lambda_{1}=\lambda_{2}$ or $\lambda_{2}=0$, we have to recall (generalized) principal series representations induced from parabolic subgroups of G_{R} other than P_{1}. First, let $P_{2}=M_{2} N_{2}$ be the Siegel parabolic subgroup of G_{R}, where we set

$$
\begin{aligned}
M_{2} & :=\left\{\left.\left(\begin{array}{l|l}
t_{0} m & \\
\hline & { }^{t} m^{-1}
\end{array}\right) \right\rvert\,\left(t_{0}, m\right) \in \mathbf{R}^{\times} \times \mathrm{GL}(2)_{\mathbf{R}}\right\}, \\
N_{2} & :=\left\{n\left(0, x_{1}, x_{2}, x_{3}\right) \mid x_{i} \in \mathbf{R}\right\} .
\end{aligned}
$$

Then the P_{2}-principal series representation $I\left(P_{2} ; \epsilon \otimes D_{n}[\nu], c\right)$ is realized on the space of all C^{∞}-functions $f: \operatorname{GSp}(2, \mathbf{R}) \rightarrow V_{n}[\nu]$ satisfying

$$
\begin{aligned}
f\left(\left(\begin{array}{c|c}
t_{0} m & \\
\hline & { }^{t} m^{-1}
\end{array}\right) n_{2} g\right) & =\epsilon\left(t_{0} /\left|t_{0}\right|\right)\left|t_{0}\right|^{(c+\nu+3) / 2} D_{n}[\nu+3](m) f(g) \\
& \forall\left(t_{0}, m, n_{2}, g\right) \in \mathbf{R}^{\times} \times \mathrm{GL}(2)_{\mathbf{R}} \times N_{2} \times \mathrm{G}_{\mathbf{R}}
\end{aligned}
$$

Here ϵ is a character of $\{ \pm 1\}$ and $V_{n}[\nu]$ stands for the representation space of $D_{n}[\nu]$. The infinitesimal character of $I\left(P_{2} ; \epsilon \otimes D_{n}[\nu], c\right)$ is given by

$$
\frac{1}{2}(c+\nu) e_{0}+\frac{1}{2}(\nu+1-n) e_{1}+\frac{1}{2}(\nu+n-1) e_{2}
$$

By [Bo, 11.3], the Langlands parameter of an arbitrary direct summand of the unitary P_{2}-principal series representation $I\left(P_{2} ; \epsilon \otimes D_{n}[\nu], c\right)$ with $c, \nu \in \sqrt{-1} \mathbf{R}$ and $n \geq 2$ is given by

$$
W_{\mathbf{R}} \ni w \mapsto\left(\begin{array}{ll|ll}
\phi_{(c+\nu) / 2}^{\epsilon}(w) & & & \tag{4.6}\\
& a_{2} & & b_{2} \\
\hline & & \phi_{(c-\nu) / 2}^{(-1))^{\epsilon} \epsilon}(w) & \\
& c_{2} & & d_{2}
\end{array}\right) \in \operatorname{GSp}(2, \mathbf{C})
$$

with

$$
\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\phi_{(c+\nu) / 2}^{\epsilon}(w)^{t} \phi_{(\nu+n-1) / 2, n-1}(w)^{-1}
$$

Here we identify ϵ with the sign of $\epsilon(-1)$. Next we fix a minimal parabolic subgroup P_{0} of G_{R} as $P_{0}=\mathrm{T}_{\mathbf{R}} \mathrm{N}_{\mathbf{R}}$. For a character $\chi: \mathrm{T}_{\mathbf{R}} \rightarrow \mathbf{C}^{\times}$, the principal series representation $I\left(P_{0} ; \chi\right)$ of $\mathrm{G}_{\mathbf{R}}$ is realized on the space of all C^{∞}-functions $f: \operatorname{GSp}(2, \mathbf{R}) \rightarrow \mathbf{C}$ satisfying

$$
\begin{aligned}
& f(t n g)=\chi(t)\left|t_{0}\right|^{3 / 2}\left|t_{1}\right|^{2}\left|t_{2}\right|^{1} f(g) \\
& \forall(t, n, g) \in \mathrm{T}_{\mathbf{R}} \times \mathrm{N}_{\mathbf{R}} \times \mathrm{G}_{\mathbf{R}}, \quad t=\operatorname{diag}\left(t_{0} t_{1}, t_{0} t_{2}, t_{1}^{-1}, t_{2}^{-1}\right)
\end{aligned}
$$

If the character χ is of the form $\chi(t)=\prod_{i=0}^{2} \epsilon_{i}\left(t_{i} /\left|t_{i}\right|\right)\left|t_{i}\right|^{\nu_{i}}$ with characters ϵ_{i} on $\{ \pm 1\}$ and $\nu=\left(\nu_{0}, \nu_{1}, \nu_{2}\right) \in \mathbf{C}^{3}$, then we also write $I\left(P_{0} ; \epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \nu\right)$ in place of $I\left(P_{0} ; \chi\right)$. The infinitesimal character of $I\left(P_{0} ; \epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \nu\right)$ is given by

$$
\nu_{0} e_{0}+\nu_{1} e_{1}+\nu_{2} e_{2}
$$

By [Bo, 11.3] again, the Langlands parameter of an arbitrary direct summand of the unitary principal series representation $I\left(P_{0} ; \epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \nu\right)$ with $\nu_{i} \in \sqrt{-1} \mathbf{R}$ is given by

$$
\begin{equation*}
W_{\mathbf{R}} \ni w \mapsto \phi_{\nu_{0}}^{\epsilon_{0}}(w) \operatorname{diag}\left(1, \phi_{-\nu_{2}}^{\epsilon_{2}}(w), \phi_{-\nu_{1}-\nu_{2}}^{\epsilon_{1} \epsilon_{2}}(w), \phi_{-\nu_{1}}^{\epsilon_{1}}(w)\right) \in \operatorname{GSp}(2, \mathbf{C}) \tag{4.7}
\end{equation*}
$$

Here ϵ_{i} is identified with the sign of $\epsilon_{i}(-1)$.
Now we shall determine the Langlands parameter of $D_{\left(\lambda_{1}, \lambda_{2}\right)}[c]$ when $1-\lambda_{1}=\lambda_{2}$ or $\lambda_{2}=0$. Since the representation $D_{\left(\lambda_{1}, \lambda_{2}\right)}[c]$ is tempered, it is a direct summand of one of the following unitary (generalized) principal series representations:

- $I\left(P_{1} ; \sigma_{n, \pm}, c, \nu_{1}\right)$ with $\nu_{1} \in \sqrt{-1} \mathbf{R}$ and $n \geq 2$;
- $I\left(P_{2} ; \epsilon \otimes D_{n}[\nu], c\right)$ with $\nu \in \sqrt{-1} \mathbf{R}$ and $n \geq 2$;
- $I\left(P_{0} ; \epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \nu\right)$ with $\nu_{i} \in \sqrt{-1} \mathbf{R}$ and $c=2 \nu_{0}-\nu_{1}-\nu_{2}$.
(i) Suppose that $\lambda_{2}=0$ and $\lambda_{1}>1$. Then by comparing the infinitesimal characters and the actions of $-I_{4} \in G_{\mathrm{R}}$, we know that $D_{\left(\lambda_{1}, 0\right)}[c]$ is a direct summand of $I\left(P_{1} ; \sigma_{\lambda_{1},+}, c, 0\right)$.
(ii) Suppose that $\lambda_{2}<0$ and $\lambda_{2}=1-\lambda_{1}$. Then by comparing the infinitesimal characters, we know that $D_{\left(\lambda_{1}, 1-\lambda_{1}\right)}[c]$ is a direct summand of $I\left(P_{2} ; \epsilon \otimes D_{2 \lambda_{1}-1}[0], c\right)(\epsilon$ is arbitrary $)$.
(iii) Finally we suppose that $\left(\lambda_{1}, \lambda_{2}\right)=(1,0)$. Then the representation $D_{(1,0)}[c]$ is a direct summand of $I\left(P_{0} ; \chi\right)$ with $\chi\left(-I_{4}\right)=-1$ and $\nu=(c / 2,0,0)\left(\epsilon_{0}\right.$ is arbitrary).
Hence, the assertion (4.1) in the case of $1-\lambda_{1}=\lambda_{2}$ or $\lambda_{2}=0$ follows from (4.5), (4.6), and (4.7).

