Bull. Aust. Math. Soc. **79** (2009), 31–**35** doi:10.1017/S0004972708000968

A WEAKLY ANALYTIC LOCALLY CONVEX SPACE WHICH IS NOT K-ANALYTIC

JUAN CARLOS FERRANDO

(Received 17 March 2008)

Abstract

It is shown that the dual of the space $C_p(I)$ of all real-valued continuous functions on the closed unit interval with the pointwise topology, when equipped with the Mackey topology, is a non *K*-analytic but weakly analytic locally convex space.

2000 *Mathematics subject classification*: 54H05, 46A03, 54C35. *Keywords and phrases*: analytic and *K*-analytic space, locally convex space, Borel measure.

1. Introduction

A question raised in [2] of whether every weakly analytic locally convex space is analytic is answered in the negative. If $C_p(I)$ denotes the linear space of all realvalued continuous functions defined on the closed unit interval I of the real line, provided with the pointwise convergence topology, it is shown that the dual E of $C_p(I)$ equipped with the Mackey topology is a weakly analytic locally convex space which is not K-analytic. This solution provides an interesting link between descriptive set topology, C_p -theory and locally convex space theory.

2. Preliminaries

If X is a completely regular Hausdorff space the linear space C(X) of the real-valued continuous functions on X equipped with the topology of pointwise convergence is denoted by $C_p(X)$. The topological dual of $C_p(X)$ is denoted by L(X), whereas $L_p(X)$ designs the weak* dual of $C_p(X)$. By $C_c(X)$ we represent the linear space C(X) equipped with the compact-open topology, whose dual is denoted by $C_c(X)^*$.

Let us recall that L(X) consists of the linear span of the vectors of the standard copy $\delta(X)$ of X in $C_p(C_p(X))$, that is, each $x \in X$ is depicted in L(X) by the evaluation map

This research has been partially supported by project MTM2005-01182 of the Spanish Ministry of Education and Science, co-financed by the European Community (Feder funds). © 2009 Australian Mathematical Society 0004-9727/2009 \$16.00

J. C. Ferrando

 δ_x at *x*, defined by $\delta_x(f) = f(x)$ for each $f \in C(X)$. This forces *X* to be represented in L(X) as an algebraic basis. Indeed, if $\{x_1, \ldots, x_n\}$ is a finite subset of *X* with $\sum_{i=1}^n \zeta_i \delta_{x_i} = \mathbf{0}$, where $\{\zeta_1, \ldots, \zeta_n\}$ are real numbers and **0** stands for the null linear form on C(X), by choosing $f_i \in C(X)$ such that $f_i(x_i) = 1$ and $f_i(x_j) = 0$ for $i \neq j$, $1 \leq i, j \leq n$, the equation $(\sum_{i=1}^n \zeta_i \delta_{x_i})(f_i) = 0$ implies that $\zeta_i = 0$. Hence L(X)consists of the linear span of the basic vectors $\{\delta_x \mid x \in X\}$ of the standard copy of *X* in $C_p(C_p(X))$. The mapping $\delta : X \to L_p(X)$ defined by $\delta(x) = \delta_x$ is a homeomorphism from *X* onto the (closed) subset $\delta(X)$ of $L_p(X)$.

A Hausdorff topological space Y is said to be analytic if it is a continuous image of the universal Polish space $\mathbb{N}^{\mathbb{N}}$. A Hausdorff topological space Y is said to be K-analytic if there exists an upper semicontinuous map T from $\mathbb{N}^{\mathbb{N}}$ into the family $\mathcal{K}(Y)$ of all compact subsets of Y, such that $\bigcup \{T(\alpha) \mid \alpha \in \mathbb{N}^{\mathbb{N}}\} = Y$. Different definitions of K-analytic spaces have been shown to be equivalent in the completely regular case [4]. Analytic and K-analytic spaces have been studied in [6] under the names of Suslin and K-Suslin spaces, respectively. Every analytic space is K-analytic and a nonseparable compact space is an example of a K-analytic space which is not analytic. It can be easily shown that a compact set K is metrizable if and only if the space $C_p(K)$ is analytic. A compact Hausdorff space K is said to be Talagrand compact if $C_p(K)$ is K-analytic. Weakly analytic and K-analytic spaces have been extensively investigated in Banach space theory since Talagrand's seminal paper [5]. For instance, it is well known that a Banach space is weakly K-analytic (analytic) if and only if its dual unit ball with the relative weak* topology is Talagrand compact (respectively metrizable).

3. Main theorem

In what follows X will be the closed interval I = [0, 1] equipped with the relative topology of the real line and the subset $\delta(I)$ of L(I) will be represented by Δ . The Mackey topology on L(I) of the dual pair $\langle L(I), C(I) \rangle$ will be denoted as usual by $\mu(L(I), C(I))$, and the corresponding weak topology, namely the weak* topology of L(I), by $\sigma(L(I), C(I))$. The topology on Δ induced by $\mu(L(I), C(I))$ will be denoted by μ , whereas σ will design the relative topology of $\sigma(L(I), C(I))$ on Δ .

