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Abstract

In this paper we introduce the notion of finite virtual length for profinite groups (that is, every series has a
bounded number of infinite factors) and we prove a Jordan–Hölder type theorem for profinite groups with
finite virtual length. More structural results are provided in the pronilpotent and p-adic analytic cases.
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1. Introduction

It has been observed that hereditarily just infinite pro-p groups play, in the theory of
pro-p groups, a role which is analogous to that played by simple groups in finite group
theory (see [7]). In this paper we produce further support to this parallel, establishing
a Jordan–Hölder type theory for profinite groups, which in the case of pronilpotent
groups identifies hereditarily just infinite pro-p groups as the building blocks. On the
way we state and prove every result in maximum generality as follows: in Section 2
we discuss some general theory of profinite groups with operators; in Section 3 we
introduce the notion of virtual length and prove our version of the Jordan–Hölder
theorem for profinite groups. In Section 4 we focus on the pronilpotent case and give
several structural results: assuming finite virtual length we prove that every subnormal
subgroup is finitely generated and that the maximal condition is satisfied by families
of subnormal subgroups of bounded defect. Finally, in Section 5 we compare virtual
length with other well-known invariants, like the dimension of a p-adic analytic group.

2. Profinite groups with operators

A topological group with operators is a topological group G carrying the structure
of Ω-group for a (possibly empty) set Ω of operators with the additional requirement
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that every element of Ω acts continuously on G. We then simply say that G is a
topological Ω-group. Our notation is standard: gω denotes the result of the action
of the element ω of Ω on the element g of G; an Ω-subgroup of G is a subgroup
H such that hω ∈ H for every h ∈ H and every ω ∈Ω. Unless otherwise explicitly
stated, subgroups of topological groups are assumed to be closed. A homomorphism
from a topological group with operators (G1,Ω1) to another topological group with
operators (G2,Ω2) is a pair (ϕ, Γ), where ϕ is a continuous homomorphism from G1

into G2 and Γ is a mapping from Ω1 into Ω2 such that (gω)ϕ = (gϕ)(ωΓ) for every g in
G1 and ω in Ω1. When Ω1 = Ω2 = Ω and Γ is the identity map we simply say that ϕ
is an Ω-homomorphism from G1 to G2 (the terms Ω-isomorphism and Ω-isomorphic
are used consistently). Given an inverse system of topological groups with operator
{(Gi,Ωi), (ϕi j, Γi j)} indexed by a directed poset I, it is possible to define its inverse
limit (G,Ω). It is not difficult to show that G is the inverse limit (both as an abstract
and a topological group) of {Gi, ϕi j} and Ω is the inverse limit (as a set) of {Ωi, Γi j}

(see [3, Ch. 1, Section 10]). This leads us to the following definition.

D 2.1. Let I be a directed poset and let {(Gi,Ωi), (ϕi j, Γi j)} be an inverse
system of topological groups with operators, where every Gi is a finite group endowed
with the discrete topology. If (G,Ω) is the inverse limit of the given inverse system we
say that G is a profinite Ω-group.

The notion of profinite Ω-group generalizes the notion of profinite group: we state
without proof a number of results that can be easily adapted from [9, Ch. 2 and 3].

P 2.2. Let G be a profinite Ω-group. Then:

(1) the open normal Ω-subgroups form a base of neighborhoods of 1;
(2) every Ω-subgroup of G is the intersection of the open Ω-subgroups of G

containing it;
(3) if H is an Ω-subgroup of G then H is a profinite Ω-group;
(4) if N is a normal Ω-subgroup of G then G/N is a profinite Ω-group.

A profinite group G which is a topological Ω-group for some set Ω is not necessarily
a profinite Ω-group according to our definition.