5 Computation of the Local Zeta Integrals at the Real Places

In this section, we prove our main results by computing the local zeta integrals $Z^{(v)}\left(s, W, W^{\prime}, f\right)$ at each real place v of k .

5.1 Reduction to a Real Local Problem

By virtue of the results recalled in Section 3, we can easily reduce our main result (Theorem 1.1) to the following proposition, through a typical argument in the theory of zeta integrals (see [Co, G-Sh] for example).

Proposition 5.1 Let v be a fixed real place of k . Suppose that Π_{v} is an irreducible admissible representation of $\mathrm{G}_{\mathrm{k}_{v}} \cong \mathrm{GSp}(2, \mathbf{R})$ satisfying assumption A.2, and let $\mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right)$ be its local Whittaker model. Let σ_{v} be an arbitrary irreducible admissible representation of $\mathrm{GL}(2)_{\mathrm{k}_{v}}$ having a local Whittaker model $\mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right)$. Then there
exists a triplet $\left(W, W^{\prime}, f\right) \in \mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right) \times \mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right) \times \mathcal{J}^{J}\left(1, \omega_{v}^{-1} ; s\right)$ such that

$$
\begin{equation*}
Z^{(v)}\left(s, W, W^{\prime}, f\right)=L\left(s, \Pi_{v} \times \sigma_{v}\right) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\widetilde{Z}^{(v)}\left(s, W, W^{\prime}, f\right)}{L\left(1-s, \Pi_{v} \times \sigma_{v}\right)}=\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right) \frac{Z^{(v)}\left(s, W, W^{\prime}, f\right)}{L\left(s, \Pi_{v} \times \sigma_{v}\right)} \tag{5.2}
\end{equation*}
$$

Here the local factors $L\left(s, \Pi_{v} \times \sigma_{v}\right)$ and $\epsilon\left(s, \Pi_{v} \times \sigma_{v}, \psi_{v}\right)$ are those given in the previous section.

We shall prove Proposition 5.1 by using the explicit formulae of the local Whittaker functions to compute the local zeta integrals $Z^{(v)}\left(s, W, W^{\prime}, f\right)$. Without any loss of generality, we may assume that $c_{v}^{\prime}=c_{v}^{\prime \prime}=0$. Then we have

$$
\widetilde{Z}^{(v)}\left(s, W, W^{\prime}, f_{J, m}^{(v)}\right)=Z^{(v)}\left(1-s, W, W^{\prime}, f_{J, m}^{(v)}\right) \times \begin{cases}1 & \text { if } m \geq 0 \tag{5.3}\\ (-1)^{m} & \text { if } m \leq 0\end{cases}
$$

5.2 A Computational Lemma

The following lemma will be used repeatedly:
Lemma 5.2 For $\alpha_{i} \in \mathbf{C}(1 \leq i \leq 5), l, \nu \in \mathbf{C}$, and a polynomial $P\left(s_{1}\right) \in \mathbf{C}\left[s_{1}\right]$, we put

$$
\begin{aligned}
& I\left(s ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} ; \nu ; P\left(s_{1}\right)\right)=\frac{\Gamma_{\mathbf{R}}\left(2 s+\left|\alpha_{5}\right|\right)}{(2 \pi \sqrt{-1})^{3}} \int_{0}^{\infty} d^{\times} y_{1} \int_{0}^{\infty} d^{\times} y_{2} y_{1}^{s-2} y_{2}^{2 s-2} \\
& \quad \times \int_{L_{1}} d s_{1} \int_{L_{2}} d s_{2}\left(4 \pi^{3} y_{1} y_{2}^{2}\right)^{\left(-s_{1}+\alpha_{1}\right) / 2}\left(4 \pi y_{1}\right)^{\left(-s_{2}+\alpha_{2}\right) / 2} \\
& \quad \times \Gamma\left(\frac{s_{1}+s_{2}+\alpha_{3}}{2}\right) \Gamma\left(\frac{s_{1}+s_{2}+\alpha_{4}}{2}\right) \Gamma\left(\frac{s_{1}}{2}\right) \Gamma\left(-\frac{s_{2}}{2}\right) P\left(s_{1}\right) \\
& \quad \times \int_{L_{3}} d s_{3}\left(4 \pi y_{1}\right)^{-s_{3}} \frac{\Gamma\left(s_{3}+(\nu+1) / 2\right) \Gamma\left(s_{3}+(-\nu+1) / 2\right)}{\Gamma\left(s_{3}+1-\alpha_{2} / 2\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
J(s ; & \left.\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} ; l ; P\left(s_{1}\right)\right) \\
= & \frac{\Gamma_{\mathbf{R}}\left(2 s+\left|\alpha_{5}\right|\right)}{(2 \pi \sqrt{-1})^{2}} \times \int_{0}^{\infty} d^{\times} y_{1} \int_{0}^{\infty} d^{\times} y_{2} y_{1}^{s-2} y_{2}^{2 s-2} e^{-4 \pi y_{1}}\left(4 \pi y_{1}\right)^{l / 2} \\
& \times \int_{L_{1}} d s_{1} \int_{L_{2}} d s_{2}\left(4 \pi^{3} y_{1}^{2} y_{2}\right)^{\left(-s_{1}+\alpha_{1}\right) / 2}\left(4 \pi y_{1}\right)^{\left(-s_{1}+\alpha_{2}\right) / 2} \\
& \times \Gamma\left(\frac{s_{1}+s_{2}+\alpha_{3}}{2}\right) \Gamma\left(\frac{s_{1}+s_{2}+\alpha_{4}}{2}\right) \Gamma\left(\frac{s_{1}}{2}\right) \Gamma\left(-\frac{s_{2}}{2}\right) P\left(s_{1}\right)
\end{aligned}
$$

Here the paths $L_{j}(1 \leq j \leq 3)$ of integration are the vertical line from $\sigma_{j}-\sqrt{-1} \infty$ to $\sigma_{j}+\sqrt{-1} \infty$ with $\sigma_{j} \in \mathbf{R}$ satisfying

$$
\begin{aligned}
& \sigma_{1}+\sigma_{2}+\operatorname{Re}\left(\alpha_{i}\right)>0 \quad(i=3,4), \quad \sigma_{1}>0>\sigma_{2} \\
& \sigma_{3}+\operatorname{Re}(\nu+1) / 2>0, \quad \sigma_{3}+\operatorname{Re}(-\nu+1) / 2>0
\end{aligned}
$$

(i) The integral $I\left(s ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} ; \nu ; P\left(s_{1}\right)\right)$ converges absolutely for $\operatorname{Re}(s) \gg 0$ and is equal to

$$
\begin{aligned}
& \pi^{-4 s+4-\left|\alpha_{5}\right| / 2} 2^{-2 s+4} P\left(2 s+\alpha_{1}-2\right) \Gamma\left(s+\frac{\alpha_{1}-2}{2}\right) \Gamma\left(s+\frac{\left|\alpha_{5}\right|}{2}\right) \\
& \times \Gamma\left(s+\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}+\nu-3}{2}\right) \Gamma\left(s+\frac{\alpha_{1}+\alpha_{2}+\alpha_{4}+\nu-3}{2}\right) \Gamma\left(s+\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}-\nu-3}{2}\right) \Gamma\left(s+\frac{\alpha_{1}+\alpha_{2}+\alpha_{4}-\nu-3}{2}\right) \\
& \quad \times \Gamma\left(2 s+\alpha_{1}+\alpha_{2}+\frac{\alpha_{3}+\alpha_{4}}{2}-3\right)^{-1}
\end{aligned}
$$

(ii) The integral $J\left(s ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} ; l ; P\left(s_{1}\right)\right)$ converges absolutely for $\operatorname{Re}(s) \gg 0$ and is equal to

$$
\begin{aligned}
& \pi^{-4 s+2-\left|\alpha_{5}\right| / 2} 2^{-2 s+4} P\left(2 s+\alpha_{1}-2\right) \Gamma\left(s+\frac{\alpha_{1}-2}{2}\right) \Gamma\left(s+\frac{\left|\alpha_{5}\right|}{2}\right) \\
& \quad \times \Gamma\left(s+\frac{\alpha_{1}+\alpha_{3}-2}{2}\right) \Gamma\left(s+\frac{\alpha_{1}+\alpha_{4}-2}{2}\right) \Gamma\left(s+\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}+l-4}{2}\right) \Gamma\left(s+\frac{\alpha_{1}+\alpha_{2}+\alpha_{4}+l-4}{2}\right) \\
& \quad \times \Gamma\left(2 s+\frac{2 \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+l}{2}-3\right)^{-1} .
\end{aligned}
$$

Proof This can be easily obtained by using the Barnes' lemma [W-W, p.289].

