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Abstract

This paper develops methods for simplifying systems of partial differential equations (PDEs) that have families
of conservation laws which depend on arbitrary functions of the independent or dependent variables. Cases are
identified in which such methods can be combined with reduction using families of symmetries to give a multiple
reduction; this is analogous to the double reduction of order for ordinary differential equations (ODE) with varia-
tional symmetries. Applications are given, including a widely used class of pseudoparabolic equations and several
mean curvature equations.

1. Introduction

Many interesting systems of partial differential equations (PDEs) have Lie pseudogroups of symme-
tries that depend on arbitrary functions of one independent variable. In 1982, Ovsiannikov [19] showed
that these symmetries can be factored out to reduce the PDE system to a simpler form involving only
differential invariants, a technique called group splitting. Commonly, the reduced system is of lower
order than the original PDE. If this simpler system can be solved, so can the original system, because
the action of the symmetry pseudogroup on each solution of the simplified system yields a family of
solutions of the original system. This approach has been applied widely and has recently been made
completely algorithmic by Thompson and Valiquette [26] using moving frames.

By contrast, relatively little is known about simplifying PDE systems using families of conservation
laws that depend on arbitrary functions of some independent or dependent variables. One indication that
this might be fruitful is the following well-known reduction of an Euler—Lagrange ordinary differential
equation (ODE), which uses a first integral. Given a Lagrangian functional of the form

.i”:/L(x, ', u”) dx,

the Euler-Lagrange equation is the fourth-order ODE

( o ////) d2 a L d 3 L 0
’ B ) u B = — —_— —_ — JR— —
w\Xx,u,u u a2 o o Law

This ODE is invariant under all translations in u; so, a standard symmetry reduction would yield a
third-order ODE and a quadrature:

w(x, v, v,V V") =0, U= f vdx+c,
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where c is an arbitrary constant.! However, one can do better than this. The symmetry is variational; so,
Noether’s Theorem applies, giving the first integral

¢( roo ///),_ d oL oL _
X,u,u,u )= x o au’_CI.

This inherits the translation symmetries, giving a double reduction to a family of second-order ODEs
and a quadrature:

o, v, vV, V) =¢cy, u=/vdx+62

The double reduction contains all solutions of the original ODE. If the second-order ODE family can
be solved, the general solution of the Euler-Lagrange equation is obtained by quadrature. Even if the
solution can be found only for one value of ¢, (commonly ¢; = 0), this yields a three-parameter (typically
singular) family of solutions of the fourth-order Euler-Lagrange equation.

Sjoberg [25] has partly extended double reduction to non-variational PDEs in two independent vari-
ables. Sjoberg’s approach restricts attention to those solutions that are invariant under a one-parameter
Lie group of point symmetries which is compatible with a given conservation law. Once such a sym-
metry group has been found, the conservation law yields an invariant first integral of the ODE that
determines the group-invariant solutions. Recently, Anco and Gandarias [2] strengthened this approach,
replacing the compatibility condition by the condition that the conservation law is group-invariant,
modulo a trivial conservation law. They developed methods of finding all such conservation laws for
a given finite-dimensional symmetry group of the original PDE, without restricting the number of inde-
pendent variables. In some instances, this produces a complete reduction to quadrature, so that the
group-invariant solutions can be found explicitly.

The current paper describes conservation-law reductions that apply to all solutions of a given PDE
system, not just group-invariant solutions. After a brief outline of some basic theory (Section 2), we
develop the theory of reduction using conservation laws that depend on arbitrary functions of some
independent variables (Section 4) or dependent variables (Section 5). We find that, unlike in the ODE
double reduction above, symmetries that depend on arbitrary functions are not necessarily symmetries
of the reduced PDE. Instead, they act as equivalence transformations that split the reduced PDE into a
few inequivalent cases. Commonly, one case inherits symmetries of the original PDE, making at least
one further reduction possible by group splitting (Section 6). The resulting methods are applied to a
large class of pseudoparabolic equations (Section 7) and to some other well-known PDEs (Section 8),
including cases involving an arbitrary function of the dependent variable.

2. Preliminaries
2.1 Orthonomic systems of PDEs

We consider a given real analytic system of PDEs on RY in orthonomic form (see below). Independent
variables x = (x', . .., x) and dependent variables u = (', . . . , u™) are used to state general results; the
Einstein summation convention applies throughout. For particular examples, however, commonly used
notation is adopted where this aids clarity.

Derivatives of each u” are written as uj, where J = (', ...,/ is a multi-index; each j' denotes the
number of derivatives with respect to x', so ug = u*. The variables x' and u§ can be regarded as coordi-
nates on the infinite jet space (see Olver [16]). With this approach, the partial derivative with respect to
X' is replaced by the total derivative,

d 0 ) ) )
D;=—+u* —, where Ji=(j,....7 \j/+ 17 "),
o0 T Ji=(j JLI L) i)

"'We use ¢ and ¢; to denote arbitrary constants from here on.
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(Total derivatives commute with one another.) To keep the notation concise, let
- iN . }
DJ:D’ID’z...D;, J=;"+- -+

Note that u§ = Dyu* is a |J|-th order derivative and uj, , = Dguj.

From here on, we use [u] to represent u and finitely many of its total derivatives; more generally,
square brackets around an expression denote the expression and as many of its total derivatives as are
needed. All functions of (x, [u]) are assumed to be analytic, at least locally.

