Closed Ideals in Some Algebras of Analytic Functions

Brahim Bouya

Abstract. We obtain a complete description of closed ideals of the algebra $\mathcal{D} \cap \operatorname{lip}_{\alpha}, 0<\alpha \leq \frac{1}{2}$, where \mathcal{D} is the Dirichlet space and $\operatorname{lip}_{\alpha}$ is the algebra of analytic functions satisfying the Lipschitz condition of order α.

1 Introduction

The Dirichlet space \mathcal{D} consists of the complex-valued analytic functions f on the unit disk \mathbb{D}) with finite Dirichlet integral

$$
D(f):=\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)<+\infty
$$

where $d A(z)=\frac{1}{\pi} r d r d t$ denotes the normalized area measure on \mathbb{D}). Equipped with the pointwise algebraic operations and the norm

$$
\|f\|_{\mathcal{D}}^{2}:=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|^{2} d t+D(f)=\sum_{n=0}^{\infty}(1+n)|\hat{f}(n)|^{2},
$$

\mathcal{D} becomes a Hilbert space. For $0<\alpha \leq 1$, let lip ${ }_{\alpha}$ be the algebra of analytic functions f on \mathbb{D}) that are continuous on $\overline{\mathbb{D}})$ satisfing the Lipschitz condition of order α on $\overline{\mathrm{D})}$:

$$
|f(z)-f(w)|=o\left(|z-w|^{\alpha}\right) \quad(|z-w| \rightarrow 0)
$$

Note that this condition is equivalent to

$$
\left|f^{\prime}(z)\right|=o\left((1-|z|)^{\alpha-1}\right) \quad\left(|z| \rightarrow 1^{-}\right) .
$$

Then, $\operatorname{lip}_{\alpha}$ is a Banach algebra when equipped with the norm

$$
\left.\|f\|_{\alpha}:=\|f\|_{\infty}+\sup \left\{(1-|z|)^{1-\alpha}\left|f^{\prime}(z)\right|: z \in \mathbb{D}\right)\right\} .
$$

Here $\|f\|_{\infty}:=\sup _{z \in \mathbb{D}}|f(z)|$. Unlike the case when $0<\alpha \leq 1 / 2$, the inclusion $\operatorname{lip}_{\alpha} \subset \mathcal{D}$ always holds provided that $1 / 2<\alpha \leq 1$. In what follows, let $0<\alpha \leq 1 / 2$

[^0]and define $\mathcal{A}_{\alpha}:=\mathcal{D} \cap \operatorname{lip}_{\alpha}$. It is easy to check that \mathcal{A}_{α} is a commutative Banach algebra when it is endowed with the pointwise algebraic operations and the norm
$$
\|f\|_{\mathcal{A}_{\alpha}}:=\|f\|_{\alpha}+D^{1 / 2}(f) \quad\left(f \in \mathcal{A}_{\alpha}\right)
$$

In order to describe the closed ideals in subalgebras of the disc algebra $A(\mathbb{D})$), it is natural to make use of Nevanlinna's factorization theory. For $f \in A(\mathbb{D}))$ there is a canonical factorization $f=C_{f} U_{f} O_{f}$, where C_{f} is a constant, U_{f} an inner function that is $\left|U_{f}\right|=1$ a.e on \mathbb{T} and O_{f} the outer function given by

$$
O_{f}(z)=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right\}
$$

Denote by $\left.\mathcal{H}^{\infty}(\mathbb{D})\right)$ the algebra of bounded analytic functions. Note that \mathcal{A}_{α} has the so-called F-property: if $f \in \mathcal{A}_{\alpha}$ and U is an inner function such that $f / U \in \mathcal{H}^{\infty}(\mathrm{ID})$), then $f / U \in \mathcal{A}_{\alpha}$ and $\|f / U\|_{\mathcal{A}_{\alpha}} \leq C_{\alpha}\|f\|_{\mathcal{A}_{\alpha}}$, where C_{α} is independent of f (see [1,9]). Korenblum [6] has described the closed ideals of the algebra H_{1}^{2} of analytic functions f such that $f^{\prime} \in H^{2}$, where H^{2} is the Hardy space. This result has been extended to some other Banach algebras of analytic functions, by Matheson for lip ${ }_{\alpha}$ [7] and by Shamoyan for the algebra $\lambda_{\omega}^{(n)}$ of analytic functions f on ID) such that

$$
\left|f^{(n)}\left(\zeta_{1}\right)-f^{(n)}\left(\zeta_{2}\right)\right|=o\left(\omega\left(\left|\zeta_{1}-\zeta_{2}\right|\right)\right) \text { as }\left|\zeta_{1}-\zeta_{2}\right| \rightarrow 0
$$

where n is a nonnegative integer and ω is an arbitrary nonnegative nondecreasing subadditive function on $(0,+\infty)$ [8]. Shirokov $[9,10]$ has given a complete description of closed ideals for Besov algebras $A B_{p, q}^{s}$ of analytic functions and particularly for the case $s>1 / 2$ and $p=q=2$

$$
\left.A B_{2,2}^{s}=\{f \in A(\mathbb{D})): \sum_{n \geq 0}|\widehat{f}(n)|^{2}(1+n)^{2 s}<\infty\right\} .
$$

Note that in the case of $\left.A B_{2,2}^{1 / 2}=A(\mathbb{D})\right) \cap \mathcal{D}$ the problem of description of closed ideals appears to be much more difficult (see [2,4]). The purpose of this paper is to describe the structure of the closed ideals of the Banach algebras \mathcal{A}_{α}. More precisely we prove that these ideals are standard in the sense of the Beurling-Rudin characterization of the closed ideals in the disc algebra [5].

Theorem 1.1 IfJ is a closed ideal of \mathcal{A}_{α}, then

$$
\left.\mathcal{J}=\left\{f \in \mathcal{A}_{\alpha}: f_{\mid E_{\mathcal{J}}}=0 \text { and } f / U_{\mathcal{J}} \in \mathcal{H}^{\infty}(\mathrm{D})\right)\right\}
$$

where $E_{\mathcal{J}}:=\{z \in \mathbb{T}: f(z)=0, \forall f \in \mathcal{J}\}$ and $U_{\mathcal{J}}$ is the greatest common divisor of the inner parts of the non-zero functions in \mathcal{J}.

Such characterization of closed ideals can be reduced further to a problem of approximation of outer functions using the Beurling-Carleman-Domar resolvent
method. Define $d(\xi, E)$ to be the distance from $\xi \in \mathbb{T}$ to the set $E \subset \mathbb{T}$. Suppose that \mathcal{J} is a closed ideal in \mathcal{A}_{α} such that $U_{\mathfrak{J}}=1$. We have $Z_{\mathfrak{J}}=E_{\mathfrak{J}}$, where

$$
Z_{\mathcal{J}}:=\{z \in \overline{\mathbb{D}}: f(z)=0, \forall f \in \mathcal{J}\} .
$$

Next, for $f \in \mathcal{A}_{\alpha}$ such that

$$
|f(\xi)| \leq C d\left(\xi, E_{\jmath}\right)^{M_{\alpha}} \quad(\xi \in \mathbb{T})
$$

where M_{α} is a positive constant depending only on \mathcal{A}_{α}, we have $f \in \mathcal{J}$ (see Section 3 for more precisions). Now, to prove Theorem 1.1 we need Theorem 1.2 below, which states that every function in $\mathcal{A}_{\alpha} \backslash\{0\}$ can be approximated in \mathcal{A}_{α} by functions with boundary zeros of arbitrary high order.
Theorem 1.2 Let f be a function in $\mathcal{A}_{\alpha} \backslash\{0\}$ and let $M>0$. There exists a sequence of functions $\left.\left\{g_{n}\right\}_{n=1}^{\infty} \subset A(\mathbb{D})\right)$ such that:
(i) For all $n \in \mathbb{N}$, we have $f_{n}=f g_{n} \in \mathcal{A}_{\alpha}$ and $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\mathcal{A}_{\alpha}}=0$.
(ii) $\left|g_{n}(\xi)\right| \leq C_{n} d^{M}\left(\xi, E_{f}\right) \quad(\xi \in \mathbb{T})$, where $E_{f}:=\{\xi \in \mathbb{T}: f(\xi)=0\}$.

To prove this theorem, we give a refinement of the classical Korenblum approximation theory [6-10].