5.3 Proof of Proposition 5.1, Case (a)

Let us start with recalling the explicit formulae for some Whittaker functions in $\mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right)$ given in [Mo-3]. Fix a maximal compact subgroup K_{v}^{H} of the identity component of $\mathrm{H}_{\mathrm{k}_{v}}$ as follows:

$$
K_{v}^{\mathrm{H}}:=\left\{r\left(\theta_{1}, \theta_{2}\right) \mid \theta_{i} \in \mathbf{R}\right\}, \quad r\left(\theta_{1}, \theta_{2}\right):=\left(r_{\theta_{1}}, r_{\theta_{2}}\right) \in \mathrm{H}_{\mathrm{k}_{v}} .
$$

This is also a Cartan subgroup of the identity component K_{v}^{0} of K_{v}. We say that a vector $\xi \in \Pi_{v}$ is of type $\left(q_{1}, q_{2}\right)\left(q_{i} \in \mathbf{Z}\right)$ if it satisfies

$$
\Pi_{v}\left(r\left(\theta_{1}, \theta_{2}\right)\right) \xi=\exp \left(q_{1} \theta_{1}+q_{2} \theta_{2}\right) \xi, \quad \forall \theta_{i} \in \mathbf{R}
$$

We use similar terminology for a cusp form F or a local Whitaker function. Fix a basis $\left\{v_{k} \in \Pi_{v} \mid 0 \leq k \leq d=\lambda_{1}-\lambda_{2}\right\}$ of the minimal K_{v}^{0}-type in $D_{\left(-\lambda_{2},-\lambda_{1}\right)}$ as in [Mo-3]. Then v_{k} is of type $\left(-\lambda_{1}+k,-\lambda_{2}-k\right)$. We denote by $W_{v_{k}} \in \mathrm{~Wh}\left(\Pi_{v}, \psi_{v}\right)$ the Whittaker function corresponding to v_{k}. Put

$$
\tilde{y}:=\operatorname{diag}\left(y_{1} y_{2}, y_{1}, y_{2}^{-1}, 1\right) \in \mathrm{G}_{\mathrm{k}_{v}}, \quad y_{i} \in \mathrm{k}_{v}^{\times} .
$$

We know from [Mo-3, Proposition 7] that, for $y_{i}>0$,

$$
\left.\begin{array}{rl}
W_{v_{k}}(\widetilde{y})= & C_{1} \tag{5.4}
\end{array}\right) \times\binom{ d}{k} \times(2 \sqrt{-1})^{-k} \frac{e^{-2 \pi y_{1}}}{(2 \pi \sqrt{-1})^{2}} .
$$

with

$$
\begin{equation*}
\alpha_{1}=\lambda_{1}+1-k ; \quad \alpha_{2}=\lambda_{2}+k ; \quad \alpha_{3}=-2 \lambda_{2}+1 ; \quad \alpha_{4}=1 \tag{5.5}
\end{equation*}
$$

Here $C_{1} \in \mathbf{C}^{\times}$is a non-zero constant and the paths of integration are taken as in Lemma 5.2. On the other hand we have

$$
\begin{equation*}
W_{v_{k}}\left(\operatorname{diag}\left(y_{1} y_{2}, y_{1}, y_{2}^{-1}, 1\right)\right)=0, \quad \forall y_{1}<0, \quad \forall y_{2} \in \mathrm{k}_{v}^{\times} . \tag{5.6}
\end{equation*}
$$

Case (a-ii): Suppose that $\sigma_{v} \cong I_{\mathrm{B}_{\mathrm{R}}^{\prime}}^{\mathrm{GL}(2)_{\mathrm{R}}}\left(\epsilon_{1}, \epsilon_{2} ; 0, \nu\right)$. For an integer m satisfying $(-1)^{m}=\left(\epsilon_{1} \cdot \epsilon_{2}\right)(-1)$, let $W_{m}^{\prime} \in \mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right)$ be the local Whittaker function characterized by

$$
\begin{equation*}
W_{m}^{\prime}\left(h_{2} r_{\theta}\right)=\exp (2 \pi \sqrt{-1} m \theta) W_{m}^{\prime}\left(h_{2}\right), \quad \forall h_{2} \in \mathrm{GL}(2)_{\mathrm{k}_{v}}, \forall \theta \in \mathbf{R} \tag{5.7}
\end{equation*}
$$

up to a constant multiple. Then it is well known that, for $y_{1}>0$,

$$
\begin{align*}
& W_{m}^{\prime}\left(\begin{array}{cc}
y_{1} & 0 \\
0 & 1
\end{array}\right)=\left(-C_{2}\right) \times W_{m / 2, \nu / 2}\left(4 \pi y_{1}\right) \tag{5.8}\\
& =C_{2} \times \frac{e^{2 \pi y_{1}}}{2 \pi \sqrt{-1}} \int_{L_{3}} \frac{\Gamma\left(s_{3}+(\nu+1) / 2\right) \Gamma\left(s_{3}+(-\nu+1) / 2\right)}{\Gamma\left(s_{3}+1-m / 2\right)}\left(4 \pi y_{1}\right)^{-s_{3}} d s_{3},
\end{align*}
$$

where $W_{m / 2, \nu / 2}$ stands for the classical Whittaker function [W-W, Chapter 16]. Here and (5.10) below the path of integration L_{3} is taken as in Lemma 5.2 and C_{2} is a nonzero constant. We choose an integer $0 \leq k \leq d$ such that $(-1)^{\lambda_{2}+k}=\left(\epsilon_{1} \cdot \epsilon_{2}\right)(-1)$ and $\lambda_{1} \geq k$. Then, by using (5.6) and (5.7), we have

$$
\begin{aligned}
& Z^{(v)}\left(s, W_{v_{k}}, W_{\lambda_{2}+k}^{\prime}, f_{\Phi_{\lambda_{1}-k}}\right)= \\
& \qquad \int_{0}^{\infty} d^{\times} y_{1} \int_{0}^{\infty} d^{\times} y_{2} \int_{0}^{2 \pi} \frac{d \theta_{1}}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta_{2}}{2 \pi} W_{v_{k}}\left(\widetilde{y} r\left(\theta_{1}, \theta_{2}\right)\right) \\
& \quad \times W_{\lambda_{2}+k}^{\prime}\left(\left(\begin{array}{cc}
y_{1} & 0 \\
0 & 1
\end{array}\right) r_{\theta_{2}}\right) f_{\Phi_{\lambda_{1}-k}}\left(s,\left(\begin{array}{cc}
y_{1} y_{2} & 0 \\
0 & y_{2}^{-1}
\end{array}\right) r_{\theta_{1}}\right)\left(y_{1} y_{2}\right)^{-2} .
\end{aligned}
$$

By inserting (5.4) and (5.8), we find that

$$
Z^{(v)}\left(s, W_{v_{k}}, W_{\lambda_{2}+k}^{\prime}, f_{\Phi_{\lambda_{1}-k}}\right)=C \times I\left(s, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} ; \nu ;\left(s_{1}\right)_{k}\right)
$$

for some $C \in \mathbf{C}^{\times}$, where $\alpha_{i}(1 \leq i \leq 4)$ are as in (5.5) and $\alpha_{5}=\lambda_{1}-k$. Finally we apply Lemma 5.2 to get

$$
\begin{equation*}
Z^{(v)}\left(s, W_{v_{k}}, W_{\lambda_{2}+k}^{\prime}, f_{\Phi_{\lambda_{1}-k}}\right)=C^{\prime} \times L\left(s, \Pi_{v} \times \sigma_{v}\right), \quad C^{\prime} \in \mathbf{C}^{\times} . \tag{5.9}
\end{equation*}
$$