E 2.3. Let GB
∏

I C be the cartesian product of infinitely many copies of a
nontrivial finite group C. Let Ω be the set of the continuous automorphisms of G, so
Ω-subgroups are just topologically characteristic subgroups. Fix an index i in I and
let H be the open subgroup formed by those elements whose ith component is trivial.
Let g be a nontrivial element of H and let j be an index (necessarily different from
i) such that the jth component of g is nontrivial. The automorphism induced by the
transposition of i and j is continuous and sends g to an element which does not belong
to H. As a consequence, the only topologically characteristic subgroup contained in
the open subgroup H is the trivial one: this means that G does not satisfy statement (1)
of Proposition 2.2 and then it is not a profinite Ω-group.

Statement (1) of Proposition 2.2 can be reverted.
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P 2.4. Let G be a profinite group and let Ω be a set operating on the abstract
group G. If G has a base of neighborhoods of 1 formed by open normal Ω-subgroups
then G is a profinite Ω-group.

P. The topological Ω-group G is just the inverse limit of the finite Ω-groups G/N
as N varies in the set of open normal Ω-subgroups of G. The details are left to the
reader. �

R 2.5. In the statement of Proposition 2.4 no explicit requirement that the
elements of Ω act continuously on G is done: this follows from the proof.

R 2.6. In the definition of a profinite Ω-group as an inverse limit of finite groups
with operators, different sets of operators are allowed. However, statement (1) of
Propositions 2.2 and 2.4 permit to regard a profinite Ω-group as an inverse limit of
finite Ω-groups.

We now give several examples of profinite Ω-groups. We will extensively use the
characterization given by Proposition 2.4 without any further notice.

E 2.7. Let G be a profinite group and let Ω be a subset of G acting on G by
conjugation. Since a profinite group has a base of neighborhoods of 1 formed by open
normal subgroups, G is a profinite Ω-group.

E 2.8. Let G be a finitely generated profinite group and let Ω be a set formed
by automorphisms of G. The elements of Ω are continuous (see [8, Theorem 1.1]).
Since G has a base of neighborhoods of 1 formed by open topologically characteristic
subgroups (see [9, Proposition 2.5.1]) G is a profinite Ω-group.

E 2.9. Let G be a finitely generated pro-p group and let Ω be a set formed by
endomorphisms of G. The elements of Ω are continuous (see [5, Corollary 1.21]).
Since G has a base of neighborhoods of 1 formed by open topologically fully invariant
subgroups (namely, the Frattini series, see [9, Proposition 2.8.13]), G is a profinite
Ω-group.

We recall that, for a given prime p, a p-Sylow subgroup of a profinite group is a
pro-p subgroup which is maximal in the family of pro-p subgroups. If G is a
pronilpotent group then it has, for every prime p, a unique p-Sylow subgroup (which is
then topologically fully invariant) and G is the cartesian product of its Sylow subgroups
(see [9, Proposition 2.3.8]).

E 2.10. Let G be a pronilpotent group. If all the Sylow subgroups of G are
finitely generated, then, using the Frattini series of the Sylow subgroups, it is easy to
construct a base of neighborhoods of 1 formed by open topologically fully invariant
subgroups of G. Therefore, G turns out to be a profinite Ω-group for every set Ω of
continuous endomorphisms of G.
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By Proposition 2.2 every Ω-subgroup of a profinite Ω-group G is the intersection
of open Ω-subgroups. As a consequence, every proper Ω-subgroup is contained in a
maximal (necessarily open) Ω-subgroup.

D 2.11. The Ω-Frattini subgroup of a profinite Ω-group G is the intersection
ΦΩ(G) of the maximal Ω-subgroups of G (for the sake of completeness we set
ΦΩ(1)B 1).

The Ω-Frattini subgroup is not necessarily normal in G (we will however observe
in Section 4 that this is true provided that G is pronilpotent). Consider the following
example.