The variables u§ may be ranked using any total order < that satisfies the following positivity
conditions:

() u <uf, J#0, (i) uf <uj == Dxuj < Dxut} .
The leading term in a differential expression is the highest-ranked u in the expression, and the rank of

the expression is the rank of its leading term (see Rust [23]). A system of m PDEs, denoted A(x, [u]) =0,
is orthonomic if its components are of the form

A, =uf —w,x,[u]),  p=1,....m, (2.1)
subject to the following conditions:

1. for each u, ujl“ is ranked higher than every u that is an argument of w,, ;

oy

2. whenever v # i, the leading term 3’ is neither u}" nor a derivative of uj";

Ay .
3. mo uy’ g is an argument of any , .

Most systems arising from applications can be written in at least one orthonomic form (commonly
several, depending on which ranking is used).

An involutive system has no integrability conditions, and yields a formally well-posed initial-value
problem (see Seiler [24] for details). Every orthonomic system can be completed to an involutive system,
denoted ¢ A(x, [u]) = 0, by appending all integrability conditions; Marvan [14] gives an algorithm for
doing this in a finite number of steps. For simplicity, we restrict attention to systems whose involutive
completion is orthonomic, subject to the m lowest-ranked components in ¢4 being the A, in (2.1). The
leading terms in °A and their derivatives (of all orders) are called principal derivatives; all other u§ are
called parametric derivatives. Given arbitrary initial data on the set Z of all parametric derivatives, the
corresponding power-series solution is constructed by using .A = 0 and its prolongations to determine
the values of all principal derivatives.?

Consequently, any function f(x, [u]) may be written, with a slight abuse of notation, as an equiv-
alent function f(x,Z, [A]). This change of coordinates on the infinite jet space uses the variables
Dk A,, |K| > 0, rather than the principal derivatives. It is extremely useful, as it enables any condition
of the form

fx,[u])=0 when [A=0]

(such as the determining equations for symmetries and conservation laws) to be written instead as an
equation:

flo:==f(x,Z,[0D)=0.

A syzygy® is a differential relation between variables that amounts to an identity when these vari-
ables are written in terms of (X, u). An orthonomic system of PDEs may have syzygies between the
components of A. (See (3.10) below for a well-known example.) If there are syzygies, the coordinates
Dk.A, have some redundancy.* One resolution is to remove spare coordinates. For conservation laws
and symmetries, however, it is easier to accept such redundancies and take them into account in the
calculations.

2The system .A = 0 need not be involutive, because ¢.A can be written in terms of [.A] and the parametric derivatives.
3The term ‘differential identity’ is also commonly used.
4 Although PDE systems that have syzygies are common, they are degenerate (non-normal); see Olver [16] for details.
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2.2 Conservation laws: the basics
A (scalar-valued) conservation law for a system A =0 on R" is a divergence expression,
C(x, [u]) =Div F = D;Fi(x, [u]), (2.2)
that is zero on all solutions of the PDE:
Clo=0. 2.3)
For orthonomic systems, (2.3) implies that there exist functions f* such that
C=f"(x,[u]) DjA,; (2.4)

see Anco [1] for details in the involutive case (and Footnote 2). Indeed, many conservation laws have
more than one such representation. A conservation law is trivial if either of the following conditions
hold:

1. all components F' are zero when [A = 0], that is, F'|, =0;
2. C =0 whether or not [A = 0] holds (e.g. when N =3 and F is a ‘total curl’).

More generally, C is trivial if and only if it is a linear superposition of these two kinds of trivial
conservation laws (see Olver [16]), in which case there exist F' such that

C=DF and F|,=0. (2.5

Two conservation laws, C,, C,, are equivalent if C,— C, is trivial. Every member of an equivalence class of
conservation laws expresses the same information about the set of solutions; so, equivalent conservation
laws are generally treated as being identical.

A conservation law C is in characteristic form if

C=09"A,,

for some functions Q*(x, [u]); the m-tuple @ = (Q', ..., Q™) is called a multiplier® for C. For a given
conservation law, one can integrate any of its representations (2.4) by parts to obtain an equivalent
conservation law in characteristic form. This yields functions F’ satisfying

Q"A, =D;F', where Q"=(—1)"Dy"(x, [u]). (2.6)

The multiplier Q is trivial if Q|, =0. Two multipliers, Q, and Q,, are equivalent if Q,— Q, is trivial.
Multipliers are found by solving an overdetermined system of linear PDEs. The solution depends on [u]
and functions of x that are subject to linear constraints which may or may not be solvable; some or all
of these functions may be unconstrained. Anco [1] includes full details of how to determine multipliers
in a comprehensive review of conservation laws.