2 Main Result on Approximation of Functions in \mathcal{A}_{α}

We begin by fixing some notations. Let $f \in \mathcal{A}_{\alpha}$ and let $\left\{\gamma_{n}:=\left(a_{n}, b_{n}\right)\right\}_{n \geq 0}$ be the countable collection of the (disjoint open) arcs of $\Pi \backslash E_{f}$. Without loss of the generality, we can suppose that the arc lengths of γ_{n} are less than $1 / 2$. In what follows, we denote by Γ the union of a family of arcs γ_{n}. Define

$$
f_{\Gamma}(z):=\exp \left\{\frac{1}{2 \pi} \int_{\Gamma} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right\}
$$

The difficult part in the proof of Theorem 1.2 is to establish the following.
Theorem 2.1 Let $f \in \mathcal{A}_{\alpha} \backslash\{0\}$ be an outer function such that $\|f\|_{\mathcal{A}_{\alpha}} \leq 1$, and let $N \geq 1$ and $\rho>1$. Then we have $f^{\rho} f_{\Gamma}^{N} \in \mathcal{A}_{\alpha}$ and

$$
\begin{equation*}
\sup _{\Gamma}\left\|f^{\rho} f_{\Gamma}^{N}\right\|_{\mathcal{A}_{\alpha}} \leq C_{N, \rho} \tag{2.1}
\end{equation*}
$$

where $C_{N, \rho}$ is a positive constant independent of Γ.
Remark 2.2 For a set $S \subset A(\mathbb{D})$), we denote by $\operatorname{co}(S)$ the convex hull of S consisting of the intersection of all convex sets that contain S. Set $\Gamma_{n}=\cup_{m \geq n} \gamma_{m}$, and let f be as in Theorem 2.1. It is clear that the sequence $\left(f^{\rho} f_{\Gamma_{n}}^{N}\right)_{n}$ converges uniformly on compact subsets of $\mathbb{D})$ to f^{ρ}. We use (2.1) to deduce, by the Hilbertian structure of \mathcal{D}, that there is a sequence $h_{n} \in \operatorname{co}\left(\left\{f^{\rho} f_{\Gamma_{m}}^{N}\right\}_{m=n}^{\infty}\right)$ converging to f^{ρ} in \mathcal{D}. Also, by [7, Section 4], we obtain that h_{n} converges to f^{ρ} in lip ${ }_{\alpha}$ for sufficiently large N. (In fact, we can prove that this result remains true for every $N \geq 1$.) Therefore, $\left\|h_{n}-f^{\rho}\right\|_{\mathcal{A}_{\alpha}} \rightarrow 0$, as $n \rightarrow \infty$.

Define $\mathcal{J}(F)$ to be the closed ideal of all functions in \mathcal{A}_{α} that vanish on $F \subset \overline{\mathbb{D}}$. In the proof of Theorem 1.2, we need the following classical lemma. (See for instance [7, Lemma 4] and [6, Lemma 24]).

Lemma 2.3 Let $f \in \mathcal{A}_{\alpha}$ and E^{\prime} be a finite subset of \mathbb{T} such that $f_{\mid E^{\prime}}=0$. Let $M>0$ be given. For every $\varepsilon>0$ there is an outer function F in $\mathcal{J}\left(E^{\prime}\right)$ such that
(i) $\|F f-f\|_{\mathcal{A}_{\alpha}} \leq \varepsilon$,
(ii) $|F(\xi)| \leq C d^{M}\left(\xi, E^{\prime}\right) \quad(\xi \in \mathbb{T})$.

Proof of Theorem 1.2 Now, we can deduce the proof of Theorem 1.2 by using Theorem 2.1 and Lemma 2.3. Indeed, let f be a function in $\mathcal{A}_{\alpha} \backslash\{0\}$ such that $\|f\|_{\mathcal{A}_{\alpha}} \leq 1$, and let $\epsilon>0$. For $m \geq 1$ we have

$$
\left(f O_{f}^{\frac{1}{m}}-f\right)^{\prime}=\left(O_{f}^{\frac{1}{m}}-1\right) f^{\prime}+\frac{1}{m} U_{f} O_{f}^{\frac{1}{m}} O_{f}^{\prime}
$$

The F-property of \mathcal{A}_{α} implies that $O_{f} \in \mathcal{A}_{\alpha}$. Then, there exists $\eta_{0} \in \mathbb{N}$ such that

$$
\left\|f O_{f}^{\frac{1}{m}}-f\right\|_{\mathcal{A}_{\alpha}}<\epsilon / 3 \quad\left(m \geq \eta_{0}\right)
$$

Set $\Gamma_{n}=\bigcup_{p \geq n} \gamma_{p}$ and $N \geq M / \alpha$ for a given $M>0$. By Remark 2.2 applied to O_{f} (with $\rho=1+\frac{1}{m}$), there is a sequence $k_{n, m} \in \operatorname{co}\left(\left\{f_{\Gamma_{p}}^{N}\right\}_{p=n}^{\infty}\right)$ such that

$$
\left\|O_{f}^{1+\frac{1}{m}} k_{n, m}-O_{f}^{1+\frac{1}{m}}\right\|_{\mathcal{A}_{\alpha}}<\frac{1}{m} \quad(n \in \mathbb{N}, m \geq 1)
$$

It is clear that

$$
\left\|O_{f}^{\frac{1}{m}} f_{\Gamma_{n}}^{N}-O_{f}^{\frac{1}{m}}\right\|_{\infty} \longrightarrow 0 \quad(n \longrightarrow+\infty)
$$

Then for every $m \geq 1$ we get

$$
\left\|O_{f}^{\frac{1}{m}} k_{n, m}-O_{f}^{\frac{1}{m}}\right\|_{\infty} \longrightarrow 0 \quad(n \longrightarrow+\infty)
$$

So, there is a sequence $k_{m} \in \operatorname{co}\left(\left\{f_{\Gamma_{p}}^{N}\right\}_{p=m}^{\infty}\right)$ such that

$$
\begin{cases}\left\|O_{f}^{1+\frac{1}{m}} k_{m}-O_{f}^{1+\frac{1}{m}}\right\|_{\mathcal{A}_{\alpha}} \leq \frac{1}{m} & (m \geq 1) \\ \left\|O_{f}^{\frac{1}{m}} k_{m}-O_{f}^{\frac{1}{m}}\right\|_{\infty} \leq \frac{1}{m} & (m \geq 1)\end{cases}
$$

We have

$$
\left(f O_{f}^{\frac{1}{m}} k_{m}-f O_{f}^{\frac{1}{m}}\right)^{\prime}=\left(f^{\prime}-U_{f} O_{f}^{\prime}\right)\left(O_{f}^{\frac{1}{m}} k_{m}-O_{f}^{\frac{1}{m}}\right)+U_{f}\left(O_{f}^{1+\frac{1}{m}} k_{m}-O_{f}^{1+\frac{1}{m}}\right)^{\prime}
$$

Since $\left\|O_{f}\right\|_{\mathcal{A}_{\alpha}} \leq C_{\alpha}\|f\|_{\mathcal{A}_{\alpha}} \leq C_{\alpha}$, we obtain

$$
\begin{aligned}
& \left\|f O_{f}^{\frac{1}{m}} k_{m}-f O_{f}^{\frac{1}{m}}\right\|_{\mathcal{A}_{\alpha}} \\
& \begin{aligned}
=\left\|f O_{f}^{\frac{1}{m}} k_{m}-f O_{f}^{\frac{1}{m}}\right\|_{\infty} & +\sup _{z \in \mathbb{D}}\left\{(1-|z|)^{1-\alpha}\left|\left(f O_{f}^{\frac{1}{m}} k_{m}-f O_{f}^{\frac{1}{m}}\right)^{\prime}(z)\right|\right\} \\
& +D^{1 / 2}\left(f O_{f}^{\frac{1}{m}} k_{m}-f O_{f}^{\frac{1}{m}}\right)
\end{aligned} \\
& \begin{aligned}
& \leq\left\|f O_{f}^{\frac{1}{m}} k_{m}-f O_{f}^{\frac{1}{m}}\right\|_{\infty}+C_{\alpha}\|f\|_{\alpha}\left\|O_{f}^{\frac{1}{m}} k_{m}-O_{f}^{\frac{1}{m}}\right\|_{\infty} \\
&+\sup _{z \in \mathbb{D}}\left\{(1-|z|)^{1-\alpha}\left|\left(O_{f}^{1+\frac{1}{m}} k_{m}-O_{f}^{1+\frac{1}{m}}\right)^{\prime}(z)\right|\right\} \\
&+C\left\|O_{f}^{\frac{1}{m}} k_{m}-O_{f}^{\frac{1}{m}}\right\|_{\infty} D^{1 / 2}(f)+C D^{1 / 2}\left(O_{f}^{1+\frac{1}{m}} k_{m}-O_{f}^{1+\frac{1}{m}}\right) \\
& \leq C_{\alpha}\left\|O_{f}^{\frac{1}{m}} k_{m}-O_{f}^{\frac{1}{m}}\right\|_{\infty}+C\left\|O_{f}^{1+\frac{1}{m}} k_{m}-O_{f}^{1+\frac{1}{m}}\right\|_{\mathcal{A}_{\alpha}} \leq \frac{C_{\alpha}}{m} .
\end{aligned}
\end{aligned}
$$