E 2.12. Let G be a finite simple group which is not cyclic of prime order and
let H be a maximal subgroup of G. We regard G as a profinite (actually, finite) H-
group with the elements of H operating on G by conjugation. The H-subgroups of
G are those subgroups of G that are normalized by H. If K is an H-subgroup of G
which is not contained in H, then NG(K) contains K and H. Thus, by the maximality
of H, we have NG(K) = G and the simplicity of G gives K = G. Therefore, the proper
H-subgroups of G are contained in H. Since H is itself an H-subgroup, it is the only
maximal H-subgroup and so ΦH(G) = H is not normal in G.

We recall that if X is a subset of a profinite group, the subgroup generated by X is
the intersection of the (closed) subgroups containing X: similarly the Ω-subgroup Ω-
generated by X is the intersection of the (closed) Ω-subgroups containing X. By saying
that a profinite Ω-group G is finitely Ω-generated we then mean that there exists a finite
subset X such that G is the smallest Ω-subgroup of G containing X. It is not difficult
to prove the following proposition.

P 2.13. A profinite Ω-group G is Ω-generated by a subset X if and only if it
is Ω-generated by X ∪ ΦΩ(G).

The previous result shows, in particular, that if ΦΩ(G) has finite index in G then G is
finitely Ω-generated. It is well known that, if we restrict ourselves to consider profinite
groups without operators, the converse is also true for pro-p groups (or, more generally,
for prosupersoluble groups with additional properties, see [9, Proposition 2.8.11]).
This is no longer true for a generic set Ω:

E 2.14. Let GB
∏

Ω C be the cartesian product of infinitely many copies
(indexed by an infinite set Ω) of the cyclic group C of order p. For every ω in Ω we
define the action of ω on G to be the canonical projection of G over Hω B

∏
Ω\{ω} C.

For every finite subset Ψ of Ω we consider the subgroup of G formed by those elements
whose components relative to the indices in Ψ are 1. These subgroups form a base
of neighborhoods of 1 and are clearly Ω-subgroups, so G is a pro-p Ω-group. The
subgroups Hω are maximal Ω-subgroups and their intersection is trivial, so ΦΩ(G) = 1
has infinite index. Let c be a generator of C and let g be the element of G with every
component equal to c. The Ω-subgroup Ω-generated by g contains, for every ω in Ω,
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the element (gω)−1g which generates the copy of C of index ω: therefore, G is Ω-
generated by g.

3. Series

We use standard notation for Ω-series in Ω-groups (see [10, Ch. 3]).

D 3.1. Given an Ω-series S : 1 = G0 EG1 E · · · EGn = G of a profinite Ω-
group G, we denote by L(S) the number of indices i such that |Gi : Gi−1| is infinite.
The virtual Ω-composition length of G, denoted by vlΩ(G), is the (possibly infinite)
supremum of L(S) as S varies among the Ω-series of G. When Ω is empty we will
simply speak of the virtual composition length vl(G).

D 3.2. An Ω-series S such that L(S) = vlΩ(G) is said to be a virtual
Ω-composition series.

R 3.3. Clearly, vlΩ(G) = 0 if and only if G is finite.

D 3.4. An infinite profinite Ω-group is said to be just infinite if every
nontrivial normal Ω-subgroup has finite index. A profinite Ω-group is said to be
hereditarily just infinite if every open Ω-subgroup is just infinite.

R 3.5. Let S : 1 = G0 EG1 E · · · EGn = G be an Ω-series of a hereditarily just
infinite profinite Ω-group G. If i is the maximum integer such that Gi has infinite index
in G, then Gi+1 is open in G and it is then just infinite. Therefore Gi, being normal in
Gi+1, is trivial and L(S) = 1. As a consequence, vlΩ(G) = 1.

R 3.6. If S is an Ω-series of a profinite Ω-group G, and T is an Ω-series
of G refining S, then L(S) ≤ L(T). By the Schreier refinement theorem (see, for
example, [10, 3.1.2]) it is then possible to refine S to a virtual Ω-composition series
if vlΩ(G) is finite and to an Ω-series U such that L(U) is arbitrarily large if vlΩ(G) is
infinite.