2.3 Generalised symmetries

In 1918, Noether [15] famously introduced the idea of generalised symmetries of a system of PDEs (see
Olver [17] for a discussion of their significance). For a system A = 0 with M components, the M-tuple

Q=(0'(x,[ul),..., 0%, [u])) is the characteristic of a generalised symmetry if the operator
X =D;(0"(x,
3 (QF(x. [uD) 5 Dy
satisfies the linearised symmetry condition,
X(A)|,=0. (2.7)

3The term characteristic is also widely-used, but we use multiplier to prevent confusion with symmetry characteristics.
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Generalised symmetries are not necessarily associated with a Lie group, but the set of all characteristics
for a given system is a Lie algebra under the bracket with components
[Q1, Q:I" =X(Q5) — Xo(0)), a=1,....M.
In particular, the one-parameter Lie group of point symmetries
(x, u) —> (X(x, w;e), U(x, w;e)),
defined by
dx

— =§RX ), . _ n“(X, ), (X(x, w;0), u(x, u;0)) = (x, w),
de de

has the characteristic whose components are
0" =n"(x,w) — &'(x, W

2.4 Variational symmetries and conservation laws

The formal adjoint of a differential operator D is the unique differential operator D' such that
FDG— (D'F)G
is a divergence for all smooth functions F and G. In particular,
(D))" =(=D);:= (- V' Dy.
Consequently, the Euler—Lagrange operator with respect to any variable v that depends on X is
E, =(—D), aivJ , vy := Dy,
where the total derivatives Dy now include all dependent variables, including v. It is well known that a
function f(x, [u]) is a divergence if and only if
E.«{f(x, [u])} =0, a=1,...,M.
A useful generalisation of this result applies to smooth functions that depend on X, [v] and a set, z, that

consists of other (subsidiary) dependent variables and their derivatives, as follows.

Lemma 2.1. Let f and F', i=1,...,N, be arbitrary smooth functions of X, a set of dependent
variables, v and their derivatives and a set of subsidiary dependent variables, 7. Suppose that no syzy-
gies exist between the variables (X, z,[v]). Suppose also that for all i, each subsidiary z* on which
F(X,z, [v]) depends satisfies the condition that D;z° is a function of (X, z) only. Then, EV(D,»F [) =0.
IfE, {f(x, z, [v])} =0, then f(x, z, [v]) — f(X, Z, [0]) is a divergence.
Proof. Suppose that D;z* is independent of [v], for all z* occurring in F'. Then,

3Fi 8D,'Za 8Fl 8VK,‘ 8F’ }

B L R SR T 1

oF" dvg; OF
=Dy D o |+ o o
aVJ BVJ 8VK

=0.

(Syzygies invalidate the conclusion ‘= 0’.) Now, suppose that E, {f(x, Z, [v])} =0. Then,
b df(x,z, [v])
—_—

%2, [v]) — fx,2,[0]) = / = (E.[fexz D)) dr
=0
1
= / {VJ —af(xa, zbD _ v(— D), %v(— D), .z ) } d .
=0 Vy - aVJ Vv
The expression in braces is a divergence; so, f(X, z, [v]) — f(X, z, [0]) is a divergence. O
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For the rest of this subsection, let A = 0 be the system of Euler-Lagrange equations,
A, = EL{L(x, [u])} =0, a=1,....M, (2.8)

arising from the variational problem §. =0, where

f:/L(X, [u]) dx

is the action. In view of our assumption that the domain is R", we work formally, assuming that all
integrals converge. We begin with a brief outline of variational symmetries; for more details, including
the modifications needed for domains with a boundary, see Olver [16].

A generalised symmetry is variational if, for all sufficiently small |¢|, the mapping

(x, uj) —> (X, uj +eD;O%)

leaves the action unchanged, to first order in &. Consequently, the Euler—Lagrange equations are
unchanged,® to first order. As

L L+ sX(L)+ 0O(&?),

it follows that X (L) belongs to the kernel of all E «; so, it is a divergence. Therefore, Q is a characteristic
of generalised variational symmetries if and only if there exist functions P'(x, [u]) such that

oL ,
X(L) = DJQa m = D,-Pl. (29)
J

This can be integrated by parts to obtain a conservation law in characteristic form,
O“E,(L) = D;F'(x, [u]), (2.10)

where D;(F' — P') is the divergence arising from the integration. Furthermore, given any conservation
law in characteristic form, the argument above can be reversed to go from (2.10) to (2.9) (with Q%
replacing O%). This leads to Noether’s (First) Theorem from her 1918 paper.

Theorem 2.2 (Noether 1). A function Q is a generalised variational symmetry characteristic for a
system of Euler—Lagrange equations if and only if it is a multiplier of a conservation law.

Noether’s Second Theorem deals with families of characteristics that depend on a completely
arbitrary function g(x) and its derivatives.

Theorem 2.3 (Noether 2). An Euler—Lagrange system, E «(L) = 0, has a family of variational symmetry
characteristics Q(X, [ul, [g]) that are linear homogeneous in an arbitrary function g(x) if and only if
there is a syzygy between the components E (L), that is, if and only if there exist differential operators
D¢ (independent of g) such that

DE,o(L) =0. @2.11)

Specifically, the family of characteristics is obtained from this syzygy by multiplying (2.11) by g, then
integrating by parts to obtain an expression of the form (2.10), whose right-hand side is (automatically) a
trivial conservation law. Recently, Olver has proved that the arbitrary function g may also depend on [u]
(see Olver [18] for details). Noether’s Second Theorem immediately generalises to families of charac-
teristics that depend on more than one arbitrary function, each of which corresponds to an independent

8yzygy.