Then, fix $\eta_{1} \geq \eta_{0}$ such that

$$
\left\|f O_{f}^{\frac{1}{m}} k_{m}-f O_{f}^{\frac{1}{m}}\right\|_{\mathcal{A}_{\alpha}}<\epsilon / 3 \quad\left(m \geq \eta_{1}\right)
$$

We have $k_{m}=\sum_{i \leq j_{m}} c_{i} f_{\Gamma_{i}}^{N}$, where $\sum_{i \leq j_{m}} c_{i}=1$. Set $E_{m}^{\prime}=\bigcup_{i<j_{m}} \partial \gamma_{i}$. Using Lemma 2.3, we obtain an outer function $F_{m} \in \mathcal{J}\left(E_{m}^{\prime}\right)$ such that $\left|F_{m}(\zeta)\right| \leq C_{m} d^{M}\left(\zeta, E_{m}^{\prime}\right)$ for $\zeta \in \mathbb{T}$ and

$$
\left\|f O_{f}^{\frac{1}{m}} k_{m} F_{m}-f O_{f}^{\frac{1}{m}} k_{m}\right\|_{\mathcal{A}_{\alpha}}<\frac{1}{m} \quad(m \geq 1)
$$

Then fix $\eta_{2} \geq \eta_{1}$ such that

$$
\left\|f O_{f}^{\frac{1}{m}} k_{m} F_{m}-f O_{f}^{\frac{1}{m}} k_{m}\right\|_{\mathcal{A}_{\alpha}}<\epsilon / 3 \quad\left(m \geq \eta_{2}\right)
$$

Consequently we obtain

$$
\left\|f O_{f}^{\frac{1}{m}} k_{m} F_{m}-f\right\|_{\mathcal{A}_{\alpha}}<\epsilon \quad\left(m \geq \eta_{2}\right)
$$

It is not hard to see that

$$
\left|O_{f}^{\frac{1}{m}} k_{m} F_{m}(\xi)\right| \leq\left|k_{m} F_{m}(\xi)\right| \leq C_{m} \partial^{M}\left(\xi, E_{f}\right) \quad(\xi \in \mathbb{T})
$$

Therefore $g_{m}=O_{f}^{\frac{1}{m}} k_{m} F_{m}$ is the desired sequence, which completes the proof of Theorem 1.2.

3 Beurling-Carleman-Domar Resolvent Method

Since $\mathcal{A}_{\alpha} \subset \operatorname{lip}_{\alpha}$, then for all $f \in \mathcal{A}_{\alpha}, E_{f}$ satisfies the Carleson condition

$$
\int_{\mathbb{T}} \log \frac{1}{d\left(e^{i t}, E_{f}\right)} d t<+\infty
$$

For $f \in \mathcal{A}_{\alpha}$, we denote by B_{f} the Blashke product with zeros $Z_{f} \backslash E_{f}$, where $Z_{f}:=$ $\{z \in \overline{\mathbb{D}}): f(z)=0\}$. We begin with following lemma.

Lemma 3.1 Let J be a closed ideal of \mathcal{A}_{α}. Define B_{\jmath} to be the Blashke product with zeros $Z_{\jmath} \backslash E_{\jmath}$. There is a function $f \in \mathcal{J}$ such that $B_{f}=B_{\jmath}$.

Proof Let $g \in \mathcal{J}$ and let B_{n} be the Blashke product with zeros $\left.Z_{g} \cap \mathbb{D}\right)_{n}$, where $\left.\mathbb{D}\right)_{n}:=$ $\left.\{z \in \mathbb{D}):|z|<\frac{n-1}{n}, n \in \mathbb{N}\right\}$. Set $g_{n}=g / K_{n}$, where $K_{n}=B_{n} / I_{n}$ and I_{n} is the Blashke product with zeros $Z_{\mathcal{J}} \cap \mathbb{D} \mathbb{D}_{n}$. We have $g_{n} \in \mathcal{J}$ for every n. Indeed, fix $n \in \mathbb{N}$. It is permissible to assume that $Z_{K_{n}}$ consists of a single point, say $Z_{K_{n}}=\{w\}$. Let $\pi: \mathcal{A}_{\alpha} \rightarrow \mathcal{A}_{\alpha} / \mathcal{J}$ be the canonical quotient map. First suppose $w \notin Z_{\mathrm{\jmath}}$, then $\pi\left(K_{n}\right)$ is invertible in $\mathcal{A}_{\alpha} / \mathcal{J}$. It follows that $\pi\left(g_{n}\right)=\pi(g) \pi^{-1}\left(K_{n}\right)=0$, hence $g_{n} \in \mathcal{J}$. If $w \in Z_{J}$, we consider the following ideal $\mathcal{J}_{w}:=\left\{f \in \mathcal{A}_{\alpha}: f I_{n} \in \mathcal{J}\right\}$. It is clear that \mathcal{J}_{w} is closed. Since $w \notin Z_{\jmath_{w}}$, it follows that K_{n} is invertible in the quotient algebra $\mathcal{A}_{\alpha} / \mathcal{J}_{w}$, and so $g /\left(I_{n} K_{n}\right) \in \mathcal{J}_{w}$. Hence $g_{n} \in \mathcal{J}$.

It is clear that g_{n} converges uniformly on compact subsets of $\left.\mathbb{D}\right)$ to $f=\left(g / B_{g}\right) B_{\mathcal{J}}$, and we have $B_{f}=B_{j}$. In the sequel we prove that $f \in \mathcal{J}$. If we obtain

$$
\left.\left|\left(g_{n}\right)^{\prime}(z)\right| \leq o\left(\frac{1}{(1-r)^{1-\alpha}}\right) \quad(z \in \mathbb{D})\right)
$$

uniformly with respect to n, then $\lim _{n \rightarrow+\infty}\left\|g_{n}-f\right\|_{\alpha}=0$ by [7, Lemma 1]. Indeed, by the Cauchy integral formula

$$
\left.\left(g_{n}\right)^{\prime}(z)=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{g(\zeta) \overline{K_{n}(\zeta)}}{(\zeta-z)^{2}} d \zeta=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{(g(\zeta)-g(z /|z|)) \overline{K_{n}(\zeta)}}{(\zeta-z)^{2}} d \zeta \quad(z \in \mathbb{D})\right)
$$

Then, for $z=r e^{i \theta} \in \mathbb{D}$)

$$
\left|\left(g_{n}\right)^{\prime}(z)\right| \leq \frac{\left\|K_{n}\right\|_{\infty}}{2 \pi} \int_{\mathbb{T}} \frac{|g(\zeta)-g(z /|z|)|}{|\zeta-z|^{2}}|d \zeta|=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left|g\left(e^{i(t+\theta)}\right)-g\left(e^{i \theta}\right)\right|}{1-2 r \cos t+r^{2}} d t
$$

For all $\varepsilon>0$, there is $\eta>0$ such that if $|t| \leq \eta$, we have

$$
\left|g\left(e^{i(t+\theta)}\right)-g\left(e^{i \theta}\right)\right| \leq \varepsilon|t|^{\alpha} \quad(\theta \in[-\pi,+\pi])
$$