The following proposition will be used throughout without any further notice.

P 3.7. If S : 1 = G0 EG1 E · · · EGn = G is an Ω-series of a profinite
Ω-group G then

vlΩ(G) =

n∑
i=1

vlΩ(Gi/Gi−1),

where, as usual, we agree that the right-hand side is infinite if at least one of the
summands is infinite.

P. Remark 3.6 implies that in calculating vlΩ(G) we may limit ourselves to
consider refinements of S. Such a refinement can be thought of as a ‘juxtaposition’
of Ω-series of the quotients Gi/Gi−1. The claim follows. �
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We briefly recall some results about subnormal subgroups in profinite groups: for an
account, see [11, Section 2]. If H is a (closed) subgroup of a profinite group G then the
normal closure of H in G regarded as a profinite group is just the topological closure
of the normal closure of H in G regarded as an abstract group. So, H is subnormal
in G regarded as an abstract group if and only H is subnormal in G regarded as a
profinite group and the subnormality defect in the two contexts actually coincide. If G
is a profinite Ω-group and H is a (closed) Ω-subgroup of G then the abstract normal
closure of H in G is clearly a (nonnecessarily closed) Ω-subgroup of G. Since the
topological closure of an Ω-subgroup is an Ω-subgroup (see [4, Ch. 1, Section 6.1,
Proposition 1]) we have the following proposition.

P 3.8. If H is an Ω-subgroup of a profinite Ω-group, then the normal closure
HG of H in G regarded as a profinite group is an Ω-subgroup. Moreover, if H is
subnormal of defect at most n in G regarded as an abstract group then there exists a
sequence

H = H0 E H1 E · · · E Hn = G

such that every Hi is an Ω-subgroup.

Thus, by Proposition 3.7, we have the following corollary.

C 3.9. If H is a subnormal Ω-subgroup of a profinite Ω-group G then
vlΩ(H) ≤ vlΩ(G).

Here is another direct consequence of Proposition 3.7.

C 3.10. Let G be a profinite Ω-group. If G =
∏n

i=1 Gi, where every Gi is an
Ω-subgroup, then

vlΩ(G) =

n∑
i=1

vlΩ(Gi).

L 3.11. Let G be a profinite Ω-group which is the cartesian product of infinitely
many nontrivial Ω-subgroups. Then vlΩ(G) =∞.

P. Let G =
∏

i∈I Hi, where every Hi is a nontrivial Ω-subgroup and I is infinite.
Let J be an infinite subset of I such that I \ J is infinite too. The cartesian product∏

i∈I Hi is then an infinite normal Ω-subgroup H with infinite index in G. Iteration of
this process provides an Ω-series with arbitrarily many infinite sections. �

E 3.12. There are two inequivalent definitions of a profinite branch group
(see, for example, [6] or [2]): one involving a group action on a tree, and another
purely algebraic one which includes the previous one as a particular case. According
to the latter definition, a profinite branch group is infinite and contains, for each
natural number n, an open normal subgroup Hn which can be expressed as the direct
product of kn copies of a subgroup Ln, where {kn} is a strictly increasing sequence
of natural numbers. These are not all the requirements of the definition, but they are
enough to show that vl(G) =∞ for every profinite branch group G. Since Hn has
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finite index, Ln is infinite: in particular, vl(Ln) ≥ 1. By Corollary 3.10 we then get
vl(G) = vl(Hn) = kn vl(Ln) ≥ kn. This is true for every n, so vl(G) =∞.

R 3.13. According to Wilson’s dichotomy (see, for example, [6, Section 6,
Theorem 3], if G is a profinite just infinite group then either G is a profinite branch
group and therefore vl(G) =∞, or G contains an open normal subgroup which is the
direct product of a finite number n of copies of some hereditarily just infinite profinite
group and therefore vl(G) = n.

D 3.14. Two profinite Ω-groups G and H are Ω-commensurable if they
contain open Ω-isomorphic Ω-subgroups.