By (5.9) and (5.3), Proposition 5.1 follows in Case (a-ii).
Case (a-i): Suppose that $\sigma_{v} \cong D_{l}[0]$. For each $m \in \mathbf{Z}$ with $m \geq l$ and $m \equiv$ $l(\bmod 2)$, let us denote by $W_{m}^{\prime} \in \mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right)$ the Whittaker function characterized by (5.7), up to a constant multiple. Then we have

$$
W_{m}^{\prime}\left(\begin{array}{cc}
y_{1} & 1 \tag{5.10}
\end{array}\right)=C_{2} \times \frac{e^{2 \pi y_{1}}}{2 \pi \sqrt{-1}} \int_{L_{3}} \frac{\Gamma\left(s_{3}+l / 2\right) \Gamma\left(s_{3}+(2-l) / 2\right)}{\Gamma\left(s_{3}+1-m / 2\right)}\left(4 \pi y_{1}\right)^{-s_{3}} d s_{3}
$$

for $y_{1}>0$ with some constant $C_{2} \in \mathbf{C}^{\times}$. Note that

$$
W_{l}^{\prime}\left(\operatorname{diag}\left(y_{1}, 1\right)\right)=C_{2} \times e^{-2 \pi y_{1}}\left(4 \pi y_{1}\right)^{l / 2} \text { for } y_{1}>0 .
$$

If $l \leq \lambda_{1}$, then it follows from Lemma 5.2(ii) that

$$
\begin{equation*}
Z^{(v)}\left(s, W_{v_{l-\lambda_{2}}}, W_{l}^{\prime}, f_{\Phi_{\lambda_{1}+\lambda_{2}-l}}\right)=C \times L\left(s, \Pi_{v} \times \sigma_{v}\right), \quad \text { for some } C \in \mathbf{C}^{\times} \tag{5.11}
\end{equation*}
$$

This proves Proposition 5.1 for the case $l \leq \lambda_{1}$. Next we suppose that $l>\lambda_{1}$. In this case we need Whittaker functions $W \in \mathrm{~Wh}\left(\Pi_{v}, \psi_{v}\right)$ not belonging to the minimal K_{v}^{0}-type of $D_{\left(-\lambda_{2},-\lambda_{1}\right)}\left(\subset \Pi_{v}\right)$ in order to get a non-vanishing local zeta integral. Put $\mathfrak{g}_{v}:=\operatorname{Lie}\left(\mathrm{G}_{\mathrm{k}_{v}}\right)$ and define two elements $X_{(\pm 1,-1)} \in \mathfrak{g}_{v, \mathrm{C}}:=\mathfrak{g}_{v} \otimes_{\mathrm{k}_{v}} \mathbf{C}$ by

$$
X_{(\pm 1,-1)}:=\left(\begin{array}{cc|cc}
& 1 & & -\sqrt{-1} \\
\mp 1 & & -\sqrt{-1} & \\
\hline \pm \sqrt{-1} & \pm \sqrt{-1} & & \pm 1
\end{array}\right)
$$

Moreover we set $X_{(0,-2)}:=\left[X_{(1,-1)}, X_{(-1,-1)}\right] \in \mathfrak{g}_{v, \mathbf{C}}$. We define a C-linear action of the universal enveloping algebra $U\left(\mathfrak{g}_{v}\right)$ of $\mathfrak{g}_{v, \mathrm{C}}$ on $W \in \mathrm{~Wh}\left(\Pi_{v}, \psi_{v}\right)$ by
$W\left(g ; X_{1} \cdot X_{2} \cdots X_{n}\right)=\left.\left.\left.\frac{d}{d t_{1}}\right|_{t_{1}=0} \frac{d}{d t_{2}}\right|_{t_{2}=0} \cdots \frac{d}{d t_{n}}\right|_{t_{n}=0} W\left(g e^{t_{1} X_{1}} e^{t_{2} X_{2}} \cdots e^{t_{n} X_{n}}\right), X_{i} \in \mathfrak{g}_{v}$.
In the same manner, we define

$$
W^{\prime}\left(h_{2} ; X_{1} \cdots X_{n}\right), \quad h_{2} \in G L(2)_{\mathrm{k}_{v}}, X_{i} \in \operatorname{Lie}\left(G L(2)_{\mathrm{k}_{v}}\right) \otimes \mathbf{C}
$$

for $W^{\prime} \in \mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right)$. Set $r=l-\lambda_{1}$. Then, by using Lemma 5.3 below, we find that

$$
\begin{equation*}
Z^{(v)}\left(s, W_{v_{d}}\left(\cdot ;\left(X_{(-1,-1)}\right)^{r}\right), W_{l}^{\prime}, f_{J, \lambda_{2}+r}^{(v)}\right)=C \times L\left(s, \Pi_{v} \times \sigma_{v}\right) \tag{5.12}
\end{equation*}
$$

for some $C \in \mathbf{C}^{\times}$. Now Proposition 5.1 in Case (a-i) follows from (5.11), (5.12), and (5.3).

Lemma 5.3 Let $W \in \mathrm{~Wh}\left(\Pi_{v}, \psi_{v}\right)$ and $W^{\prime} \in \mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right)$ be local Whittaker functions satisfying $W\left(g ; X_{(1,-1)}\right)=0$ and $W^{\prime}\left(h ; X_{(0,-2)}\right)=0$. Suppose that there exist $q_{1}, q_{2} \in \mathbf{Z}$ and $r \in \mathbf{Z}_{\geq 0}$ such that

$$
\begin{aligned}
W\left(g\left(r\left(\theta_{1}, \theta_{2}\right)\right)\right) & =\exp \left(2 \pi \sqrt{-1}\left(q_{1} \theta_{1}+q_{2} \theta_{2}\right)\right) W(g), \quad \forall g \in \mathrm{G}_{\mathrm{k}_{v}}, \forall \theta_{i} \in \mathbf{R} ; \\
W^{\prime}\left(h_{2} r_{\theta_{2}}\right) & =\exp \left(2 \pi \sqrt{-1}\left(\left(-q_{2}+r\right) \theta_{2}\right)\right) W^{\prime}\left(h_{2}\right), \quad \forall h_{2} \in \mathrm{GL}(2)_{\mathrm{k}_{v}}, \forall \theta_{2} \in \mathbf{R} .
\end{aligned}
$$

Moreover we suppose that the support of W is contained in the identity component of $\mathrm{G}_{\mathrm{k}_{v}}$. Then the local zeta integral $Z^{(v)}\left(s, W\left(\cdot ;\left(X_{(-1,-1)}\right)^{r}\right), W^{\prime}, f_{J,-q_{1}+r}^{(v)}\right)$ equals

$$
\begin{array}{r}
\int_{0}^{\infty} d^{\times} y_{1} \int_{0}^{\infty} d^{\times} y_{2} W(\widetilde{y}) W^{\prime}\left(\operatorname{diag}\left(y_{1}, 1\right)\right) f_{J,-q_{1}+r}^{(v)}\left(s, \operatorname{diag}\left(y_{1} y_{2}, y_{2}^{-1}\right)\right) \tag{5.13}\\
\times\left(-4 \pi \sqrt{-1} y_{2}\right)^{r}\left(y_{1} y_{2}\right)^{-2}
\end{array}
$$

Proof Since $X_{(1,-1)}+X_{(-1,-1)}$ belongs to $\operatorname{Lie}\left(\mathrm{N}_{\mathrm{k}_{\nu}}\right) \otimes \mathbf{C}$, we have

$$
\left(-4 \pi \sqrt{-1} y_{2}\right)^{r} W(\widetilde{y})=W\left(\widetilde{y} ;\left(X_{(1,-1)}+X_{(-1,-1)}\right)^{r}\right) .
$$