Then

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \frac{\left|g\left(e^{i(t+\theta)}\right)-g\left(e^{i \theta}\right)\right|}{1-2 r \cos t+r^{2}} d t \\
& \leq \varepsilon \int_{|t| \leq \eta} \frac{|t|^{\alpha}}{(1-r)^{2}+4 r t^{2} / \pi^{2}} d t+\|g\|_{\alpha} \int_{|t| \geq \eta} \frac{|t|^{\alpha}}{(1-r)^{2}+4 r t^{2} / \pi^{2}} d t \\
& \leq \frac{\varepsilon}{r^{\frac{1+\alpha}{2}}(1-r)^{1-\alpha}} \int_{0}^{+\infty} \frac{u^{\alpha}}{1+(2 u / \pi)^{2}} d u+\frac{\|g\|_{\alpha}}{r^{\frac{1+\alpha}{2}}(1-r)^{1-\alpha}} \int_{|u| \geq \eta \sqrt{r}} \frac{u^{\alpha}}{1+(2 u / \pi)^{2}} d u \\
& \leq \varepsilon O\left(\frac{1}{(1-r)^{1-\alpha}}\right)+\|g\|_{\alpha} o\left(\frac{1}{(1-r)^{1-\alpha}}\right) .
\end{aligned}
$$

We obtain

$$
\int_{-\pi}^{\pi} \frac{\left|g\left(e^{i(t+\theta)}\right)-g\left(e^{i \theta}\right)\right|}{1-2 r \cos t+r^{2}} d t \leq\|g\|_{\alpha} o\left(\frac{1}{(1-r)^{1-\alpha}}\right)
$$

Consequently

$$
\left.\left|\left(g_{n}\right)^{\prime}(z)\right| \leq\|g\|_{\alpha} o\left(\frac{1}{(1-r)^{1-\alpha}}\right) \quad(z \in \mathbb{D})\right)
$$

By the F-property of \mathcal{A}_{α}, we have $\left\|g_{n}\right\| \leq C_{\alpha}\|g\|_{\mathcal{A}_{\alpha}}$. Using the Hilbertian structure of \mathcal{D}, we deduce that there is a sequence $h_{n} \in \operatorname{co}\left(\left\{g_{k}\right\}_{k=n}^{\infty}\right)$ converging to f in \mathcal{D}. It is clear that $h_{n} \in \mathcal{J}$ and $\lim _{n \rightarrow+\infty}\left\|h_{n}-f\right\|_{\alpha}=0$. Then $\lim _{n \rightarrow+\infty}\left\|h_{n}-f\right\|_{\mathcal{A}_{\alpha}}=0$. Thus $f \in \mathcal{J}$. This completes the proof of the lemma.

As a consequence of Theorem 1.2, we can prove Theorem 1.1 and deduce that each closed ideal of \mathcal{A}_{α} is standard. For the sake of completeness, we sketch the proof here.

Proof of Theorem 1.1 Define γ on $\mathbb{D D}$) by $\gamma(z)=z$, and let $\pi: \mathcal{A}_{\alpha} \rightarrow \mathcal{A}_{\alpha} / \mathcal{J}$ be the canonical quotient map. Also, let $f \in \mathcal{J}\left(E_{j}\right)$ be such that $\left.f / U_{J} \in \mathcal{H}^{\infty}(\mathbb{D})\right)$ and $\left(f_{n}\right)_{n}$ be the sequence in Theorem 1.2 associated to f with $M \geq 3$. More exactly, we have $f_{n}=f g_{n}$, where $\left|g_{n}(\xi)\right| \leq d^{3}\left(\xi, E_{f}\right) \leq d^{3}\left(\xi, E_{\jmath}\right)$. Define

$$
\mathrm{L}_{\lambda}(f)(z):= \begin{cases}\frac{f(z)-f(\lambda)}{z-\lambda} & \text { if } z \neq \lambda \\ f^{\prime}(\lambda) & \text { if } z=\lambda\end{cases}
$$

Then

$$
\begin{equation*}
\pi(f)(\pi(\gamma)-\lambda)^{-1}=f(\lambda)(\pi(\gamma)-\lambda)^{-1}+\pi\left(\mathrm{L}_{\lambda}(f)\right) \tag{3.1}
\end{equation*}
$$

It is clear that $(\pi(\gamma)-\lambda)^{-1}$ is an analytic function on $\mathbb{C} \backslash Z_{J}$. Note that the multiplicity of the pole $\left.z_{0} \in Z_{\jmath} \cap \mathbb{D}\right)$ of $(\pi(\gamma)-\lambda)^{-1}$ is equal to the multiplicity of the zero z_{0} of U_{\jmath}.

Since U_{J} divides f, then according to (3.1) we can deduce that $\pi(f)(\pi(\gamma)-\lambda)^{-1}$ is an analytic function on $\mathbb{C} \backslash E_{j}$. Let $|\lambda|>1$, we have

$$
\left\|\pi(f)(\pi(\gamma)-\lambda)^{-1}\right\|_{\mathcal{A}_{\alpha}} \leq\|f\|_{\mathcal{A}_{\alpha}} \sum_{n=0}^{\infty}\left\|\gamma^{n}\right\|_{\mathcal{A}_{\alpha}}|\lambda|^{-n-1} \leq\|f\|_{\mathcal{A}_{\alpha}} \frac{C}{(|\lambda|-1)^{3 / 2}}
$$

By Lemma 3.1, there is $g \in \mathcal{J}$ such that $B_{g}=B_{j}$. Let $k=f\left(g / B_{g}\right)$. Then $k=$ $\left(f / B_{\mathrm{j}}\right) g \in \mathcal{J}$, and for $|\lambda|<1$, we have

$$
k(\lambda)(\pi(\gamma)-\lambda)^{-1}=-\pi\left(\mathrm{L}_{\lambda}(k)\right)
$$

Therefore

$$
\begin{aligned}
\left\|\pi(f)(\pi(\gamma)-\lambda)^{-1}\right\|_{\mathcal{A}_{\alpha}} & \leq|f(\lambda)|\left\|(\pi(\gamma)-\lambda)^{-1}\right\|_{\mathcal{A}_{\alpha}}+\left\|\mathrm{L}_{\lambda}(f)\right\|_{\mathcal{A}_{\alpha}} \\
& \leq \frac{\left\|\mathrm{L}_{\lambda}(k)\right\|_{\mathcal{A}_{\alpha}}}{\left|g / B_{g}\right|(\lambda)}+\left\|\mathrm{L}_{\lambda}(f)\right\|_{\mathcal{A}_{\alpha}} \\
& \leq \frac{C(f, k)}{(1-|\lambda|)\left|g / B_{g}\right|(\lambda)} \\
& \leq C(f, k) e^{\frac{C}{1-|\lambda|}} \quad(|\lambda|<1)
\end{aligned}
$$

We use [11, Lemmas 5.8 and 5.9] to deduce

$$
\left\|\pi(f)(\pi(\gamma)-\xi)^{-1}\right\| \leq \frac{C(f, k)}{d\left(\xi, E_{\jmath}\right)^{3}} \quad\left(1 \leq|\xi| \leq 2, \xi \notin E_{\jmath}\right)
$$

Then, we obtain

$$
\xi \mapsto\left|\left(g_{n}\right)(\xi)\right|\left\|\pi(f)(\pi(\gamma)-\xi)^{-1}\right\| \in L^{\infty}(\mathbb{T})
$$

With a simple calculation as in [3, Lemma 2.4], we can deduce that

$$
\pi\left(f_{n}\right)=\frac{1}{2 \pi i} \int_{\mathbb{T}}\left(g_{n}\right)(\xi) \pi(f)(\pi(\gamma)-\xi)^{-1} d \xi
$$

Denote $\mathcal{J}_{U_{j}}^{\infty}\left(E_{\mathcal{J}}\right):=\{h \in A(\mathrm{ID})): h_{\mid E_{\mathcal{J}}}=0$ and $\left.\left.h / U_{\mathcal{J}} \in A(\mathrm{D})\right)\right\}$. From [5, p. 81], we know that $\mathcal{J}_{U_{J}}^{\infty}\left(E_{\jmath}\right)$ has an approximate identity $\left(e_{m}\right)_{m \geq 1} \in \mathcal{J}_{U_{j}}^{\infty}\left(E_{\jmath}\right)$ such that $\left\|e_{m}\right\|_{\infty} \leq 1$. J is dense in $\mathcal{J}_{U_{j}}^{\infty}\left(E_{j}\right)$ with respect to the sup norm $\|\cdot\|_{\infty}$, so there exists $\left(u_{m}\right)_{m \geq 1} \in \mathcal{J}$ with $\left\|u_{m}\right\|_{\infty} \leq 1$ and $\lim _{m \rightarrow \infty} u_{m}(\xi)=1$ for $\xi \in \mathbb{T} \backslash E_{\rho}$. Therefore $\pi\left(f_{n}\right)=\pi\left(f_{n}-f_{n} u_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$. Then $f_{n} \in \mathcal{J}$ and $f \in \mathcal{J}$.