D 3.15. Let G be a profinite Ω-group. Two Ω-series S and T of G are Ω-
commensurable if L(S) = L(T) and there exists a bijection between the set of infinite
sections of S and the set of infinite sections of T such that corresponding sections are
Ω-commensurable.

R 3.16. We recall that two Ω-series S and T of an Ω-group are said to be Ω-
isomorphic if there exists a bijection between the set of sections of S and the set of
sections of T such that corresponding factors are Ω-isomorphic. Clearly, Ω-isomorphic
series of a profinite Ω-group are Ω-commensurable.

L 3.17. Let S be an Ω-series of a profinite Ω-group G. If T is a refinement of S
and L(S) = L(T) then S and T are Ω-commensurable.

P. We may just consider the case in which T is obtained by inserting a single new
term in S and then arguing by induction. So let us insert N between the terms Gi and
Gi+1 of S, that is, Gi E N EGi+1. All the sections of S but Gi+1/Gi are left untouched
so we may consider just this section. If Gi+1/Gi is finite then there is nothing to prove.
If Gi+1/Gi is infinite then the equality L(T) = L(S) yields that either Gi+1/N or N/Gi

is finite. In the former case, N/Gi is an open Ω-subgroup of Gi+1/Gi, and hence they
are obviously Ω-commensurable. In the latter case, by Proposition 2.2 there exists an
open normal Ω-subgroup H/Gi of Gi+1/Gi such that H ∩ N = Gi. Therefore, H/Gi and
HN/N are Ω-isomorphic open Ω-subgroups of Gi+1/Gi and Gi+1/N respectively, as
required. �

By combining Remark 3.6 and Lemma 3.17 we immediately get the following
version of the Jordan–Hölder theorem.

T 3.18. Let G be a profinite Ω-group with finite virtual Ω-composition length.
If S and T are two virtual Ω-composition series then S and T are Ω-commensurable.

4. Pronilpotent Ω-groups

P 4.1. If G is a pronilpotent Ω-group and M is a maximal Ω-group then M
is normal in G and G/M is an elementary abelian finite p-group for some prime p. In
particular, ΦΩ(G) is a normal subgroup of G and G/ΦΩ(G) is abelian.
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P. By Proposition 3.8 we know that the normal closure of an Ω-subgroup is an Ω-
subgroup. The normal closure of a proper subgroup in a pronilpotent group is a proper
subgroup, so MG necessarily coincides with M, that is, M is normal. We already
observed that maximal Ω-subgroups of a profinite Ω-group are open, so K BG/M is
a finite nilpotent Ω-group. The derived subgroup of K is then a proper fully invariant
subgroup of K: in particular it is a proper Ω-subgroup of K. By the maximality of
M it follows that K is abelian. The same argument applied to K p, where p is a prime
dividing the order of K, shows that K has exponent p. �

C 4.2. If L is an Ω-simple pronilpotent Ω-group then L is an elementary
abelian finite p-group for some prime p.

L 4.3. Let G be a profinite Ω-group and let n be a positive integer. If |H : ΦΩ(H)|
is finite for every subnormal Ω-subgroup H of defect at most n then every nonempty
family of subnormal Ω-subgroups of defect at most n admits a maximal element.

P. The proof is by induction over n.
We start by considering the case n = 1. Let H1 ≤ H2 ≤ · · · ≤ Hi ≤ · · · be an

ascending chain of normal Ω-subgroups of G. The topological closure H of
⋃

i Hi

is a normal subgroup of G: since the elements of Ω act continuously, H is a normal Ω-
subgroup and |H : ΦΩ(H)| is finite by hypothesis, so H has only finitely many maximal
Ω-subgroups M1, . . . , Mr. None of them can contain all the Hi, for otherwise it would
contain H. For every j = 1, . . . , r we may then choose an integer k j such that Hk j � M j.
By setting kBmax j k j, we see that Hk is not contained in any of the maximal Ω-
subgroups of H. As a consequence, Hk = H, and thus the ascending chain of the Hi