®For a bounded domain, variational symmetries leave the action unchanged up to boundary contributions. However, the Euler—
Lagrange equations are unchanged; see Olver [16]. Thus, what follows applies equally to bounded domains.
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3. Conservation laws that depend on functions of x

From here on, we consider a given PDE system A = 0 that is not necessarily variational. The set C4
of equivalence classes of conservation laws is a vector space. If C, is of countable dimension (whether
finite or not), it has a basis of equivalence classes that can be indexed by k € N. For each k, let C; be a non-
zero conservation law in the k™ equivalence class. Then, every conservation law is equivalent to C = ¢*C;
for some constants ¢*. However, for many well-known systems, C, is uncountable, because there exist
conservation laws in a family C(x, [u], [g]) that is linear homogeneous in g = (g'(x), g*(X), . ..). The
functions g" may be free (entirely arbitrary) or arbitrary subject to some linear differential constraints,

P'g' =0, 1=1,2,.... 3.1)

Here, each 9! is a linear differential operator whose coefficients depend on x only; total derivatives D;
are used, even though g" does not depend on [u]. The set of constraints (3.1) is complete if:

« it fully specifies g, so that each g’ is an arbitrary function of x subject only to (3.1);

« it has no additional integrability conditions.

Note: If the dimension of C4 is countable, every conservation law C is a member of the family
C = g*Ci(x, [u]) that is subject to the constraints D;g* = 0 for all i and k. So, C4 having countable dimen-
sion can be regarded as a special case of a family of conservation laws depending linearly on functions
that are arbitrary subject to a given set of linear constraints.

Multipliers that depend on functions g can be used to obtain syzygies and/or simplify the conservation
laws of the given system of PDEs.

Theorem 3.1. Suppose that A = 0 has a family of conservation laws C that is linear homogeneous in g,
which is subject to the complete set of constraints (3.1). Then, there exists A = (A,(x, [u]), A,(x, [a]),...)
such that

8 C ) ’

(- D), (M) +(Z) =0, r=12,.... (3.2)
0gj

For each set of differential operators 9" such that @’(@r’)*)», =0, there is a corresponding syzygy,

9 C(x, [ul, [g]>> o

; (3.3)
agy

2'(— D)y (

Provided that not all g" are free, the family C is equivalent to the family of conservation laws obtained
by substituting any solution A of (3.2) into

r = )\]@rlgr — gr(@r[)"')\l (34)

Proof. Suppose that .4 = 0 has such a family of conservation laws. If any of the functions g" are free,
Lemma 2.1 applies with v =g, giving

E;{C(x, [u], [g])}=0. (3.5)
For all other r, use Lagrange multipliers, A,, to enforce the constraints, giving
E.{C(x,[u],[g]) + 1,Zg'} =0. (3.6)

This amounts to (3.2), from which the syzygies (3.3) are constructed. As M@j =0 when g’ is free,
(3.5) can be treated as a special case of the general construction. If not all ' are zero, there exists a
solution A(x, [u]) of (3.2).

The conservation law C differs from its characteristic form Q*.4, by a divergence. Lagrange
multipliers enable the functions g” to be treated as if they were unrelated so, by Lemma 2.1,

0 Q*(x, [u], [g])

B 10+ 1918 ) =B (0" A, +1:71g) = (- D)y (S5
J

A,L) +(2)n. GBI
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As Q is linear homogeneous in g,
Q" Q"
PA, —C=g, — A, —g (D) | — A, ).
ST G G Al )’(ags )
for all g that satisfy the constraints. This is a trivial conservation law; thus, so is C — C,.
Finally, suppose that A' and A* both satisfy (3.2) and let A =A' — A*. Then, (@r’)'k, =0, and so

C, = Cu — C,2 is zero for all g that satisfy the given constraints. Therefore, every solution of (3.2) yields
a family of conservation laws (3.4) that is equivalent to C. O

It is well known that if £u = 0 is a linear homogeneous PDE (where Z is a linear differential operator)
and g(x) is a solution of £'g =0, then

C=glu—ul'g 3.8)

is a conservation law. This arises from Theorem 3.1 by setting A, = fu and Q' = g' = g(x); the condi-
tion E,(Q'A,) = 0 gives the constraint £'g = 0; so, Z} = £ and hence (3.2) has the solution A, = —u.
Theorem 3.1 extends this result to non-linear systems of PDEs.

As Theorem 3.1 implies, there are systems of PDEs and constraints for which it is possible to
eliminate Lagrange multipliers from (3.2) and its differential consequences to obtain syzygies.

Example 3.2. In Cartesian coordinates, the Euler equation for a constant-density two-dimensional
incompressible potential flow with velocity V¢ and pressure p has the components

Al = ¢Xt + ¢X¢xx + ¢y¢x}' + Pxs AZ = ¢yr + ¢x¢xy + ¢y¢yy + Py A3 = ¢xx + ¢,vy .

This system has an integrability condition’ that determines the Laplacian of the pressure in terms of [¢].
All multipliers that are independent of ([¢], [p]) are of the form Q" = g"(x, y, t), subject to the following
constraints:

Dg' +Dg =0, Dig'+Dlg =0.
Applying Theorem 3.1 gives the conditions
A, =Dy, Ay =Dy, Ay = =D, — D}a, (3.9

which have a solution (A, A,) = (H, —¢), where H= ¢, + (¢ + ¢>§)/2 + p is the Bernoulli function.
The corresponding family of conservation laws is C, = C; + C,, where

Ci=D,(g'H)+D,(gH), C=D,(g'¢.—g¢)+D,(g'd,—g9).
Note that A, can be eliminated from (3.9), yielding the syzygy
DA, — DA, =0. (3.10)

The conservation law C, is trivial, because the solution of the first constraint is (g', g*) = (g,, —g.),
where the arbitrary function g(x,y,t) can be regarded as the Lagrange multiplier for the syzygy.
Consequently,

By contrast, C, is non-trivial for g® # 0 ; indeed, it is the conservation law (3.8) for Laplace’s equation.

