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ABSTRACT. By using the quantization rule based on the WKB asymptotic 
method, we present an integral equation to infer the form of the acous-
tic potential of a fixed & as a function of the acoustic length. Since 
we analyze the acoustic potential itself by taking account of some fac-
tors other than the sound velocity and we can analyze the radial modes 
by this scheme as well as nonradial modes, this method improves the a c -
curacy and effectiveness of the inverse problem to infer the internal 
structure of the Sun, in particular, the deep interior of the Sun. 

1. INTRODUCTION 

The most important and unique aspect of solar oscillations is the pos-
sibility of a seismological approach, by which we can probe the solar 
deep interior by using oscillations. In this respect, there are two ap-
proaches which are complementary each other, that is, the forward 
problem and the inverse problem. In the former one, observed 
frequencies are compared with theoretical ones calculated with solar 
models of varying parameters, and parameters giving the best fit are 
then determined. Many works so far made in this approach show that the 
standard solar model yields a fairly good fit with observations, but 
there remains a small discrepancy between observed frequencies and 
theoretical ones. On the other hand, in the inverse problem, functional 
forms of certain physical quantities such as the sound velocity di s -
tribution c=c(r) are determined directly by solving integral equations 
for eigenfrequencies. This approach would be, in principle, more useful 
as a seismological treatment and it may clarify the cause of the dis-
crepancy between the observed frequencies and the theoretical ones of 
the standard solar model. Methods and techniques developed in the in-
verse problem of the terrestrial seismology (e.g., Parker 1977) are also 
useful in the solar case, and, in fact, some works have been made along 
this line (Ibrahim Denis and Denis 1984). However, unfortunately, those 
methods do not always give unique and convergent solutions. In order to 
solve these problems, Gough (1984) presented another method based on an 
asymptotic expression of eigenfrequencies. In his method, the integral 
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equation is analytically inverted and then the solution is uniquely 
determined. Christensen-Dalsgaard et al. (1985) applied this method to 
obtain the sound velocity distribution c(r) in the sun. Their numerical 
simulation using solar models reproduced quite well the sound speed in 
the outer parts of the sun for r / R > 0 . 5 . However, for the deep inside 
of r/R ^ 0 . 5 , their solution of the integral equation significantly 
deviates from the original values. Thus, the more effective and mathe-
matically accurate treatments of the inverse problem are desirable. In 
this paper, we present a new method to attack the inverse problem, which 
is also based on asymptotic expressions of eigenfrequencies, and compare 
it with Gough's method to clarify the cause of significant deviation of 
Christensen-Dalsgaard et al.'s solution. 

2. PRINCIPLE 

The wave equation for radial oscillations of stars is a Sturm-Liouville 
type differential equation, and that for nonradial oscillations also 
tends to be a Sturm-Liouville type in some limiting cases if the pertur-
bation of gravitational potential is neglected. These equations are 
further reduced to a form similar to the Schrödinger equation in quantum 
mechanics, which is, in the case of p-mode oscillations, written as 

d 2 v / d r 2 + c- 2(r)[o) 2 - Φ ^ ( Γ)] ν = 0 , (1) 

where ν denotes an eigenfunction, ω is the eigenfrequency. Here, $ ß ( r ) 
plays the role of potential and we call it 'acoustic p o t e n t i a l 1 . It 
consists of the Lamb frequency, £ ( £ + l ) c 2 / r 2 , which depends on the degree 
of the mode %, and the Α-independent term Ψ ( Γ ) , which is written in 
terms of the density scale height and so on: 

Φ ^ ( Γ ) = c 2 / r 2 + Ψ ( Γ ) . (2) 

Based on the WKB asymptotic method, the wavenumber in the radial 
direction, k r , is given by 

k r * [ω 2 - Φ ^ ϋ : ) ] 1 / 2 / c . (3) 

and the quantization rule leads to 

(η + ε) π = frJ [ω 2 - Φ , , ( Γ ) ] 1 / 2 C" 1 dr . (4) 

Here, n is the radial order of the mode and r^ and ̂  are the turning 
points at which 

V r i > = ω 2 ( i = λ> 2> · (5) 

Strictly speaking, the quantization rule, equation (4), gives only a 
relation between discrete eigenvalues ω and the corresponding integers 
n. But hereafter we extend this relation to non-integers η by inter-
polation and treat equation (4) as if it were a continuous function of ω 
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giving continuous numbers n. Since, for a fixed A, the left hand side 
of equation (4) is a function of ω, equation (4) is regarded as an in-
tegral equation to give c ^ , that is, 

f(Ç) = / ç m i n (ξ - η ) 1 / 2 Φ(π) dn . (6) 