4 Proof of Theorem 2.1

The proof of Theorem 2.1 is based on a series of lemmas. In what follows, C_{ρ} will denote a positive number that depends only on ρ, not necessarily the same at each occurrence. For an open subset Δ of \mathbb{D}), we put

$$
\left\|f^{\prime}\right\|_{L^{2}(\Delta)}^{2}:=\int_{\Delta}\left|f^{\prime}(z)\right|^{2} d A(z)
$$

We begin with the following key lemma.

Lemma 4.1 Let $f \in \mathcal{A}_{\alpha}$ be such that $\|f\|_{\mathcal{A}_{\alpha}} \leq 1$, and let $\rho>1$ be given. Then

$$
\int_{\gamma} \frac{\left|f\left(e^{i t}\right)\right|^{2 \rho}}{d\left(e^{i t}\right)} d t \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
$$

where $a, b \in E_{f}, \gamma=(a, b) \subset \mathbb{T} \backslash E_{f}, d(z):=\min \{|z-a|,|z-b|\}$ and $\Delta_{\gamma}:=$ $\{z \in \mathbb{D}): z /|z| \in \gamma\}$.

Proof Let $e^{i t} \in \gamma$ and define $z_{t}:=\left(1-d\left(e^{i t}\right)\right) e^{i t}$. Since $|\gamma|<1 / 2$, we obtain $\left|z_{t}\right|>1 / 2$. We have

$$
\begin{equation*}
\left|f\left(e^{i t}\right)\right|^{2 \rho} \leq 2^{2 \rho-1}\left(\left|f\left(e^{i t}\right)-f\left(z_{t}\right)\right|^{2 \rho}+\left|f\left(z_{t}\right)\right|^{2 \rho}\right) \tag{4.1}
\end{equation*}
$$

By Hölder's inequality combined with the fact that $\|f\|_{\infty} \leq\|f\|_{\mathcal{A}_{\alpha}} \leq 1$, we get

$$
\begin{aligned}
\left|f\left(e^{i t}\right)-f\left(z_{t}\right)\right|^{2 \rho} & =\left|f\left(e^{i t}\right)-f\left(z_{t}\right)\right|^{2 \rho-2}\left|f\left(e^{i t}\right)-f\left(z_{t}\right)\right|^{2} \\
& \leq 2^{2 \rho-2}\left(1-\left|z_{t}\right|\right) \int_{\left|z_{t}\right|}^{1}\left|f^{\prime}\left(r e^{i t}\right)\right|^{2} d r \\
& \leq 2^{2 \rho-1} d\left(e^{i t}\right) \int_{0}^{1}\left|f^{\prime}\left(r e^{i t}\right)\right|^{2} r d r .
\end{aligned}
$$

Hence

$$
\begin{align*}
\int_{\gamma} \frac{\left|f\left(e^{i t}\right)-f\left(z_{t}\right)\right|^{2 \rho}}{d\left(e^{i t}\right)} d t & \leq 2^{2 \rho-1} \int_{\gamma} \int_{0}^{1}\left|f^{\prime}\left(r e^{i t}\right)\right|^{2} r d r d t \tag{4.2}\\
& \leq 2^{2 \rho-1} \pi\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
\end{align*}
$$

Since $d\left(e^{i t}\right) \leq 1 / 2$, we obtain $\frac{d\left(e^{i t}\right)}{\sqrt{2}} \leq d\left(z_{t}\right) \leq \sqrt{2} d\left(e^{i t}\right)$. Put $d\left(z_{t}\right)=\left|z_{t}-\xi\right|$ and note that either $\xi=a$ or $\xi=b$. Let

$$
z_{t}(u)=(1-u) z_{t}+u \xi \quad(0 \leq u \leq 1)
$$

With a simple calculation, we can prove that for all $e^{i t} \in \gamma$ and for all $u, 0 \leq u \leq 1$, we have

$$
\left|z_{t}(u)-w\right|>\frac{1}{2}(1-u) d\left(e^{i t}\right) \quad\left(w \in \partial \Delta_{\gamma}\right)
$$

where $\partial \Delta_{\gamma}$ is the boundary of Δ_{γ}. Then $\left.\mathbb{D}\right)_{t, u}:=\{z \in \mathbb{D}):\left|z-z_{t}(u)\right| \leq \frac{1}{2}(1-$ $\left.u) d\left(e^{i t}\right)\right\} \subset \Delta_{\gamma}$, for all $e^{i t} \in \gamma$ and for all $u, 0 \leq u \leq 1$. Since $\left|f^{\prime}(z)\right|$ is subharmonic on \mathbb{D}), it follows that

$$
\left|f^{\prime}\left(z_{t}(u)\right)\right| \leq \frac{4}{\pi(1-u)^{2} d^{2}\left(e^{i t}\right)} \int_{\mathbb{D}_{t, u}}\left|f^{\prime}(z)\right| d A(z) \leq \frac{2}{\pi^{1 / 2}(1-u) d\left(e^{i t}\right)}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}
$$

Set $\varepsilon_{\rho}=2 \alpha(\rho-1)$. We have

$$
\begin{aligned}
\left|f^{\rho}\left(z_{t}\right)\right|^{2} & =\left|f^{\rho}\left(z_{t}\right)-f^{\rho}(\xi)\right|^{2} \\
& =\rho^{2}\left|z_{t}-\xi\right|^{2}\left|\int_{0}^{1} f^{\rho-1}\left(z_{t}(u)\right) f^{\prime}\left(z_{t}(u)\right) d u\right|^{2} \\
& \leq C_{\rho} d^{2}\left(e^{i t}\right)\left(\int_{0}^{1}\left|z_{t}(u)-\xi\right|^{\frac{\varepsilon_{\rho}}{2}}\left|f^{\prime}\left(z_{t}(u)\right)\right| d u\right)^{2} \\
& \leq C_{\rho} d^{\varepsilon_{\rho}}\left(e^{i t}\right)\left(\int_{0}^{1} \frac{1}{(1-u)^{1-\frac{\varepsilon_{\rho}}{2}}} d u\right)^{2}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2} \\
& \leq C_{\rho} d^{\varepsilon_{\rho}}\left(e^{i t}\right)\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\int_{\gamma} \frac{\left|f\left(z_{t}\right)\right|^{2 \rho}}{d\left(e^{i t}\right)} d t \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2} \tag{4.3}
\end{equation*}
$$

Therefore the result follows from (4.1), (4.2), and (4.3).
In the sequel we denote by f an outer function in \mathcal{A}_{α} such that $\|f\|_{\mathcal{A}_{\alpha}} \leq 1$, and we fix a constant $\rho, 1<\rho \leq 2$. By [7, Theorem B], we have $f^{\rho} f_{\Gamma}^{N} \in \operatorname{lip}_{\alpha}$ and $\left\|f^{\rho} f_{\Gamma}^{N}\right\|_{\text {lip }}^{\alpha} \leq C_{N, \rho}$. To prove Theorem 2.1 we need to estimate the integral $\int_{\mathbb{D}}\left|\left(f^{\rho} f_{\Gamma}^{N}\right)^{\prime}\right|^{2} d A(z)$. Define

$$
g_{\Gamma}(z):=\frac{1}{\pi} \int_{\Gamma} \frac{e^{i \theta}}{\left(e^{i \theta}-z\right)^{2}} \log \left|f\left(e^{i \theta}\right)\right| d \theta
$$

Clearly we have $f^{\prime}=f\left(g_{\Gamma}+g_{\Gamma \backslash \Gamma}\right)$ and $\left(f_{\Gamma}^{N}\right)^{\prime}=N f_{\Gamma}^{N} g_{\Gamma}$, so

$$
\begin{align*}
f^{\rho}\left(f_{\Gamma}^{N}\right)^{\prime} & =N f^{\rho} f_{\Gamma}^{N} g_{\Gamma} \tag{4.4}\\
& =f^{\rho-1} N f^{\prime} f_{\Gamma}^{N}-N f^{\rho} f_{\Gamma}^{N} g_{\tau \backslash \Gamma} \tag{4.5}
\end{align*}
$$