Corollary 3.3. If the constraints on g in Theorem 3.1 do not involve derivatives with respect to one or
more variables x', the corresponding components F' in the family of conservation laws (3.4) are zero.

Proof. The total differential operators in (@rl)Jr have no D, derivatives, so neither does (3.4). O

"One orthonomic form of the completed involutive system has leading derivatives (s, @yt Dxx» Pxx)s the last of which is the
leading term in the integrability condition

0 = Pxx +p,v)' + 2(¢§y + ¢}2)) = Dx-Al + DyAZ + (¢yy —D; — ¢xDx - ¢yDy)-A3 - A%
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In particular, Corollary 3.3 applies whenever g is an arbitrary function of some (but not all) indepen-
dent variables.® The best-known examples with this property are scalar PDEs with first integrals, such
as the Liouville equation and other Darboux integrable scalar hyperbolic PDEs. However, the corollary
applies equally to multi-component systems whose multipliers depend one or more arbitrary functions
of N — 1 variables.

Example 3.4. Consider the Liouville-type system A =0 defined by

A] =u, — eZufv’ A2 =v, — eZV*u'
This has a family of multipliers that depend on (u, v, u,, v,) and g'(x, 1), with components
Q'=g'Qu,—v,)+D.g', Q' =g'Qv,—u,)+D.g',

subject to the constraint D,g' = 0. The corresponding conservation law in characteristic form is
C=D.{-g' (" + ™)} + D {g'(u —uv, +v}) + D.gHu, +v)} .
The condition (3.2) amounts to
Qu,—v,—D)A, + (2v, —u, — D,)A;, — DA, =0,
which has a solution
M= —uv, +V: =ty — V.
So, this family of multipliers leads to the family of conservation laws D,(g' L)) for all g' that depend on

x only; in other words, A, is a first integral.
Similarly, for the multiplier with components

Q' =g’ Quy, —v: +v) 2D+ Dlg’, Q=g ] — 2uv, — uy) — (Dogdu,
subject to D,g*> =0, the condition (3.2) leads to another first integral,
Ay = U (V] — UV 2t — Vi) = Uy -
Unlike A,, the function X\, is not symmetric under the discrete symmetry (u,v)+> (v, u). This symme-

try produces the first integral DA, — A,. The discrete symmetry (x,t) — (t,x) generates further first
integrals from L, and \,.

More generally, the constraint need not be of the form D,;g = 0 for a first integral to arise for a PDE
system with two independent variables. The constraint Zg = 0 is sufficient, for any first-order differential
operator 2 whose coefficients depend on x only.

Example 3.5. The shallow water equations (with constant Coriolis parameter f) describe the position
(x,y) of a fluid particle in terms of label-space variables (m', m*) and time t. Denoting differentiation
with respect to m' by the subscript i, this PDE system A = 0 has two components, with

A = x4 — fy — Di(y1€/ (7)) + Dy (y,€(7)),
Ay = yu 4+ fx, + D1 (%€ (1)) — Dy (x,€/(1)),

where T = Xy, — X,y is the reciprocal of the fluid depth and e(7) is the internal energy of the fluid. This
system has a family of conservation laws that depend on a function g which is arbitrary subject to the
constraint D,(g) = 0, namely

C = D{(g:x1 — g1x)x% + (v, + (g1 — g1y2)} + Di{ga(e(r) — te'(r) — 27 +y)) — fiy,)
+ Dy{gi(ze'(r) —e(r) + 1 + ) + foy) } -

The special cases g = —m" and g = m® give a pair of conservation laws for Lagrangian momentum (see
Hydon [7]). Applying Theorem 3.1 gives (after simplification)

()Cle - XIDz)Al + (yle — lez)Az — D,)\, = 0,

8This was established for quasi-Noether systems by Rosenhaus & Shankar [22], and for scalar PDEs by Popovych & Bihlo [21]
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which is solved by
A=fT + X% — XXy + VoY1 — V1Y
The conservation law C is equivalent to
C.=D({ghr},
which expresses conservation of the potential vorticity, M.

Another application of the results in this section occurs where symbolic algebra has been used to
derive conservation laws (see e.g. Poole and Hereman [20] and Wolf [27]); these are not necessarily in
their simplest equivalent form. Once a family of conservation laws that depend on a function is known,
Theorem 3.1 may be used with Corollary 3.3 to find an equivalent (perhaps simpler) form.

Example 3.6. For the KP equation, written as the system
Ve — iy, =0, V=t + 2utt; + Uy
symbolic methods yield the following family of conservation laws with g a function of t only:
C =D {gyu} + D, {gyu.. + gy’ — (+g" + gy)v} + D, {(tg’ + gxy)u, — 2gy’u — gru}.

Applying Theorem 3.1 with the constraints D.g = 0, D,g = 0, gives the equivalent family of conservation
laws,

C. =D, {g(yuw +yi’ + 2y've —xyv) } + D, {g( — £y uyy + xyu, + 1y°u, — xu)},

which is a little simpler than C, as it has one fewer term and no D, component. For higher-order
conservation laws with many terms, greater simplification can occur.

Note. When the vector space C 4 of equivalence classes of conservation laws has countable dimension,
with a basis {C, = D;Fi(x, [u]):k=1,2,...,}), one can represent the set of all conservation laws (up to
equivalence) by

C=g'C,, subjectto D,g"=0.