Hence (5.13) is equal to $\sum_{i_{1}, i_{2}, \ldots, i_{r}= \pm 1} Z\left(s ; i_{1}, i_{2}, \ldots, i_{r}\right)$ with

$$
\begin{aligned}
& Z\left(s ; i_{1}, i_{2}, \ldots, i_{r}\right):= \int_{0}^{\infty} \\
& d^{\times} y_{1} \int_{0}^{\infty} d^{\times} y_{2} W\left(\widetilde{y} ; X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{2},-1\right)} \cdot X_{\left(i_{1},-1\right)}\right) \\
& \times W^{\prime}\left(\operatorname{diag}\left(y_{1}, 1\right)\right) f_{J,-q_{1}+r}^{(v)}\left(s, \operatorname{diag}\left(y_{1} y_{2}, y_{2}^{-1}\right)\right)\left(y_{1} y_{2}\right)^{-2} .
\end{aligned}
$$

Here we have used the assumption on the support of W. Hence all we have to show is that the integral $Z\left(s ; i_{1}, i_{2}, \ldots, i_{r}\right)$ is zero unless $\vec{i}=\left(i_{1}, i_{2}, \ldots, i_{r}\right)=$ $(-1,-1, \ldots,-1)$. Fix $\vec{i} \in\{ \pm 1\}^{r}$ such that $\vec{i} \neq(-1,-1, \ldots,-1)$. We let $1 \leq p \leq n$ be the least integer such that $i_{p}=1$ and use induction on p. If $p=1$, then we have

$$
W\left(\widetilde{y} ; X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{2},-1\right)} \cdot X_{\left(i_{1},-1\right)}\right)=0
$$

Hence the integral $Z\left(s ; i_{1}, i_{2}, \cdots, i_{r}\right)$ becomes zero. Now we suppose that $p \geq 2$. By

$$
\begin{aligned}
& X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{2},-1\right)} \cdot X_{\left(i_{1},-1\right)} \\
& =X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{p+1},-1\right)} \cdot X_{(1,-1)} \cdot\left(X_{(-1,-1)}\right)^{p-1} \\
& =X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{p+1},-1\right)} \cdot\left(X_{(-1,-1)} \cdot X_{(1,-1)}+X_{(0,-2)}\right) \cdot\left(X_{(-1,-1)}\right)^{p-2} \\
& =X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{p+1},-1\right)} \cdot X_{(-1,-1)} \cdot X_{(1,-1)} \cdot\left(X_{(-1,-1)}\right)^{p-2} \\
& +X_{(0,-2)} \cdot X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{p+1},-1\right)} \cdot\left(X_{(-1,-1)}\right)^{p-2}
\end{aligned}
$$

and the hypothesis of induction, we know that

$$
\begin{aligned}
& Z\left(s ; i_{1}, i_{2}, \ldots, i_{r}\right) \\
& \begin{aligned}
=\int_{0}^{\infty} d^{\times} y_{1} \int_{0}^{\infty} d^{\times} y_{2} W & \left(\widetilde{y} ; X_{(0,-2)} \cdot X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{p+1},-1\right)} \cdot\left(X_{(-1,-1)}\right)^{p-2}\right) \\
& \times W^{\prime}\left(\operatorname{diag}\left(y_{1}, 1\right)\right) f\left(s, \operatorname{diag}\left(y_{1} y_{2}, y_{2}^{-1}\right)\right) \times\left(y_{1} y_{2}\right)^{-2}
\end{aligned}
\end{aligned}
$$

In order to compute this, we define a subgroup M_{J}^{+}of $\mathrm{H}_{\mathrm{k}_{v}}$ by

$$
M_{J}^{+}:=\left\{m=\left(m_{1}, m_{2}\right) \in \mathrm{H}_{\mathrm{k}_{v}} \left\lvert\, m_{1}=\left(\begin{array}{c}
y_{1} y_{2} \\
\\
y_{2}^{-1}
\end{array}\right)\right., y_{i}>0, m_{2} \in \mathrm{GL}(2)_{\mathrm{k}_{v}}\right\}
$$

Note that $\operatorname{det}\left(m_{2}\right)=y_{1}>0$ and that the function

$$
W\left(m ; X_{(0,-2)} \cdot X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{p+1},-1\right)} \cdot\left(X_{(-1,-1)}\right)^{p-2}\right) W^{\prime}\left(m_{2}\right)
$$

on M_{J}^{+}is right invariant under $M_{J}^{+} \cap K_{v}^{0}$. Hence the integral $Z\left(s ; i_{1}, i_{2}, \ldots, i_{r}\right)$ equals

$$
\begin{aligned}
& \int_{Z_{\mathrm{k}_{v}}\left(M_{J}^{+} \cap N_{k_{v}}\right) \backslash M_{J}^{+}} W\left(m ; X_{(0,-2)} \cdot X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{p+1},-1\right)} \cdot\left(X_{(-1,-1)}\right)^{p-2}\right) \\
& \times W^{\prime}\left(m_{2}\right) f\left(s, m_{1}\right) \times\left(y_{1} y_{2}^{2}\right)^{-1} d m \\
& =\int_{Z_{k_{v}}\left(M_{J}^{+} \cap N_{k_{v}}\right) \backslash M_{J}^{+}} W\left(m ; X_{\left(i_{r},-1\right)} \cdots X_{\left(i_{p+1},-1\right)} \cdot\left(X_{(-1,-1)}\right)^{p-2}\right) \\
& \quad \times W^{\prime}\left(m_{2} ;-X_{(0,-2)}\right) f\left(s, m_{1}\right)\left(y_{1} y_{2}^{2}\right)^{-1} d m
\end{aligned}
$$

where $d m$ stands for the usual right invariant measure. Since $W^{\prime}\left(m_{2} ; X_{(0,-2)}\right)=0$ by assumption we have $Z\left(s ; i_{1}, i_{2}, \ldots, i_{r}\right)=0$.

5.4 Proof of Proposition 5.1, Case (b)

Recall some explicit formulae of local Whittaker functions for $\Pi_{v} \cong I\left(P_{1} ; \sigma_{n, \epsilon}, 0, \nu\right)$. We first suppose that $\epsilon(-1)^{n}=1$. Then there exists a unique, up to constant multiple, local Whittaker function $W_{(-n,-n)} \in \mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right)$ of type $(-n,-n)$ satisfying $W_{(-n,-n)}\left(g ; X_{(1,-1)}\right)=0$. By [Mi-O-1, Proposition 8.1], $W_{(-n,-n)}(\tilde{y})=0$ if $y_{1}<0$ ($i=0,1$). If $y_{1}>0$, then it follows from [Mo-2, Theorem 3] that
(5.14) $W_{(-n,-n)}(\widetilde{y})=$

$$
\begin{aligned}
& C_{1} \times \frac{e^{-2 \pi y_{1}}}{(2 \pi \sqrt{-1})^{2}} \times \int_{L_{1}} d s_{1} \int_{L_{2}} d s_{2}\left(4 \pi^{3} y_{1} y_{2}^{2}\right)^{\left(-s_{1}+\alpha_{1}\right) / 2}\left(4 \pi y_{1}\right)^{\left(-s_{2}+\alpha_{2}\right) / 2} \\
& \times \Gamma\left(\frac{s_{1}+s_{2}+\alpha_{3}}{2}\right) \Gamma\left(\frac{s_{1}+s_{2}+\alpha_{4}}{2}\right) \Gamma\left(\frac{s_{1}}{2}\right) \Gamma\left(-\frac{s_{2}}{2}\right)
\end{aligned}
$$

with

$$
\alpha_{1}=n+1, \quad \alpha_{2}=n, \quad \alpha_{3}=\nu_{1}-n+1, \quad \alpha_{4}=-\nu_{1}-n+1 .
$$

Here and in (5.15) below the paths of integration are taken as in Lemma 5.2 and C_{1} is a non-zero constant.