Since $\|f\|_{\infty} \leq 1$, it is obvious that $\left\|f_{\Gamma}^{N}\right\|_{\infty} \leq 1$ and $\left\|f^{\rho-1}\right\|_{\infty} \leq 1$. Hence, by (4.4) we get

$$
\int_{\mathbb{D}}\left|\left(f^{\rho} f_{\Gamma}^{N}\right)^{\prime}\right|^{2} d A(z) \leq \rho^{2}+N^{2} \int_{\mathbb{D}}\left|f^{\rho}\left(f_{\Gamma}\right)^{\prime}\right|^{2} d A(z)
$$

We fix $\gamma=(a, b) \subset \mathbb{T} \backslash E_{f}$ such that $f(a)=f(b)=0$. Our purpose in what follows is to estimate the integral $\int_{\Delta_{\gamma}}\left|f^{\rho}\left(f_{\Gamma}\right)^{\prime}\right|^{2} d A(z)$, which we can rewrite as

$$
\int_{\Delta_{\gamma}}\left|f^{\rho}\left(f_{\Gamma}\right)^{\prime}\right|^{2} d A(z)=\int_{\Delta_{\gamma}^{1}}+\int_{\Delta_{\gamma}^{2}}
$$

where

$$
\begin{aligned}
\Delta_{\gamma}^{1} & :=\left\{z \in \Delta_{\gamma}: d(z)<2(1-|z|)\right\} \\
\Delta_{\gamma}^{2} & :=\left\{z \in \Delta_{\gamma}: d(z) \geq 2(1-|z|)\right\}
\end{aligned}
$$

4.1 The Integral on the Region Δ_{γ}^{1}

We begin with the following lemma.

Lemma 4.2

$$
\int_{\Delta_{\gamma}} \frac{|f(z)-f(z /|z|)|^{2 \rho}}{(1-|z|)^{2}} d A(z) \leq \frac{1}{2 \alpha(\rho-1)}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
$$

Proof Let $z=r e^{i t} \in \Delta_{\gamma}$ and put $\varepsilon_{\rho}=2 \alpha(\rho-1)$. We have

$$
\begin{aligned}
r\left|f\left(r e^{i t}\right)-f\left(e^{i t}\right)\right|^{2 \rho} & =r\left|f\left(r e^{i t}\right)-f\left(e^{i t}\right)\right|^{2 \rho-2}\left|f\left(r e^{i t}\right)-f\left(e^{i t}\right)\right|^{2} \\
& \leq r(1-r)^{1+\varepsilon_{\rho}} \int_{r}^{1}\left|f^{\prime}\left(s e^{i t}\right)\right|^{2} d s \\
& \leq(1-r)^{1+\varepsilon_{\rho}} \int_{0}^{1}\left|f^{\prime}\left(s e^{i t}\right)\right|^{2} s d s .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{\Delta_{\gamma}} \frac{|f(z)-f(z /|z|)|^{2 \rho}}{(1-|z|)^{2}} d A(z) & =\int_{0}^{1}\left(\int_{\gamma}\left|f\left(r e^{i t}\right)-f\left(e^{i t}\right)\right|^{2 \rho} \frac{r d t}{\pi}\right) \frac{d r}{(1-r)^{2}} \\
& \leq\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2} \int_{0}^{1} \frac{1}{(1-r)^{1-\varepsilon_{\rho}}} d r
\end{aligned}
$$

This completes the proof.
Now, we can state the following result.

Lemma 4.3

$$
\int_{\Delta_{\gamma}^{1}}|f(z)|^{2 \rho}\left|f_{\Gamma}^{\prime}(z)\right|^{2} d A(z) \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2} .
$$

Proof By Cauchy's estimate, it follows that $\left|f_{\Gamma}^{\prime}\left(r e^{i t}\right)\right| \leq \frac{1}{1-r}$. Using Lemma 4.2, we get

$$
\begin{align*}
\int_{\Delta_{\gamma}^{1}}|f(z)|^{2 \rho}\left|f_{\Gamma}^{\prime}(z)\right|^{2} d A(z) & \leq \int_{\Delta_{\gamma}^{1}} \frac{|f(z)|^{2 \rho}}{(1-|z|)^{2}} d A(z) \tag{4.6}\\
& \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+2^{2 \rho-1} \int_{\Delta_{\gamma}^{1}} \frac{|f(z /|z|)|^{2 \rho}}{(1-|z|)^{2}} d A(z)
\end{align*}
$$

Using Lemma 4.1, we obtain

$$
\begin{align*}
\int_{\Delta_{\gamma}^{1}} \frac{|f(z /|z|)|^{2 \rho}}{(1-|z|)^{2}} d A(z) & =\frac{1}{\pi} \int_{\Delta_{\gamma}^{1}} \frac{\left|f\left(e^{i t}\right)\right|^{2 \rho}}{(1-r)^{2}} r d r d t \tag{4.7}\\
& \leq \frac{C}{\pi} \int_{\gamma} \frac{\left|f\left(e^{i t}\right)\right|^{2 \rho}}{d\left(e^{i t}\right)} d t \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
\end{align*}
$$

The result of our lemma follows by combining the estimates (4.6) and (4.7).

4.2 The Integral on the Region Δ_{γ}^{2}

In this subsection, we estimate the integral $\int_{\Delta_{\gamma}^{2}}|f(z)|^{2 \rho}\left|f_{\Gamma}^{\prime}(z)\right|^{2} d A(z)$. Before this, we make some remarks. For $z \in \mathbb{D}$) define

$$
a_{\gamma}(z):= \begin{cases}\frac{1}{2 \pi} \int_{\Gamma} \frac{-\log \left|f\left(e^{i \theta}\right)\right|}{\left|e^{i \theta}-\left.\right|^{2}\right|} d \theta & \text { if } \gamma \nsubseteq \Gamma \\ \frac{1}{2 \pi} \int_{\mathbb{T} \backslash \Gamma} \frac{-\log \left|f\left(e^{i \theta}\right)\right|}{\left|e^{i \theta}-z\right|^{2}} d \theta & \text { if } \gamma \subseteq \Gamma\end{cases}
$$

Using equation (4.4), it is easy to see that

$$
\left|f(z)^{\rho} f_{\Gamma}^{\prime}(z)\right|^{2} \leq 4\left|f(z)^{\rho} \frac{1}{2 \pi} \int_{\Gamma} \frac{-\log \left|f\left(e^{i \theta}\right)\right|}{\left|e^{i \theta}-z\right|^{2}} d \theta\right|^{2}
$$

Using equation (4.5), it is clear that

$$
\left|f(z)^{\rho} f_{\Gamma}^{\prime}(z)\right|^{2} \leq 2\left|f^{\prime}(z)\right|^{2}+8\left|f(z)^{\rho} \frac{1}{2 \pi} \int_{\mathbb{T} \backslash \Gamma} \frac{-\log \left|f\left(e^{i \theta}\right)\right|}{\left|e^{i \theta}-z\right|^{2}} d \theta\right|^{2}
$$

Then

$$
\begin{equation*}
\int_{\Delta_{\gamma}^{2}}|f(z)|^{2 \rho}\left|f_{\Gamma}^{\prime}(z)\right|^{2} d A(z) \leq 2\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+8 \int_{\Delta_{\gamma}^{2}}|f(z)|^{2 \rho} a_{\gamma}^{2}(z) d A(z) \tag{4.8}
\end{equation*}
$$

Since $\log |f| \in L^{1}(\mathbb{T})$, we have

$$
\begin{equation*}
a_{\gamma}(z) \leq \frac{C}{d^{2}(z)} \quad\left(z \in \Delta_{\gamma}\right) \tag{4.9}
\end{equation*}
$$

Given such inequality, it is not easy to estimate immediately the integral of the function $|f(z)|^{2 \rho} a_{\gamma}^{2}(z)$ on the whole Δ_{γ}^{2}. In what follows, we give a partition of Δ_{γ}^{2} into three parts so that one can estimate the integral $\int|f(z)|^{2 \rho} a_{\gamma}^{2}(z) d A(z)$ on each part. Let $z \in \Delta_{\gamma}^{2}$; three situations are possible:

$$
\begin{align*}
& a_{\gamma}(z) \leq 8 \frac{|\log (d(z))|}{d(z)} \tag{4.10}\\
& 8 \frac{|\log (d(z))|}{d(z)}<a_{\gamma}(z)<8 \frac{|\log (d(z))|}{1-r} \tag{4.11}\\
& 8 \frac{|\log (d(z))|}{1-r} \leq a_{\gamma}(z) \tag{4.12}
\end{align*}
$$