With a slight variation in notation, let A; be the Lagrange multiplier corresponding to the constraint
D,g* = 0. Then, (3.2) amounts to

Ey(C) =Dk,

which has the solution )»/’ﬁ = F/’ (X, [u]); the resulting conservation law is C; = C. So, the approach taken
above applies equally whether C 4 is finite- or infinite-dimensional.

4. Hodograph transformations

This section examines what happens when a system of PDEs has a family of conservation laws that
depend on arbitrary functions which involve dependent variables. We restrict attention to systems for
which there exists a hodograph transformation that gives all such variables the role of independent
variables. LetX¥'(x,u), i =1, ... N be the new independent variables after such a transformation, and let
u*(x,u), @ =1, ..., M be the new dependent variables. For the transformation to be valid, it is necessary
that the Jacobian determinant, J = det(Dj}? ), is non-zero. Let 5,- denote the total derivative with respect
to X' in the new variables. Then, the change of variables rule for a total divergence gives the following
useful result.

Lemma 4.1. Ler C = D,(F") be a conservation law for a given PDE system. Then, C=J"'Cisacon-
servation law for the same system in the hodograph-transformed variables; so, there exist functions F i
such that C = D,(F").
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Consequently, the results of Section 3 can be applied immediately to the transformed PDE system.

Example 4.2. Consider the time-dependent problem of flow by mean curvature via its level-set
formulation,

Vu
|VMV'G$7>_M=0' 4.1
u

We will work in two spatial dimensions, though the following conservation-law reduction generalises
readily to higher dimensions and to other forms of interfacial dynamics. The normal velocity of each
level set of u(x, y, t) is given by the negative of its curvature (so that closed curves disappear in finite
time). This geometrical content of (4.1), whereby there is no coupling between different level sets, is
reflected in its having three obvious families of symmetries,

ur— U), U'(u)#0, x— x+ X(u), y—y+ Y(u), 4.2)

each involving an arbitrary function of u. Equation (4.1) admits every multiplier of the form Q = g(u);
in neighbourhoods where u, # 0, the resulting conservation law is

D, (~g(wyu, tan”" (u,/u)} + D, (g, tan™" (uy /u)} + D, {— f g(w) du} 0.  (43)

Proceeding as above in applying a hodograph transformation with u as an independent variable and
x=x(u,y,t) as a dependent variable, (4.3) reduces to the product of g(u) and the conservation law

D, {—tan™" (x,)} + D/{x} =0. 4.4)

A similar reduction using y as a dependent variable applies in neighbourhoods where u, # 0. (One could
also use t a dependent variable, but the resulting conservation law is not much simpler than (4.3).)
So, conservation-law reduction simplifies the time-dependent two-dimensional mean curvature flow
to the non-linear filtration equation
X

-

X

see Ibragimov [9] for symmetries and some exact solutions of (4.5). The five Lie point symmetries in
Ibragimov [9] amount to translations in x,y and t, a scaling, and rotations in the (x,y)-plane. Each of
these corresponds to a family of symmetries of (4.1) that is obtained by replacing each group parameter
by an arbitrary function of u. For instance, the scaling invariance of (4.5) amounts to the family of
symmetries

x+—> h(u)x, y+—> h(u)y, t— R (ut,

of (4.1) for arbitrary non-zero h(u), which is perhaps not obvious a priori from (4.1)°. The first family of
symmetries in (4.2) becomes trivial in the reduced equation, as u appears only parametrically in (4.5)
(so that the dimensionality is lowered).

Equation (4.5) is of course familiar in the interfacial dynamics context: parametrising the level set
of interest in the form x = f(y, t) by setting u = x — f(y, t) leads at once to (4.5) with x replaced by —f;
the reduction to (4.5) is in this sense obvious.

Among the many natural generalisations of (4.1), here we mention only the anisotropic case

1 \Y%
= (an (i) 99T,

that similarly reduces to

D, {d>( —tan”! (xy))} + D,(x) =0.

9The symmetries of (4.1) are most evident when the equation is written in its Schwarz-function form (see King [11]).

https://doi.org/10.1017/50956792525100090 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792525100090

12 Peter E. Hydon and John R. King

5. Multiple reduction using conservation laws and symmetries

For clarity, we now consider scalar PDEs 4 = 0 with two independent variables, (x, 7). Suppose that a
given PDE has a family of conservation laws whose multipliers depend linearly on an arbitrary function
g(x, 1) that is subject to a constraint of the form

a(-x7 t)ng + b(.x, I)D,g = O

Using the method of characteristics to change variables if necessary, suppose without loss of generality
that D.g = 0. Corollary 3.3 implies that (up to equivalence) the corresponding family of conservation
laws (3.4) is of the form

C:= D {g®rx,t, [u])} =0.
Consequently, A(x, #, [u]) is a first integral and so the PDE reduces to
A, t, [u]) =f (@), (5.1

where f is arbitrary. Symmetries of A =0 map the set of solutions to itself, so they are equivalence
transformations of (5.1), that is, they may change f. Thus, a known Lie group of symmetries can be used
to partition the reduced PDE (5.1) into equivalence classes. Commonly, the symmetry group depends on
at least one arbitrary function, A(?). In this case, typically, the number of equivalence classes is small and
each class has a member with f constant. At the other extreme, some non-trivial symmetries of 4 =0
may become trivial symmetries of the reduced equation (5.1); such symmetries do not simplify (5.1).