Next we suppose that $\Pi_{v} \cong I\left(P_{1} ; \sigma_{n, \epsilon}, 0, \nu\right)$ with $\epsilon(-1)^{n+1}=1$. Then there exists a unique, up to constant multiple, local Whittaker function $W_{(1-n,-n)} \in \mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right)$ of type $(1-n,-n)$ satisfying $W_{(1-n,-n)}\left(g ; X_{(1,-1)}\right)=0$. We also define

$$
W_{(-n, 1-n)}(g) \in W h\left(\Pi_{v}, \psi_{v}\right) \text { by } W_{(-n, 1-n)}(g):=W_{(1-n,-n)}\left(g ;-\overline{X_{(1,-1)}} / 2\right)
$$

By [Mi-O-1, Proposition 8.2] $W_{(-n+i,-n+1-i)}(\widetilde{y})=0$ for $y_{1}<0(i=0,1)$. For $y_{1}>0$, we can deduce from [Mi-O-2] the following explicit formulae:

$$
\begin{align*}
& W_{(-n+i,-n+1-i)}(\widetilde{y})=C_{1} \times \frac{e^{-2 \pi y_{1}}}{(2 \pi \sqrt{-1})^{2}} \tag{5.15}\\
& \times \int_{L_{1}} d s_{1} \int_{L_{2}} d s_{2}\left(4 \pi^{3} y_{1} y_{2}^{2}\right)^{\left(-s_{1}+\alpha_{1}\right) / 2}\left(4 \pi y_{1}\right)^{\left(-s_{2}+\alpha_{2}\right) / 2} \\
& \\
& \times \Gamma\left(\frac{s_{1}+s_{2}+\alpha_{3}}{2}\right) \Gamma\left(\frac{s_{1}+s_{2}+\alpha_{4}}{2}\right) \Gamma\left(\frac{s_{1}}{2}\right) \Gamma\left(-\frac{s_{2}}{2}\right) p_{i}(s)
\end{align*}
$$

with

$$
\begin{aligned}
& \alpha_{1}=n+1-i ; \quad \alpha_{2}=n-1+i ; \quad \alpha_{3}=\nu_{1}-n+2 \\
& \alpha_{4}=-\nu_{1}-n+2 ; \quad p_{1}\left(s_{1}\right)=\left(-\sqrt{-1} s_{1}\right) / 2 ; \quad p_{0}\left(s_{1}\right)=1 .
\end{aligned}
$$

Here $C_{1} \in \mathbf{C}^{\times}$is a constant common to $i=0,1$. By using (5.14) and (5.15), we have the following.

Proposition 5.4 If we take a triplet $\left(W, W^{\prime}, f\right) \in \mathrm{Wh}\left(\Pi_{v}, \psi_{v}\right) \times \mathrm{Wh}\left(\sigma_{v}, \psi_{v}\right) \times$ $\mathrm{J}^{J}\left(1, \omega_{v}^{-1} ; s\right)$ as below, then the equations (5.1) and (5.2) hold.
(i) the case of $\epsilon(-1)^{n}=1$ and $\sigma_{v} \cong D_{l}[0]$:

$$
\begin{aligned}
& \left(W(g), W^{\prime}\left(h_{2}\right), f\left(s, h_{1}\right)\right):= \\
& \begin{cases}\left(W_{(-n,-n)}(g), W_{n}^{\prime}\left(h_{2}\right), f_{J, n}^{(v)}\left(s, h_{1}\right)\right) & \text { if } l \leq n \text { and } l \equiv n(\bmod 2) ; \\
\left(W_{(-n,-n)}\left(g ; X_{(1,1)}\right), W_{n-1}^{\prime}\left(h_{2}\right), f_{J, n-1}^{(v)}\left(s, h_{1}\right)\right) & \text { if } l \leq n \text { and } l \equiv n-1(\bmod 2) ; \\
\left(W_{(-n,-n)}\left(g ; X_{(-1,-1)}^{l-n}\right), W_{l}^{\prime}\left(h_{2}\right), f_{J, l}^{(v)}\left(s, h_{1}\right)\right) & \text { if } l \geq n ;\end{cases}
\end{aligned}
$$

(ii) the case of $\epsilon(-1)^{n+1}=1$ and $\sigma_{v} \cong D_{l}[0]$:

$$
\begin{aligned}
& \left(W(g), W^{\prime}\left(h_{2}\right), f\left(s, h_{1}\right)\right):= \\
& \begin{cases}\left(W_{(1-n,-n)}(g), W_{n}^{\prime}\left(h_{2}\right), f_{J, n-1}^{(v)}\left(s, h_{1}\right)\right) & \text { if } l \leq n \text { and } l \equiv n(\bmod 2) ; \\
\left(W_{(-n, 1-n)}(g), W_{n-1}^{\prime}\left(h_{2}\right), f_{J, n}^{(v)}\left(s, h_{1}\right)\right) & \text { if } l \leq n \text { and } l \equiv n-1(\bmod 2) ; \\
\left(W_{(1-n,-n)}\left(g ; X_{(-1,-1)}^{l-n}\right), W_{l}^{\prime}\left(h_{2}\right), f_{J, l-1}^{(v)}\left(s, h_{1}\right)\right) & \text { if } l \geq n ;\end{cases}
\end{aligned}
$$

(iii) the case of $\epsilon(-1)^{n}=1$ and $\sigma_{v} \cong I_{\mathrm{B}_{\mathrm{R}}^{\prime}}^{\mathrm{GL}(2)_{\mathrm{R}}}\left(\epsilon_{1}, \epsilon_{2} ; 0, \nu\right)$:

$$
\begin{aligned}
& \left(W(g), W^{\prime}\left(h_{2}\right), f\left(s, h_{1}\right)\right) \\
& := \begin{cases}\left(W_{(-n,-n)}(g), W_{n}^{\prime}\left(h_{2}\right), f_{J, n}^{(v)}\left(s, h_{1}\right)\right) & \text { if }(-1)^{n}=\left(\epsilon_{1} \cdot \epsilon_{2}\right)(-1) ; \\
\left(W_{(-n,-n)}\left(g ; X_{(1,1)}\right), W_{n-1}^{\prime}\left(h_{2}\right), f_{J, n-1}^{(v)}\left(s, h_{1}\right)\right) & \text { if }(-1)^{n+1}=\left(\epsilon_{1} \cdot \epsilon_{2}\right)(-1) ;\end{cases}
\end{aligned}
$$

(iv) the case of $\epsilon(-1)^{n+1}=1$ and $\sigma_{v} \cong I_{\mathrm{B}_{\mathrm{R}}^{\prime}}^{\mathrm{GL}(2)_{\mathrm{R}}}\left(\epsilon_{1}, \epsilon_{2} ; 0, \nu\right)$:

$$
\begin{aligned}
& \left(W(g), W^{\prime}\left(h_{2}\right), f\left(s, h_{1}\right)\right) \\
& \qquad:= \begin{cases}\left(W_{(1-n,-n)}(g), W_{n}^{\prime}\left(h_{2}\right), f_{J, n-1}^{(v)}\left(s, h_{1}\right)\right) & \text { if }(-1)^{n}=\left(\epsilon_{1} \cdot \epsilon_{2}\right)(-1) \\
\left(W_{(-n, 1-n)}(g), W_{n-1}^{\prime}\left(h_{2}\right), f_{J, n}^{(v)}\left(s, h_{1}\right)\right) & \text { if }(-1)^{n+1}=\left(\epsilon_{1} \cdot \epsilon_{2}\right)(-1) .\end{cases}
\end{aligned}
$$

Here we set $X_{(1,1)}:=\overline{X_{(-1,-1)}} \in \mathfrak{g}_{v}$.
Proof In Cases (i) and (iii), we note

$$
W_{(-n,-n)}\left(\tilde{y} ; X_{(1,1)}\right)=\left(-4 \pi \sqrt{-1} y_{2}\right) W_{(-n,-n)}(\tilde{y})
$$

and that $W_{(-n,-n)}\left(g ; X_{(1,1)}\right)$ is of type $(1-n, 1-n)$. Then we can compute the local zeta integral in each case by using Lemmas 5.2 and 5.3.

Hence Proposition 5.1 holds in Case (b), too.
Remark. From the computation above, we can obtain sufficient conditions for the L-function $L(s, \Pi \times \sigma)$ being entire. For example, in Case (a-i), $L(s, \Pi \times \sigma)$ is entire unless $l=\lambda_{1} \pm \lambda_{2}$.

6 Application to the Spinor L-Function of Π

If we replace the cusp form φ in the zeta integral $Z(s, F \otimes \varphi, f)$ by an Eisenstein series, we get a product of two spinor L-functions of Π. This is quite analogous to the case of the original Rankin-Selberg convolution for GL(2) $\times \mathrm{GL}(2)$ [Shm, (4.3), p. 799]. As a simple application of this "decomposition formula", we shall give another proof of the following:

Proposition 6.1 ([Mo-3, A-S-2]) Suppose that the base field k is \mathbf{Q}. Let Π be a cuspidal automorphic representation of G_{A} with trivial central character satisfying assumptions A. 1 and A.2. Moreover we assume that the local component Π_{p} at each finite place p is unramified. Then the spinor L-function $L(s, \Pi)$ is continued to an entire function.