becomes stationary. This establishes the inductive basis.
Assume now n > 1. Let S be a nonempty family of subnormal Ω-subgroups of G

of defect bounded by n. We consider the family C of the normal closures in G of
the elements of S. By Proposition 3.8 the elements of C are normal Ω-subgroups,
so inductive basis implies that there exists a maximal element N of C. Consider the
family H formed by the elements of S whose normal closure is N. These elements
form a nonempty family of subnormal Ω-subgroups of N of defect at most n − 1.
Every subnormal Ω-subgroup of defect at most n − 1 of N is a subnormal Ω-subgroup
of defect at most n of G: by inductive hypothesis there exists a maximal element H
of H . We claim that H is maximal in S: if K is an element of S containing H, then
N = HG ≤ KG. The maximality of N in C implies that KG = N, that is, K belongs toH
and thus coincides with H. �

If G is a pronilpotent Ω-group and p is a prime number, we denote by Gp the unique
p-Sylow subgroup of G: as Gp is fully invariant, it is an Ω-subgroup.

T 4.4. Let G be a pronilpotent Ω-group. If vlΩ(G) is finite then:

(1) Gp = 1 for all but finitely many primes p;
(2) G =

∏n
i=1 Gpi , where p1, . . . , pn are the primes whose corresponding Sylow

subgroups of G are nontrivial and vlΩ(G) =
∑n

i=1 vlΩ(Gpi );
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(3) |H : ΦΩ(H)| is finite for every subnormal Ω-subgroup H;
(4) every subnormal Ω-subgroup is finitely Ω-generated;
(5) every nonempty family of subnormal Ω-subgroups of G with bounded defect

admits a maximal element.

P. By [9, Proposition 2.3.8], the group G is the cartesian product of its Sylow
subgroups, which are normal Ω-subgroups. Lemma 3.11 then gives statement (1),
while Corollary 3.10 yields statement (2).

By Corollary 3.9 we know that vlΩ(H) ≤ vlΩ(G) for every subnormal Ω-subgroup
H of G, so to prove statement (3) it is enough to show that |G : ΦΩ(G)| is finite. If
it were false then there would exist a sequence {Mi}

∞
i=1 of maximal Ω-subgroups of

G such that Mi+1 does not contain
⋂i

j=1 M j. By Proposition 4.1 each Mi is normal
in G, so we may consider the inverse system of finite Ω-groups Hi B

∏i
j=1 G/M j,

where, for i ≥ l, the Ω-homomorphism from Hi into Hl is the canonical projection.
The inverse limit H of this inverse system is the cartesian product

∏∞
j=1 G/M j, so

vlΩ(H) =∞ by Lemma 3.11. For every i let ϕi be the Ω-homomorphism from G
into Hi defined by gϕi B (gM1, gM2, . . . , gMi). This family of Ω-homomorphisms
is compatible with the inverse system so it induces an Ω-homomorphism ϕ from G
into H. The kernel of ϕi is Ki B

⋂i
j=1 M j. We claim that ϕi is surjective for every

i: this is equivalent to proving that |G : Ki| =
∏i

j=1 |G/M j| for every i. We proceed by
induction over i, the case i = 1 being trivial. Assuming that |G : Ki| =

∏i
j=1 |G/M j|, to

prove that |G : Ki+1| =
∏i+1

j=1 |G/M j| it suffices to show that |Ki : Ki+1| = |G/Mi+1|. Since
Mi+1 is maximal and it does not contain Ki we have Mi+1Ki = G. Therefore,

|Ki : Ki+1| = |Ki : Ki ∩ Mi+i| = |Mi+1Ki : Mi+1| = |G : Mi+1|,

as claimed. Since every ϕi is surjective, the homomorphism ϕ is surjective too (see [9,
Corollary 1.1.6]). This would imply that vlΩ(K) ≤ vlΩ(G), contradicting the fact that
vlΩ(K) =∞. Statement (3) is then proved. Statement (4) follows immediately while
statement (5) is a consequence of Lemma 4.3. �

If we drop the hypothesis that G is pronilpotent then we cannot ensure that G
is finitely Ω-generated. Indeed, Wilson [12] provided examples of hereditarily just
infinite prosoluble groups (hence with virtual composition length 1) which are not
finitely generated.