Example 5.1. The type of reduction described above has a familiar application, namely, the transfor-
mation of an evolutionary PDE in conservation form,

u, =D, F(x,t,[u]) 5.2)
to its potential form. To see this, substitute u = w, into (5.2) to get
A= —w, +D.F(x,t, [w])=0. 5.3
This PDE has a family of multipliers Q = g(t), which yields the conservation law
D {—w,+ F(x,t,[w.])} =0. 54
Thus, there is a first integral,
—w, + F(x, t, [w,]) =f(2). (5.5)
The PDE (5.3) also has the family of point symmetries w +— w + h(t), which map (5.5) to
—w, + F(x, t, [w,]) =f() + K (). (5.6)
By choosing h appropriately, it is clear that there is only one equivalence class, which contains the
potential form of (5.2):
w, = F(x, t, [w.]). 5.7

So, the well-known transformation from (5.2) to (5.7) works because there are appropriate families of
multipliers and symmetries.

Suppose that a member of an equivalence class is invariant under a Lie group of non-trivial point
symmetries of (5.1) that depend on one or more arbitrary functions of one variable (whether or not these
are symmetries of A = 0). Then, group splitting can be used to reduce (5.1) further. If the further-reduced
PDE can be solved, all solutions in the relevant equivalence class can be reconstructed.

If A = 0is an Euler-Lagrange equation, the multiplier depending on g(#) is also a variational symme-
try characteristic (by Noether’s Theorem). Therefore, partitioning into a small number of equivalence
classes is always possible. If an equivalence class is invariant under the symmetries that depend on g(¢),
group splitting gives a true double reduction for that class which mirrors the double reduction of order
for Euler-Lagrange ODE:s.
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6. Pseudoparabolic examples

We illustrate the above general principles through application to pseudoparabolic PDEs of the form
A= —u; + D {M(u)D.D,¥ (u)} =0, M)WV’ (u) #0. (6.1)

Such equations, typically with an additional diffusion term, arise in a variety of applications (see e.g.
Barenblatt et al. [5] and Cuesta and Hulshof [6]), with the limit case of negligible diffusivity, as in (6.1),
being of specific interest (e.g. King [10]). The general theory furnishes results for these PDEs that we
believe to be new.

We begin with the restriction

M(u)=¥'(w), (6.2)
which enables (6.1) be written as an Euler-Lagrange equation by substituting u = w,, as follows:
A = Wy + D‘({\IJ/(WA)D,\Dt\II(Wx)} = 0’ \II/(W.X’) 75 0. (63)
The Lagrangian functional is
ﬁ:/ygmm+§@nmfwmmmm, (6.4)

which is invariant under translations in x. By Noether’s Theorem, the corresponding multiplier Q = w,
gives the conservation law

D{~w} = 5(D¥(W,))*} + D, W' (w)D,D,¥ (w,)} = 0 (6.5)

There are two families of multipliers that depend on arbitrary functions of ¢. The first is described in
Example 5.1 and yields the potential version of (6.1), namely

w, = V' (w,)D,.D,V(w,). (6.6)
The second family of multipliers, Q = g(f)w,, are characteristics for the variational symmetries
t— h(t), H(t) #0, (6.7)
which are of course also symmetries of (6.1). The conservation law arising from (3.4) is
D, {g(®) (3w} +w, V' (w,)D.D,W (w,) — 1(D,¥(w,))’) } =0, (6.8)
which gives the first integral
—w + 2w, V' (W, )D,. DY (w,) — (D,¥(w,))* =£(1). (6.9)
Taking (6.6) into account simplifies this to
w; = (D (W) = (). (6.10)
The variational symmetries (6.7) map (6.10) to
w; — (DY (W)’ =f(O)(H (1), (6.11)

splitting the first integral into three equivalence classes. For simple representatives of each class, we
choose f(¢) € {0, =1} in (6.10). The class with f(#) = 0 consists of two cases:

DY (w,) £ w, =0, 6.12)

each of which is consistent with (6.6) and admits the above variational symmetries. Consequently, this
class reduces to a first-order ODE:

Y(w,) £w=gx), (6.13)

where g(x) is arbitrary.
Reinstating u as the dependent variable, (6.10) with a non-zero right-hand side leads to two
possibilities:

w =20, ({0 @y +0)').  f0#o0.
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From (6.13), the remaining possibilities are
DV (u) £ u=gx).

We now turn to the general case of (6.1), in which (6.2) need not hold. A standard calculation (as
in Anco [1]) shows that, for arbitrary M and W, all multipliers that depend on (x, #, ) only are linear
combinations of

W' (u)
M(u)

9=1, Q= du. (6.14)

The corresponding conservation laws are A = 0 and
Di{=®,(u) — 5(D.¥ W)’} + DAP,)M(u)D.D,V (1)} =0, where ®;(u) = / Q>(u)du.  (6.15)

This conservation law amounts to (6.5) when the restriction (6.2) holds.

There are two special cases, each of which has a family of additional multipliers depending on an
arbitrary function g(x). If M(u) = 1, the family is Q = g(x), so, (3.4) yields the (obvious) conservation
law

D, {g(x)(— u + D;¥(u))} =0. (6.16)
The resulting first integral,
—u+ D>V (u) =f(x), (6.17)

reduces the PDE to a family of ODE:s.