LEMMA 3.1. Each nontrivial convergent sequence of (Δ, σ) does not converge in (Δ, μ) .

PROOF. Let $\{u_n \mid n \in \mathbb{N}\}$ be a nontrivial convergent sequence of (Δ, σ) and let u be its σ -limit. Then put $a_n = \delta^{-1}(u_n) \in I$ for each $n \in \mathbb{N}$. Since $\{a_n\}$ is a nontrivial convergent sequence of I, working with a subsequence if necessary we may assume without loss of generality that $\{a_n\}$ is strictly monotone.

We may suppose for instance (the other case is totally analogous) that $\{a_n\}$ is strictly decreasing with $a_1 < a_0 = 1$ and $a_n \rightarrow a = \delta^{-1}(u)$. Then let us consider a sequence $\{f_n \mid n \in \mathbb{N}\}$ of functions in C(I) satisfying the following conditions:

- (1) supp $f_n \subseteq [(3a_n + a_{n+1})/4, (3a_n + a_{n-1})/4]$, where supp f_n means the support of f_n ;
- (2) $0 \le f_n \le 1;$
- (3) $f_n(a_n) = 1$ for each $n \in \mathbb{N}$.

For example f_n can be the function on I taking the value zero in $[0, (3a_n + a_{n+1})/4] \cup [(3a_n + a_{n-1})/4, 1]$ and whose graph in the band $[(3a_n + a_{n+1})/4, (3a_n + a_{n-1})/4] \times \mathbb{R}$ of \mathbb{R}^2 is a triangle with vertices at the points $A_n((3a_n + a_{n+1})/4, 0), B_n(a_n, 1)$ and $C_n((3a_n + a_{n-1})/4, 0)$ of the plane. Since supp $f_i \cap \text{supp } f_j = \emptyset$ if $i \neq j$, the functions f_n are disjointly supported. Let us write $A_n := [(3a_n + a_{n+1})/4, (3a_n + a_{n-1})/4]$ for each $n \in \mathbb{N}$.

As is well known, the topological dual $C_c(I)^*$ of $C_c(I)$ can be identified with the space $rca(\mathcal{B})$ of regular (countably additive) Borel measures defined on the σ -algebra \mathcal{B} of all Borel subsets of I. Note that if $\mu \in rca(\mathcal{B})$, since $f_n(x) \leq \chi_{A_n}(x)$ for $0 \leq x \leq 1$, then, with respect to the dual pair $\langle C(I), C_c(I)^* \rangle$, one has

$$|\langle f_n, \mu \rangle| = \left| \int_0^1 f_n \, d\mu \le \int_0^1 \chi_{A_n} \right| d|\mu| = |\mu|(A_n)$$

for every $n \in \mathbb{N}$. Given that $A_i \cap A_j = \emptyset$ for $i \neq j$ and μ is countably additive, then $\mu(A_n) \to 0$ in \mathbb{R} . Hence $\langle f_n, \mu \rangle \to 0$, which shows that $f_n \to 0$ in C(I) under the weak topology of the Banach space $C_c(I)$.

If *P* stands for the $\sigma(C(I), C_c(I)^*)$ -closure of $abx\{0, f_n : n \in \mathbb{N}\}$, the absolutely convex cover of the weakly compact subset $\{0, f_n : n \in \mathbb{N}\}$ of the Banach space $C_c(I)$, Krein's theorem ensures that *P* is an absolutely convex weakly compact set in $C_c(I)$. Since $C_c(I)^* \supseteq L(I)$, it follows that *P* is an absolutely convex compact set in $C_p(I)$.

On the one hand, the fact that $f_n \in P$ for all $n \in \mathbb{N}$ implies that, with respect to the dual pair (C(I), L(I)),

$$\sup\{|\langle f, u_n \rangle| : f \in P\} \ge |\langle u_n, f_n \rangle| = f_n(a_n) = 1$$
(3.1)

holds for every $n \in \mathbb{N}$. On the other hand, one has

$$\sup\{|\langle f, u \rangle| : f \in P\} = \sup\{|f(a)| : f \in P\} = 0.$$
(3.2)

Indeed, since $a \notin \bigcup_{n=1}^{\infty} A_n$ then $\langle f_n, \delta(a) \rangle = \langle f_n, \delta_a \rangle = f_n(a) = 0$ for each $n \in \mathbb{N}$, which means that f(a) = 0 for each $f \in abx\{0, f_n : n \in \mathbb{N}\}$ and hence for every $f \in P$. From (3.1) and (3.2) it follows that

$$\sup\{|\langle f, u_n - u\rangle| : f \in P\} \ge 1$$

for every $n \in \mathbb{N}$. Consequently, $u_n \not\rightarrow u$ in Δ under $\mu(L(I), C(I))$ whilst $u_n \rightarrow u$ in Δ under $\sigma(L(I), C(I))$.

THEOREM 3.2. The locally convex space $E = (L(I), \mu(L(I), C(I)))$ is weakly analytic but not K-analytic.