C 4.5. Let G be a pronilpotent Ω-group with vlΩ(G) finite. If F is a nonempty
family of subnormal Ω-subgroups of bounded defect closed under taking joins, then F
has a greatest element. In particular, there exists a greatest finite normal Ω-subgroup
of G.

R 4.6. Statement (5) of Theorem 4.4 has several other consequences. For
instance, if G is a pronilpotent Ω-group with vlΩ(G) finite and every term of the upper
central series is an Ω-subgroup (which is always the case if every element of Ω acts
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bijectively on G) then the upper central series stabilizes, that is, there exists an integer
n such that Zn(G) = Z∞(G).

R 4.7. Let G be a just infinite pronilpotent Ω-group. A nontrivial Sylow
subgroup of G, being a normal Ω-subgroup, has finite index in G (in particular, it
is infinite). As a consequence G has at most one nontrivial Sylow subgroup, that is, G
is a pro-p group for some prime p.

P 4.8. Let G be a pronilpotent Ω-group. The following conditions are
equivalent:

(i) there exists a finite normal Ω-subgroup N such that G/N is a hereditarily just
infinite pro-p Ω-group for some prime p;

(ii) vlΩ(G) = 1.

P. If condition (i) holds then vlΩ(G) = vlΩ(G/N) + vlΩ(N): condition (ii) then
follows from Remarks 3.3 and 3.5.

Conversely, assume that condition (ii) holds. By Corollary 4.5 there exists a greatest
finite normal Ω-subgroup N, so K BG/N has no nontrivial finite normal Ω-subgroups
and vlΩ(K) = 1. We now prove that K is hereditarily just infinite: the fact that it is a
pro-p group will then follow readily from Remark 4.7. Let H be an open Ω-subgroup
of K and let L be a normal Ω-subgroup of H with infinite index. We need to prove
that L = 1. Since K is pronilpotent, H is subnormal in K and by Proposition 2.2 there
exists an Ω-series

1 E L E H = H0 E H1 E · · · E Hn = K.

As vlΩ(K) = 1 and |H : L| =∞, we see that L is finite. We claim, by induction over n,
that the normal closure of L in K is finite too. This is obvious for n = 0. If n > 0, the
conjugates of L in H1 are normal in H and they are at most |H1 : H| (which is finite).
Therefore, LH1 is a finite normal Ω-subgroup of H1. By inductive hypothesis LK is
finite. Since K has no nontrivial finite normal Ω-subgroups, L = 1 as claimed. �

T 4.9. Let G be a pronilpotent Ω-group. If vlΩ(G) is finite then there exists a
virtual Ω-composition series S : 1 = G0 EG1 E · · · EGn = G such that each quotient
Gi/Gi−1 is either:
• a hereditarily just infinite pro-p Ω-group for some prime number p; or
• an elementary abelian finite p-group for some prime number p.

P. Let T be a virtual Ω-composition series of G. We will obtain the required
Ω-series by refining T. Since the infinite sections of T have virtual Ω-composition
length 1, a repeated application of Proposition 4.8 allows to refine T to a virtual Ω-
composition series such that every infinite section is a hereditarily just infinite pro-p
Ω-group for some prime number p.

We now use Corollary 4.2 and we refine the finite sections of the Ω-series until we
get a series such that all the finite sections are elementary abelian finite p-groups for
some prime p. �
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5. Other finiteness conditions

We recall that the dimension of a pro-p group G of finite rank is the number of
generators of an arbitrary open uniform subgroup of G (see [5, Definition 4.7]).