We can now divide Δ_{γ}^{2} into the following three parts

$$
\begin{aligned}
\Delta_{\gamma}^{21} & :=\left\{z \in \Delta_{\gamma}^{2}: z \text { satisfying (4.10) }\right\} \\
\Delta_{\gamma}^{22} & :=\left\{z \in \Delta_{\gamma}^{2}: z \text { satisfying (4.11) }\right\} \\
\Delta_{\gamma}^{23} & :=\left\{z \in \Delta_{\gamma}^{2}: z \text { satisfying (4.12) }\right\}
\end{aligned}
$$

4.2.1 The Integral on the Regions Δ_{γ}^{21} and Δ_{γ}^{23}

In this case we begin with the following.
Lemma 4.4

$$
\int_{\Delta_{\gamma}^{21}}|f(z)|^{2 \rho} a_{\gamma}^{2}(z) d A(z) \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2} .
$$

Proof Using Lemma 4.2, we get

$$
\begin{aligned}
& \int_{\Delta_{\gamma}^{21}}|f(z)|^{2 \rho} a_{\gamma}^{2}(z) d A(z) \\
& \quad \leq 2^{\rho} \int_{\Delta_{\gamma}^{21}}|f(z)|^{\rho-1}|f(z)-f(z /|z|)|^{\rho+1} a_{\gamma}^{2}(z) d A(z) \\
& \quad+2^{\rho} \int_{\Delta_{\gamma}^{21}}|f(z)|^{\rho-1}|f(z /|z|)|^{\rho+1} a_{\gamma}^{2}(z) d A(z) \\
& \quad \leq C_{\rho} \int_{\Delta_{\gamma}} \frac{|f(z)-f(z /|z|)|^{\rho+1}}{(1-|z|)^{2}} d A(z)+C_{\rho} \int_{\Delta_{\gamma}^{21}} \frac{\left|f\left(e^{i t}\right)\right|^{\rho+1}}{d^{2}\left(e^{i t}\right)} r d r d t \\
& \quad \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+C_{\rho} \int_{\Delta_{\gamma}^{21}} \frac{\left|f\left(e^{i t}\right)\right|^{\rho+1}}{d^{2}\left(e^{i t}\right)} d r d t=I_{2,1}
\end{aligned}
$$

Let $e^{i t} \in \gamma$ and denote by ζ_{t} the point of $\left.\partial \Delta_{\gamma}^{2} \cap \mathbb{D}\right)$ such that $\zeta_{t} /\left|\zeta_{t}\right|=e^{i t}$. We have

$$
\left|e^{i t}-\zeta_{t}\right|=1-\left|\zeta_{t}\right|=\frac{d\left(\zeta_{t}\right)}{2} \leq d\left(e^{i t}\right)
$$

Then

$$
\begin{aligned}
\int_{\Delta_{\gamma}^{21}} \frac{\left|f\left(e^{i t}\right)\right|^{\rho+1}}{d^{2}\left(e^{i t}\right)} d r d t & \leq \int_{\Delta_{\gamma}^{2}} \frac{\left|f\left(e^{i t}\right)\right|^{\rho+1}}{d^{2}\left(e^{i t}\right)} d r d t \\
& =\int_{\gamma} \frac{\left|f\left(e^{i t}\right)\right|^{\rho+1}}{d^{2}\left(e^{i t}\right)} \int_{\left|\zeta_{t}\right|}^{1} d r d t \leq \int_{\gamma} \frac{\left|f\left(e^{i t}\right)\right|^{\rho+1}}{d\left(e^{i t}\right)} d t
\end{aligned}
$$

Using Lemma 4.1, we get $I_{2,1} \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}$. This proves the result.
Lemma 4.5

$$
\int_{\Delta_{\gamma}^{23}}|f(z)|^{2 \rho} a_{\gamma}^{2}(z) d A(z) \leq C A\left(\Delta_{\gamma}\right)
$$

where $A\left(\Delta_{\gamma}\right)$ is the area measure of Δ_{γ}.
Proof Set

$$
\Lambda_{\gamma}:= \begin{cases}\Gamma & \text { for } \gamma \nsubseteq \Gamma \\ \mathbb{T} \backslash \Gamma & \text { for } \gamma \subseteq \Gamma\end{cases}
$$

Let $z \in \Delta_{\gamma}^{23}$. We have

$$
\begin{aligned}
|f(z)| & =\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{\left|e^{i \theta}-z\right|^{2}} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right\} \\
& \leq \exp \left\{\frac{1}{2 \pi} \int_{\Lambda_{\gamma}} \frac{1-r}{\left|e^{i \theta}-z\right|^{2}} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right\} \\
& =\exp \left\{-(1-r) a_{\gamma}(z)\right\} \leq d^{8}(z)
\end{aligned}
$$

Using (4.9), we obtain the result.

4.2.2 The Integral on the Region Δ_{γ}^{22}

Here, we will give an estimate of the following integral

$$
\int_{\Delta_{\gamma}^{22}}|f(z)|^{2 \rho} a_{\gamma}^{2}(z) d A(z)
$$

Before doing this, we begin with some lemmas. The next one is essential for what follows. Note that a similar result is used by various authors: Korenblum [6], Matheson [7], Shamoyan [8], and Shirokov [9, 10].
Lemma 4.6 Let $z \in \Delta_{\gamma}^{22}$ and let $\mu_{z}=1-\frac{8|\log (d(z))|}{a_{\gamma}(z)}$. Then

$$
\begin{equation*}
\left|f\left(\mu_{z} z\right)\right| \leq d^{2}(z) \tag{4.13}
\end{equation*}
$$

Proof Let $z \in \Delta_{\gamma}$ and let $\mu<1$. We have

$$
\begin{aligned}
|f(\mu z)| & =\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-(\mu r)^{2}}{\left|e^{i \theta}-\mu z\right|^{2}} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right\} \\
& \leq \exp \left\{\frac{1}{2 \pi} \int_{\Lambda_{\gamma}} \frac{1-(\mu r)^{2}}{\left|e^{i \theta}-\mu z\right|^{2}} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right\} \\
& \leq \exp \left\{-(1-\mu r) \inf _{\theta \in \Lambda_{\gamma}}\left|\frac{e^{i \theta}-z}{e^{i \theta}-\mu z}\right|^{2} a_{\gamma}(z)\right\}
\end{aligned}
$$

For $z \in \Delta_{\gamma}^{22}$, it is clear that $1-\mu_{z} \leq d(z) \leq\left|e^{i \theta}-z\right|$ for all $e^{i \theta} \in \Lambda_{\gamma}$. Then

$$
\inf _{\theta \in \Lambda_{\gamma}}\left|\frac{e^{i \theta}-z}{e^{i \theta}-\mu_{z} z}\right| \geq \frac{1}{2} \quad\left(z \in \Delta_{\gamma}^{22}\right)
$$

Thus

$$
\left|f\left(\mu_{z} z\right)\right| \leq \exp \left\{-\frac{1-\mu_{z}}{4} a_{\gamma}(z)\right\} \quad\left(z \in \Delta_{\gamma}^{22}\right)
$$

Then, we have

$$
\left|f\left(\mu_{z} z\right)\right| \leq \exp \left\{-\frac{1}{4}\left(1-\mu_{z}\right) a_{\gamma}(z)\right\}=d^{2}(z) \quad\left(z \in \Delta_{\gamma}^{22}\right)
$$

which yields (4.13).

For $r<1$, define

$$
\left.\gamma_{r}:=\{z \in \mathbb{D}):|z|=r \text { and } z /|z| \in \gamma\right\} .
$$

Without loss of generality, we can suppose that $d(z) \leq \frac{1}{2}, z \in \Delta_{\gamma}^{2}$. We need the following.