Remark. This was already proved in [Mo-3] without any assumptions on ω_{Π} and Π_{p} $(p<\infty)$. Furthermore Asgari and Shahidi [A-S-2] proved that the spinor L-function $L(s, \Pi)$ is entire for an arbitrary cuspidal automorphic representation Π with no conditions on the base field k and archimedean types.

Proof For a Schwartz-Bruhat function Φ^{i} on $\mathbf{A}^{2}(i=1,2)$, we define the global Jacquet section $f_{\Phi^{i}}\left(s, h_{i}\right) \in \mathcal{J}^{J}(s, 1,1)$ as in (2.2). Consider the following integral

$$
\begin{equation*}
Z(s, \nu) \equiv Z\left(s, \nu ; F ; f_{\Phi^{2}}, f_{\Phi^{1}}\right):=\int_{\mathrm{Z}_{\mathrm{A}} \mathrm{H}_{\mathrm{Q}} \backslash \mathrm{H}_{\mathrm{A}}} F(h) E\left(\frac{\nu+1}{2}, h_{2} ; f_{\Phi^{2}}\right) E\left(s, h_{1} ; f_{\Phi^{1}}\right) d h \tag{6.1}
\end{equation*}
$$

which converges absolutely on every compact subset in \mathbf{C}^{2} not containing the poles of two Eisenstein series. The integral (6.1) can be considered as a special case of Andrianov's zeta integral for the spinor L-function of Π (cf. [PS, Ha]). Since the proof of the basic identity (Proposition 3.2) does not necessitate the cuspidality of φ, we have

$$
\begin{equation*}
Z\left(s, \nu ; F ; f_{\Phi^{2}}, f_{\Phi^{1}}\right)=\int_{Z_{\mathrm{A}} N^{\mathrm{H}_{\mathrm{A}}} \backslash \mathrm{H}_{\mathrm{A}}} \mathcal{W}_{F}(h) \mathcal{W}_{\Phi^{2}}\left(\frac{\nu+1}{2} ; h_{2}\right) f_{\Phi_{1}}\left(s, h_{1}\right) d h, \tag{6.2}
\end{equation*}
$$

with

$$
\begin{aligned}
\mathcal{W}_{\Phi^{2}}\left(\frac{\nu+1}{2} ; h_{2}\right) & =\int_{\mathbf{Q} \backslash \mathbf{A}} E\left(\frac{\nu+1}{2},\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) h_{2} ; f_{\Phi_{2}}\right) \psi(-x) d x \\
& =\int_{\mathbf{A}} f_{\Phi^{2}}\left(\frac{\nu+1}{2}, w_{0}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) h_{2}\right) \psi(-x) d x .
\end{aligned}
$$

Here the right-hand side of (6.2) converges absolutely for $\operatorname{Re}(s)-|\operatorname{Re}(\nu)| / 2 \gg 0$. We shall compute the integral $Z(s, \nu)$ in the following situation:
(a) \mathcal{W}_{F} is decomposable and $\mathcal{W}_{F}^{(p)}$ is the unramified local Whittaker function for each finite place $v=p<\infty$;
(b) the local Whittaker function $\mathcal{W}_{F}^{(\infty)}$ at the real place is of type $\left(-q_{1},-q_{2}\right)$;
(c) $\Phi^{i}(x, y)=\prod_{v} \Phi_{v}^{i}\left(x_{v}, y_{v}\right)$ where Φ_{p}^{i} is the characteristic function of \mathbf{Z}_{p}^{2} for $p<\infty$ and $\Phi_{\infty}^{i}=\Phi_{q_{i}}(i=1,2)$.
Then we have

$$
\mathcal{W}_{\Phi^{2}}\left(\frac{\nu+1}{2} ; h_{2}\right)=\prod_{v} \mathcal{W}_{\Phi_{v}^{2}}\left(\frac{\nu+1}{2} ; h_{2, v}\right)
$$

with

$$
\mathcal{W}_{\Phi_{v}^{2}}\left(\frac{\nu+1}{2} ; h_{2, v}\right):=\int_{\mathbf{Q}_{v}} f_{\Phi_{v}^{2}}\left(\frac{\nu+1}{2}, w_{0}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) h_{2, v}\right) \psi_{v}(-x) d x .
$$

The functions $\mathcal{W}_{\Phi_{v}^{2}}\left(\frac{\nu+1}{2} ; h_{2, v}\right)$ are known as Jacquet's integrals (cf. [J-1, Sections 4 and 6]). For a finite place $p<\infty, \mathcal{W}_{\Phi_{p}^{2}}\left(\frac{\nu+1}{2} ; h_{2, p}\right)$ equals the unramified Whittaker function with Satake parameter $\operatorname{diag}\left(p^{\nu / 2}, p^{-\nu / 2}\right)$ whose value at the identity is 1 . On the other hand,

$$
\begin{aligned}
& \mathcal{W}_{\Phi_{q_{2}}}\left(\frac{\nu+1}{2} ;\left(\begin{array}{ll}
y_{1} & \\
& 1
\end{array}\right)\right)= \\
& \quad(\sqrt{-1})^{q_{2}} \pi^{-q_{2} / 2} \Gamma\left(\frac{\nu+1+\left|q_{2}\right|}{2}\right) \Gamma\left(\frac{\nu+1+q_{2}}{2}\right)^{-1} W_{q_{2} / 2, \nu / 2}\left(4 \pi y_{1}\right), \quad y_{1}>0 .
\end{aligned}
$$

If we choose the local Whittaker function $\mathcal{W}_{F}^{(\infty)}$ of type $\left(-q_{1},-q_{2}\right)\left(q_{i} \in 2 \mathbf{Z}\right)$ as in Section 5 so as to get the correct Gamma factor, we have

$$
Z\left(s, \nu ; F ; f_{\Phi_{1}}, f_{\Phi_{2}}\right)=C \times \frac{\Gamma\left(\frac{\nu+1+\left|q_{2}\right|}{2}\right)}{\Gamma\left(\frac{\nu+1+q_{2}}{2}\right)} L(s+\nu / 2, \Pi) L(s-\nu / 2, \Pi)
$$

for some $C \in \mathbf{C}^{\times}$. Fix a real number $\kappa \gg 0$ so that the Euler product defining $L(s, \Pi)$ converges absolutely for $\operatorname{Re}(s)>\kappa-\epsilon$ for some $\epsilon>0$. For a fixed $s_{0} \in \mathbf{C}$, we can take $\kappa_{1}(\geq \kappa)$ so that $Z\left(\frac{s+\kappa_{1}}{2}, s-\kappa_{1}\right)$ is holomorphic at $s=s_{0}$. Since

$$
Z\left(\frac{s+\kappa_{1}}{2}, s-\kappa_{1}\right)=C \times L(s, \Pi) L\left(\kappa_{1}, \Pi\right) \quad \text { for some } C \in \mathbf{C}^{\times}
$$

the spinor L-function $L(s, \Pi)$ is entire.
Remark. If we replace the cusp form φ by a constant function, then we get the following vanishing result, which is essentially obtained in [A-G-R, Proposition 2] in a more general situation.

Proposition 6.2 Let F be a (not necessarily generic) cusp form on G_{A} satisfying $F(z g)=F(g)\left(\forall z \in \mathrm{Z}_{\mathbf{A}_{k}}\right)$. Then we have

$$
\int_{\mathrm{Z}_{\mathrm{A}_{k}} \mathrm{H}_{\mathrm{k}} \backslash \mathrm{H}_{\mathrm{A}_{k}}} F(h) d h=0 .
$$

If the representation π_{F} of $G_{k_{v}}$ generated by F for a real place v is equivalent to the one appearing in the assumption A.2, then this vanishing result can be proved by a local argument, too. In fact,

$$
\int_{\mathrm{Z}_{\mathrm{A}_{k}} H_{k} \backslash \mathrm{H}_{\mathrm{A}_{k}}} F^{\prime}\left(h g_{v}\right) d h, \quad F^{\prime} \in \pi_{F}, g_{v} \in \mathrm{G}_{\mathrm{k}_{v}}
$$

defines an element in $\operatorname{Hom}_{\mathfrak{g}_{v}, K_{v}}\left(\pi_{F}, C^{\infty}\left(\mathrm{H}_{\mathrm{k}_{v}} \backslash \mathrm{G}_{\mathrm{k}_{v}}\right)\right)$. However this intertwining space is zero by [Mo-1, Theorem 6.5].