PROOF. Since I and \mathbb{R} are analytic sets and the class of analytic spaces is closed, among other properties, under continuous images, countable products and countable unions of subspaces, then $L_p(I)$ is an analytic space as a consequence of [1, Proposition 0.5.13]. So E is weakly analytic. Proceeding by contradiction we assume that E is a K-analytic space. Note that since Δ is closed in $L_p(I)$, it is closed in E and consequently Δ is a K-analytic set under the relative topology of E. \Box

CLAIM 3.3. There is a completely regular K-analytic topology τ_2 on I stronger than the relativization τ_1 of the usual topology of \mathbb{R} to I such that δ is an homeomorphism from (I, τ_2) onto Δ , when considered as a subspace of E.

PROOF. Since $\mu(L(I), C(I))$ is the strongest locally convex topology on L(I) of the dual pair $\langle L(I), C(I) \rangle$, the topology μ on Δ induced by $\mu(L(I), C(I))$ is stronger than the Souslin topology σ on Δ induced by $\sigma(L(I), C(I))$. Now let us consider the homeomorphism $\delta : (I, \tau_1) \to (\Delta, \sigma)$ and let τ_2 be the topology on I consisting of the family $\{\delta^{-1}(U) : U \in \mu\}$ of subsets of I. Since μ is stronger than σ , if W is a τ_1 -open subset of I then $\delta(W)$ is a σ -open subset of Δ and hence a μ -open set. Hence $W = \delta^{-1}(\delta(W))$ is τ_2 -open and $\tau_1 \leq \tau_2$.

Clearly, $\delta : (I, \tau_2) \to (\Delta, \mu)$ is continuous. On the other hand, if *V* is a τ_2 -open set of *I* there is a μ -open set *U* in Δ with $V = \delta^{-1}(U)$, so that $\delta(V) = U$. This shows that $\delta : (I, \tau_2) \to (\Delta, \mu)$ is open. Thus δ is an homeomorphism from (I, τ_2) onto (Δ, μ) .

CLAIM 3.4. There exists a nonempty perfect set J in I where τ_1 coincides with τ_2 .

PROOF. Since (I, τ_1) is a Baire space and (I, τ_2) is a regular *K*-analytic space, Nakamura's closed graph theorem [3, Theorem] applied to the identity map φ : $(I, \tau_1) \rightarrow (I, \tau_2)$ yields a subset *D* of *I* with $I \setminus D$ of the first category in (I, τ_1) such that φ is continuous on *D*; hence $\tau_1|_D = \tau_2|_D$. If $\{N_n\}$ is a sequence of nowhere dense subsets of (I, τ_1) such that $I \setminus D = \bigcup_{n=1}^{\infty} N_n$ and F_n denotes the τ_1 -closure of N_n in *I*, then $G = I \setminus \bigcup_{n=1}^{\infty} F_n$ is a τ_1 -dense G_{δ} in *I* of the second category (hence uncountable) in (I, τ_1) with $G \subseteq D$. Since *G* is an uncountable analytic set, it must contain a nonempty perfect set *J*.

If *J* is the nonempty perfect subset of (I, τ_1) determined by Claim 3.4, let us denote by *K* the compact subset $\delta(J)$ of $L_p(I)$. Given that *J* is a nonempty perfect subset of the compact space (I, τ_1) , then $|J| = 2^{\aleph_0}$ and there exists a nontrivial (injective) τ_1 -convergent sequence $\{\zeta_n : n \in \mathbb{N}\}$ in *I* contained (together with its limit *a*) in *J*. So, if we put $v_n := \delta(\zeta_n)$ for each $n \in \mathbb{N}$, then $\{v_n\}$ is a nontrivial σ -convergent sequence of *K*, hence of (Δ, σ) . But since $\tau_1|_J = \tau_2|_J$ by Claim 3.4, the second statement of Claim 3.3 implies that $\sigma|_K = \mu|_K$. So $\{v_n\}$ is a nontrivial convergent sequence in (Δ, σ) which also converges in (Δ, μ) , contradicting Lemma 3.1.

Acknowledgements

I would like to thank Professor J. Kąkol for pointing out to me the question of [2] which has motivated the paper. I also wish to thank Professor M. López Pellicer for helpful conversations on the manuscript.

References

- [1] A. V. Arkhangel'skii, *Topological Function Spaces*, Mathematics and its Applications, 78 (Kluwer Academic Publishers, Dordrecht, Boston, London, 1992).
- [2] J. Kąkol, M. López Pellicer and W. Śliwa, Weakly *K*-analytic spaces and the three-space property for analyticity, submitted.
- [3] M. Nakamura, 'On quasi-Souslin space and closed graph theorem', Proc. Japan. Acad. 46 (1970).
- [4] C. A. Rogers, 'Analytic sets in Hausdorff spaces', Mathematika 11 (1968), 1-8.
- [5] M. Talagrand, 'Espaces de Banach faiblement K-analytiques', Ann. of Math. 110 (1979), 407–438.
- [6] M. Valdivia, *Topics in Locally Convex Spaces*, North Holland Mathematics Studies, 67 (North Holland, Amsterdam, 1982).

JUAN CARLOS FERRANDO, Centro de Investigación Operativa, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain e-mail: jc.ferrando@umh.es