Lemma 4.7 Let $r<1$. Then

$$
\int_{\gamma_{r} \cap \Delta_{\gamma}^{22}}\left|f\left(r e^{i t}\right)-f\left(\mu_{r e^{i t}} r e^{i t}\right)\right|^{2 \rho} a_{\gamma}^{2}\left(r e^{i t}\right) r d t \leq \frac{C_{\rho}}{(1-r)^{1-\varepsilon_{\rho}}}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}
$$

where $\varepsilon_{\rho}=\alpha(\rho-1)$.
Proof Let $r e^{i t} \in \Delta_{\gamma}^{22}$. Then

$$
\begin{aligned}
&\left|f\left(r e^{i t}\right)-f\left(\mu_{r e^{i t}} r e^{i t}\right)\right|^{\rho-1}\left[\left(1-\mu_{r e^{i t}}\right) a_{\gamma}\left(r e^{i t}\right)\right]^{2} \\
& \leq 64\left(1-\mu_{r e^{i t}}\right)^{\varepsilon_{\rho}} \log ^{2}\left(d\left(r e^{i t}\right)\right) \leq C_{\rho}
\end{aligned}
$$

It is clear that $1-r \leq 1-\mu_{r e^{i t}} \leq d\left(r e^{i t}\right) \leq \frac{1}{2}$ and so $\frac{1}{2} \leq \mu_{r e^{i t}} \leq r$. We have

$$
\begin{aligned}
& \int_{\gamma_{r} \cap \Delta_{\gamma}^{22}}\left|f\left(r e^{i t}\right)-f\left(\mu_{r e^{i t}} r e^{i t}\right)\right|^{2 \rho} a_{\gamma}^{2}\left(r e^{i t}\right) r d t \\
& \leq C_{\rho} \int_{\gamma_{r} \cap \Delta_{\gamma}^{22}} \frac{\left|f\left(r e^{i t}\right)-f\left(\mu_{r e^{i t}} r e^{i t}\right)\right|^{\rho+1}}{\left(1-\mu_{r e^{i t}}\right)^{2}} r d t \\
& \leq \frac{C_{\rho}}{(1-r)^{1-\varepsilon_{\rho}}} \int_{\gamma_{r} \cap \Delta_{\gamma}^{22}} \frac{\left|f\left(r e^{i t}\right)-f\left(\mu_{r e^{i t}} r e^{i t}\right)\right|^{2}}{1-\mu_{r e^{i t}}} r d t \\
& \leq \frac{C_{\rho}}{(1-r)^{1-\varepsilon_{\rho}}} \int_{\gamma_{r} \cap \Delta_{\gamma}^{22}}\left(\int_{\mu_{r i t} t}^{r}\left|f^{\prime}\left(s e^{i t}\right)\right|^{2} d s\right) r d t \\
& \leq \frac{C_{\rho}}{(1-r)^{1-\varepsilon_{\rho}}} \int_{S_{r}}\left|f^{\prime}\left(s e^{i t}\right)\right|^{2} s d s d t \\
& \leq \frac{C_{\rho}}{(1-r)^{1-\varepsilon_{\rho}}} \int_{S_{r}}\left|f^{\prime}(w)\right|^{2} d A(w)
\end{aligned}
$$

where

$$
\left.S_{r}:=\{w \in \mathbb{D}): 0 \leq|w| \leq r \text { and } \frac{w}{|w|} \in \gamma\right\}
$$

The proof is therefore completed.
The last result that we need before giving the proof of Theorem 2.1 is the following one.

Lemma 4.8

$$
\int_{\Delta_{\gamma}^{22}}|f(z)|^{2 \rho} a_{\gamma}^{2}(z) d A(z) \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+C A\left(\Delta_{\gamma}\right)
$$

Proof Using (4.9) and Lemmas 4.6 and 4.7, we find that

$$
\begin{aligned}
\int_{\Delta_{\gamma}^{22}} & |f(z)|^{2 \rho} a_{\gamma}^{2}(z) d A(z) \\
& =\frac{1}{\pi} \int_{0}^{1}\left(\int_{\gamma_{r} \cap \Delta_{\gamma}^{22}}\left|f\left(r e^{i t}\right)\right|^{2 \rho} a_{\gamma}^{2}\left(r e^{i t}\right) r d t\right) d r \\
& \leq C A\left(\Delta_{\gamma}\right)+2^{2 \rho-1} \int_{0}^{1}\left(\int_{\gamma_{r} \cap \Delta_{\gamma}^{22}}\left|f\left(r e^{i t}\right)-f\left(\mu_{r e^{i t}} r e^{i t}\right)\right|^{2 \rho} a_{\gamma}^{2}\left(r e^{i t}\right) r d t\right) d r \\
& \leq C A\left(\Delta_{\gamma}\right)+C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2} .
\end{aligned}
$$

This completes the proof of the lemma.

4.2.3 Conclusion

Now, according to (4.8) and Lemmas 4.4, 4.5, and 4.8, we obtain

$$
\begin{aligned}
\int_{\Delta_{\gamma}^{2}}|f(z)|^{2 \rho}\left|f_{\Gamma}^{\prime}(z)\right|^{2} d A(z) & \leq 2\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+8 \int_{\Delta_{\gamma}^{2}}|f(z)|^{2 \rho} a_{\gamma}^{2}(z) d A(z) \\
& \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+C A\left(\Delta_{\gamma}\right)
\end{aligned}
$$

Combining this with Lemma 4.3, we deduce that

$$
\int_{\Delta_{\gamma}}|f(z)|^{2 \rho}\left|f_{\Gamma}^{\prime}(z)\right|^{2} d A(z) \leq C_{\rho}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma}\right)}^{2}+C A\left(\Delta_{\gamma}\right)
$$

Hence

$$
\begin{aligned}
\int_{\mathbb{D}}|f(z)|^{2 \rho}\left|f_{\Gamma}^{\prime}(z)\right|^{2} d A(z) & =\sum_{n=1}^{\infty} \int_{\Delta_{\gamma_{n}}}|f(z)|^{2 \rho}\left|f_{\Gamma}^{\prime}(z)\right|^{2} d A(z) \\
& \leq C_{\rho} \sum_{n=1}^{\infty}\left\|f^{\prime}\right\|_{L^{2}\left(\Delta_{\gamma_{n}}\right)}^{2}+C \sum_{n=1}^{\infty} A\left(\Delta_{\gamma_{n}}\right) \leq C_{\rho}
\end{aligned}
$$

This completes the proof of Theorem 2.1.
Acknowledgments I wish to thank Professors A. Borichev, O. El Fallah, and K. Kellay for the interest which they carried to this work.

References

[1] L. Carleson, A representation formula for the Dirichlet space. Math. Z. 73(1960), 190-196.
[2] O. El-Fallah, K. Kellay, and T. Ransford, Cyclicity in the Dirichlet space. Ark. Mat. 44(2006), no. 1, 61-86.
[3] J. Esterle, E. Strouse, and F. Zouakia, Closed ideals of A^{+}and the Cantor set. J. Reine Angew. Math. 449(1994), 65-79.
[4] H. Hedenmalm and A. Shields, Invariant subspaces in Banach spaces of analytic functions. Michigan Math. J. 37(1990), no. 1, 91-104.
[5] K. Hoffman, Banach spaces of analytic functions. Reprint of the 1962 original, Dover Publications Inc., New York, 1988.
[6] B. I. Korenbljuum, Invariant subspaces of the shift operator in a weighted Hilbert space. Mat. Sb. 89(131)(1972), 110-137, 166.
[7] A. Matheson, Approximation of analytic functions satisfying a Lipschitz condition. Michigan Math. J. 25(1978), no. 3, 289-298.
[8] F. A. Shamoyan, Closed ideals in algebras of functions that are analytic in the disk and smooth up to its boundary. Mat. Sb. 79(1994), no. 2, 425-445.
[9] N. A. Shirokov, Analytic functions smooth up to the boundary. Lecture notes in mathematics 1312, Springer-Verlag, Berlin, 1988.
[10] $\xrightarrow{ }$, Closed ideals of algebras of type $B_{p q}^{\alpha}$. Izv. Akad. Nauk. SSSR Ser. Mat. 46(1982), no. 6, 1316-1332, 1344.
[11] B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary values. Canad J. Math. 22(1970), 1266-1283.

Département de Mathématiques, Faculté des Sciences, Université Mohamed V, Rabat, Morocco e-mail: brahimbouya@gmail.com

[^0]: Received by the editors June 16, 2006.
 This work was partially supported by the Action Integrée Franco-Marocaine No. MA/03/64.
 AMS subject classification: Primary: 46E20; secondary: 30H05, 47A15.
 (C)Canadian Mathematical Society 2009.