P 5.1. If G is a pro-p group of finite rank then vl(G) is finite. More precisely,
vl(G) ≤ dim G and the equality holds if and only if G is soluble.

P. Given a series S : 1 = G0 EG1 E · · · EGn = G, we write vli(S) for vl(Gi/Gi−1)
and di(S) for dim(Gi/Gi−1), so Proposition 3.7 and [5, Theorem 4.8] give

vl(G) =

n∑
i=1

vli(S) and dim G =

n∑
i=1

di(S). (5.1)

Therefore, to prove that vl(G) ≤ dim G (respectively, vl(G) = dim G) it suffices to find
a series S such that vli(S) ≤ di(S) (respectively, vli(S) = di(S)) for every i.

We prove that vl(G) ≤ dim G by induction over vl(G). The conditions that dim G =

0, that G is finite and that vl(G) = 0 are equivalent: the inequality then holds if
vl(G) ≤ 1. If vl(G) ≥ 2 we take a series S with at least two infinite sections, so
vli(S) > 0 for at least two integers. By Equation (5.1) we have vli(S) < vl(G) for every
i: the inductive hypothesis implies that vli(S) ≤ di(S) for every i and the claim follows.

Suppose now that G is soluble and let S be a series of G with abelian sections. Since
G has finite rank, a generic section Gi/Gi−1 of S is a finitely generated abelian pro-p
group and it is then isomorphic to Zr

p ⊕ F for some integer r and some finite group F:
it is then easy to check that vli(S) = di(S) = r. Henceforth, vl(G) = dim G.

Conversely, suppose that vl(G) = dim G and let S be a virtual Ω-composition series,
so vli(S) ≤ 1 for every i. As every factor in S is itself a pro-p group of finite rank we
have vli(S) ≤ di(S) for every i: Equation (5.1) then implies that vli(S) = di(S) for every
i. If di(S) = 0 then Gi/Gi−1 is a finite p-group, hence soluble; if di(S) = 1 then Gi/Gi−1

contains a copy of Zp as an open subgroup and it is then soluble. Since every section
of S is soluble, the group G is soluble. �

The rank of a pro-p group can be equivalently defined as the supremum of the
number of generators of open subgroups or as the supremum of the number of
generators of (closed) subgroups [5, Definition 3.12]. Since every open subgroup in
a pro-p group is subnormal, Proposition 5.1 can be rephrased by saying that a pro-p
group such that there exists an upper bound for the number of generators of (closed)
subnormal subgroup has finite virtual length. On the other hand, Theorem 4.4 states
that in a pro-p group of finite virtual length every (closed) subnormal subgroup is
finitely generated. This leads naturally to the following problem.

P. Let G be a pro-p group (or, more generally, a pronilpotent group). If every
(closed) subnormal subgroup of G is finitely generated, is it true that G has finite virtual
length?

A pro-p group G is said to have constant normal subgroup growth (for short CNSG)
if there exists an upper bound for the number of normal subgroups of index n. If G is a
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pro-p group G with CNSG then there exists a finite normal subgroup N of G such that
G/N is just infinite, it has CNSG and it is not a branch group (see [1, Corollaries 23
and 60]). By Remark 3.13, vl(G/H) is finite and by Proposition 3.7 we have that vl(G)
is finite too. We have then proved the following proposition.

P 5.2. A pro-p group with CNSG has finite virtual length.

In [1] several classes of pro-p groups with CNSG are given, thus providing
examples of pro-p groups with finite virtual length. In particular, pro-p groups of
finite coclass have finite virtual length.

R 5.3. A pro-p groups with finite virtual length need not have CNSG. Take, for
instance, two infinite pro-p groups with finite virtual length: their direct product has
finite virtual length by Corollary 3.10 but it is not difficult to show that it does not have
CNSG.
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