Acknowledgment I would like to thank Masao Tsuzuki for fruitful discussions on this topic and bringing my attention to the paper [A-G-R].

References

[A-S-1] M. Asgari and F. Shahidi, Generic transfer for general spin groups. Duke Math. J. 132(2006), 137-190.
[A-S-2] , Generic transfer from GSp(4) to GL(4). Compos. Math. 142(2006), 541-550.
[A-G-R] A. Ash, D. Ginzburg, and S. Rallis, Vanishing periods of cusp forms over modular symbols, Math. Ann. 296(1993), no. 4, 709-723.
[Ba-M] D. Barbasch and A. Moy, Whittaker models with an Iwahori fixed vector. In: Representation theory and analysis on homogeneous spaces, Contemp. Math. 177, American Mathematical Soiety, Providence, RI, 1994, pp. 101-105.
[Bo-He] S. Böcherer and B. Heim, L-functions on $\mathrm{GSp}_{2} \times \mathrm{Gl}_{2}$ of mixed weights. Math. Z. 235(2000), no. 1, 11-51.
[Bo] A. Borel, Automorphic L-functions. In: Automorphic forms, representations and L-functions, Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence, RI, 1979, pp. 27-61.
[Bu] D. Bump, The Rankin-Selberg method: a survey. In: Number theory, trace formulas and discrete groups, Academic Press, Boston, MA, 1989, pp. 49-109.
[C-S] W. Casselman and J. Shalika, The unramified principal series of p-adic groups. II. The Whittaker function. Compositio Math. 41(1980), no. 2, 207-231.
[Co] J. W. Cogdell, Lectures on L-functions, converse theorems, and functoriality for GL_{n}. In: Lectures on automorphic L-functions, Fields Inst. Monogr.20, American Mathematical Society, Providence, RI, 2004, pp. 1-96.
[Fu] M. Furusawa, On L-functions for $\mathrm{GSp}(4) \times \mathrm{GL}(2)$ and their special values. J. Reine Angew. Math. 438(1993), 187-218.
[G-PS-R] S. Gelbart, I. Piatetski-Shapiro, and S. Rallis, Explicit Constructions of Automorphic L-functions. Lecture Notes in Mathematics 1254, Springer-Verlag, Berlin, 1987.
[G-Sh] S. Gelbart and F. Shahidi, Analytic properties of automorphic L-functions. Perspectives in Mathematics 6, Academic Press, Inc., Boston, MA, 1988.
[Ha] M. Harris, Occult period invariants and critical values of the degree four L-function of GSp (4). In: Contributions to automorphic forms, geometry, and number theory, Johns Hopkins University Press, Baltimore, MD, 2004, 331-354.
[He] B. Heim, Pullbacks of Eisenstein series, Hecke-Jacobi theory and automorphic L-functions. In: Automorphic forms, automorphic representations, and arithmetic, Proc. Sympos. Pure Math. 66, American Mathematical Society, Providence, RI, 1999, pp. 201-238.
[J-1] H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. France 95(1967), 243-309.
[J-2] , Automorphic forms on GL(2). II. Lecture Notes in Mathematics 278, Springer-Verlag, Berlin-New York, 1972.
[J-S] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I. Amer. J. Math. 103(1981), no. 3, 499-558.
[Ki] H. Kim, Automorphic L-functions. In: Lectures on automorphic L-functions, Fields Inst. Monogr. 20, American Mathematical Society, Providence, RI, 2004, pp. 97-201.
[Li] J.-S. Li, Some results on the unramified principal series of p-adic groups. Math. Ann. 292(1992), no. 4, 747-761.
[Mi-O-1] T. Miyazaki and T. Oda, Principal series Whittaker functions on $\mathrm{Sp}(2 ; \mathbf{R})$. II. Tohoku Math. J. (2) 50(1998), no. 2, 243-260.
[Mi-O-2] , Errata: Principal series Whittaker functions on $\operatorname{Sp}(2 ; \mathbf{R})$. II. Tohoku Math. J. (2) 54(2002), no. 1, 161-162.
[Mo-1] T. Moriyama, Spherical functions with respect to the semisimple symmetric pair $(S p(2, \mathbf{R}), S L(2, \mathbf{R}) \times S L(2, \mathbf{R}))$. J. Math. Sci. Univ. Tokyo 6(1999), no. 1, 127-179.
[Mo-2] , A remark on Whittaker functions on $\operatorname{Sp}(2, \mathbf{R})$. J. Math. Sci. Univ. Tokyo 9(2002), no. 4, 627-635.
[Mo-3] , Entireness of the spinor L-functions for certain generic cusp forms on GSp(2). Amer. J. Math. 126(2004), no. 4, 899-920.
[Ni] S. Niwa, Commutation relations of differential operators and Whittaker functions on $S p_{2}(\mathbf{R})$. Proc. Japan Acad. Ser. A. Math. Sci. 71(1995), no. 8, 189-191.
[No-1] M. E. Novodvorsky, Fonction Jpour des groupes orthogonaux. C. R. Acad. Sci. Paris Sér. A-B 280(1975), A1421-A1422.
[No-2] \longrightarrow, Automorphic L-functions for symplectic group GSp (4). In: Automorphic forms, representations and L-functions, Proc. Sympos. Pure Math. 33, American Mathematic Society, Providence, RI, 1979, 87-95.
[O] T. Oda, An explicit integral representation of Whittaker functions on $\operatorname{Sp}(2 ; \mathbf{R})$ for large discrete series representations. Tohoku Math. J. 46(1994), no. 2, 261-279.
[PS] I. I. Piatetski-Shapiro, L-functions for GSp_{4}, Olga Taussky-Todd: in memoriam. Pacific J. Math. 1997, Special Issue, 259-275.
[PS-S] I. I. Piatetski-Shapiro and D. Soudry, L and ε functions for $\mathrm{GSp}(4) \times \mathrm{GL}(2)$. Proc. Nat. Acad. Sci. U.S.A. 81(1984), no. 12, Phys. Sci., 3924-3927.
[Re] M. Reeder, p-adic Whittaker functions and vector bundles on flag manifolds. Compositio Math. 85(1993), no. 1, 9-36.
[Ro] F. Rodier, Whittaker models for admissible representations of reductive p-adic split groups. In: Harmonic analysis on homogeneous spaces, Proc. Sympos. Pure Math. 26, American Mathematical Society, Providence, RI, 1973, 425-430.
[Sha] J. A. Shalika, The multiplicity one theorem for $G L_{n}$. Ann. of Math. 100(1974), 171-193.
[Shm] G. Shimura, The special value of the zeta functions associated with cusp forms. Comm. Pure Appl. Math. 29(1976), no. 6, 783-804.
[So-1] D. Soudry, The L and γ factors for generic representations of $\operatorname{GSp}(4, k) \times G L(2, k)$ over a local non-Archimedean field k. Duke Math. J. 51(1984), no. 2, 355-394.
[So-2] \quad, On the Archimedean theory of Rankin-Selberg convolutions for $\mathrm{SO}_{2 l+1} \times \mathrm{GL}_{n}$. Ann. Sci. École Norm. Sup. 28(1995), no. 2, 161-224.
[Wa] N. R. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups. In: Lie group representations, I., Lecture Notes in Math. 1024, Springer, Berlin, 1983, pp. 287-369.
[W-W] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principla transcendental functions. Reprint of the fourth (1927) edition, Cambridge University Press, Cambrigde, 1996.

Department of Mathematics, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka, 560-0043, Japan e-mail: moriyama@math.sci.osaka-u.ac.jp

[^0]: Received by the editors July 4, 2006. AMS subject classification: Primary: 11F70; secondary: 11F41, 11F46.
 (C)Canadian Mathematical Society 2009.