Here, new variables are introduced as ζ Ξ ω 2 and 1ΊΞ<Η(Γ)# and <)>(n)=c ^ χ 
dr/dn is an unknown function to be solved and ί(ξ)=(η+ε)π is a known 
function of ξ· Differentiation with respect to ξ reduces equation (6) 
to an Abel type integral equation. Then, the solution of equation (6) 
is given by 

I*1 c " 1 dr = 2/π f1} ά£/άζ(τ) - άζ Ξ S ( A , ω
2) . ( 7 ) 

^min 

The LHS of equation (7) gives the distance between the two turning 
points measured with the sound velocity, and we call it 'acoustic 
length'. Equation (7) then gives the acoustic potential of a given A as 
a function of the acoustic length. 

Once we obtain the acoustic potentials for various values of A, we 
can separate the sound velocity term c^/r^ and the remaining term Ψ . In 
practice, the upper turning point of the acoustic cavity is almost 
independent of On the other hand, the inner turning point r-̂  is ap-
proximately given by 

c 2 ( r i ) / Γ χ 2 = ω 2 / A(A + D , (8) 

for high order or high degree modes (i.e., η>>1 or A > > 1 ) . Then, by dif-
ferentiating the acoustic length by A, we obtain 

d [ c ( r ! ) / r i ] / d l n r i = ( 2 A + 1 ) / [ 2 A ( A + 1 ) ] · O s / B A ) " 1 . ( 9 ) 

From equation (9), we obtain the sound speed structure in the solar 
interior. Once we know the sound speed structure c(r), we can get the 
other part of the potential Ψ . Numerical simulation based on this prin-
ciple is now in progress. 

3. COMPARISON WITH OTHER WORKS 

Gough (1984) and Christensen-Dalsgaard et al. (1985) disregarded the 
term of Ψ ( Γ ) as a first approximation, and, instead, dealt with the data 
of whole A's together. Then they derived a relation 

(η + α) π/ ω = /* [ r 2 / c 2 - A(A + 1 ) / ω 2 ] 1 / 2 d l n r , ( 1 0 ) 

which was obtained by dividing the quantization condition by ω, to in-
terpret Duvall's (1982) relation which showed (η+α)/ω is almost a func-
tion of the single variable ω//Α(A+l). They regarded equation (10) as 
an integral equation with an unknown r 2 / c ^ , and inverted this integral 
equation. However, disregard of ¥(r) makes the results inaccurate for 
low A modes. Since it is such low A modes that penetrate to the deep 
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inside of the Sun and provide information from there, this approximation 
leads to a large discrepancy between the value of c obtained by their 
inverse procedure and the true value in r/R<0.5. On the other hand, 
since we take account of ¥(r) in the method presented here, we can a c -
curately obtain the sound velocity structure in such deep interior. The 
present method can in principle deal with even the radial modes (£=0), 
whose frequencies have been accurately observed, and it can therefore 
improve the effectiveness of the inverse problem based on the asymptotic 
method to infer the internal structure of the Sun, in particular, the 
deep interior of the Sun. 

4. APPLICATION TO g-MODE OSCILLATIONS 

In the case of g-mode oscillations, the wave equation is reduced to 

d 2 v / d r 2 + £ ( £ + D N 2 ( r ) r ~ 2 [ u T 2 - ^ ( r ) ] ν = 0 , ( 1 1 ) 

where -jj,(r) is the 'gravity wave potential' which is given by 

H £ ( r ) = N - 2 ( r ) + Θ £ ( r ) , ( 1 2 ) 

and Ν denotes the Brunt-Vaisälä frequency. The potential consists of 
the Brunt-Vaisälä frequency and the Α-dependent part of 0£(r). The 
quantization condition leads to 

( n + e W U U + l ) ] 1 / 2 - IT

T

2 [ω-2 - H ^ r ) ] 1 / 2 N / r d r . , ( 1 3 ) 

which is, for a fixed £, regarded as an integral equation of the same 
form as equation (6) with ζ = ω 2 , η Ξ ( r ) , φ (η ) Ξ N/r dr/dn , and f (ξ ) Ξ 
(η + ε)π/[£(ϋ+1)I 1' 2. The solution is given by 

/ Γ 2 Ν / r d r = 2 / π ^ m a K d f / άζ (η - ξ ) ~ ι / 2 dC . ( 1 4 ) 
ri η 

The LHS is the propagating time of the gravity wave in its cavity, while 
the RHS gives the potential for the g-modes. That is, equation (14) 
determines the gravity wave potential as a function of the wave travel-
ing time. This inverse method will be useful for g-modes of the Sun, 
the ZZ Ceti and other pulsating white dwarfs. 
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