The second special case occurs when M(u) = exp (— uw\W(u)), where w is a non-zero constant. This
gives the family of multipliers Q = g(x)u~"' exp (uW(u)). The corresponding conservation laws (3.4)
are

D, {g(x) (,ulei\Il(u) — %(DX\IJ(M))Z — CD(u))} =0, where ®(u)= / wexp (W (u)du. (6.18)
This leads to the first integral
W DY () — (DY ()’ — (u) = f(x). (6.19)

Again, a family of multipliers depending on g(x) has reduced the PDE to an ODE. Indeed, such a reduc-
tion always occurs when a PDE has 7-derivatives of at most first order and multipliers that depend on
an arbitrary g(x). Every PDE (6.1) has the family of point symmetries (6.7). However, these are trivial
symmetries of the reduced ODEs (6.17) and (6.19), so, they do not provide any further simplification.

The doubly exceptional instances of these special cases, in the sense that (6.2) also applies, are
M(u) = 1, which gives the linear PDE

Uy = Uyy
and
U =In (uu)/ 1, S =u’/2,

so that M(u) = exp (— uW(u)) = 1/(uu). In the latter case, setting u = 1/02 in (6.19) leads to Pinney’s
equation in the form

2 2
W) 5
xx o O’
Tt T T i
implying the integrability of the PDE. Special cases arise from (6.19) much more generally, in fact.

Setting

2
Y(u)=——1Ino
u
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gives
2 2
O + WS o+ M—aF(a):O
2 2
where F(o) = ®(u), so a second integrable case arises for F (o) = 1 /o, whereby, setting u = —1,

u, =2D, (uzDXD, In u)

leads via o =u to

That (6.7) represents a symmetry of (6.1) and (6.6) for any non-constant A(¢) allows a reduction of
order in general, as in the familiar ODE theory. Since x, u, w and p := u, are each invariant under (6.7),
the upshot is that the third-order PDE (6.1) can be reduced to a second-order one (in divergence form)
for p(u, x), namely

DAM@)D, (p¥'w)} + D.{pMw)D,(p¥'(w))} =1, (6.20)
while for (6.6) it follows that u(w, x) satisfies
V' (u)D, {D,\V(u) + uD, ¥V (u)} = 1. (6.21)
That these two expressions are equivalent when M(u) = W'(u) follows on defining ¢(u, x) by
¢ = V') D, (p¥'(w)), (6.22)
whereby integration of (6.20) with respect to u gives
¢ tpdu=u, (6.23)

without loss of generality. The left-hand side of (6.23) is ¢, at fixed #; so, we can set ¢ =w and (6.21)
and (6.22) are then equivalent. The above reductions proceed by eliminating ¢, the dependence upon
which is reinstated as the function of integration resulting on solving

u, =p(u,x) or w,=uw,x),

thereby reconstituting the third-order nature of the original PDE.
We conclude here with some comments about travelling-wave solutions

u=u(z), z=x-—s),

for which the corresponding special cases of the above results can be obtained from elementary ODE
considerations: (6.1) becomes

d_u = i <M(u)£\ll(u)> (6.24)
dz dz dz?
so that
1= i (p M(u)i (p W’(u))) , (6.25)
du du

the special case of (6.20) that arises when p = p(u). The obvious first integrals of (6.24) and (6.25) are
also equivalent, and when (6.2) holds a further integration in the form
W taut p=(pWw),
for constant o and B is also immediate, corresponding to the appropriate special case of (6.10). As
p = du/dz, this case reduces completely to quadrature:
v
B O
S+ au+ B

x—s(t)=c=x
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7. Further examples

Example 7.1. Every generalised Liouville equation in the hierarchy
AY .= D*u,, — " =0, k>0, (7.1)
has a variational formulation, with the Lagrangian
L= %(kau)u)qV —e".

Such equations admit the variational symmetries

F=x, y=h(y) a=u—In(K (), H(y) #0, (7.2)
and the corresponding multiplier is Q = g'(y) + g(y)u,. Applying Theorem 3.1 gives the first integral
(fork>1)

A =—D*uy, +u,D%u, — - -+ (— D' (D u )(D uy) + (= DDy =f(). (7.3)

For k=0, the first integral is
A= —uy, + u; =f(). (7.4)

For each k, the variational symmetries (7.2) map A to (W (y))7*A, so take f(y) € {0, £1} as representatives
of each equivalence class. In particular, when f(y) = 0, these symmetries give a reduction of order (with
respect to x) by group splitting. To see this in action, we examine what happens for k =0 and k = 1.

The lowest-order invariants of the symmetries are
X, P =l g=uye™"  r=u,.

We derive a system of reduced equations for q(x, p) and r(x, p). The relationship between q and r is
expressed by the first-order integrability condition

qr, = ume " =g, +rq, + pq. (7.5)

The case k = 0 (the Liouville equation) amounts to q = 1; so, the integrability condition has the solution

r=3ip’ +F(x),

where F is arbitrary. Together with the first integral (7.4), this gives the well-known reduction of the
Liouville equation to a pair of ODEs.
More interestingly, the symmetry reduction for the case k =1 gives the ODE

qry +qpr, + 39 =0, (7.6)
coupled with the integrability condition (7.5). This is supplemented by the first integral (7.3), namely
A= Uyryy + UyUyyy — %Mi :f(y)

Example 7.2. Consider the following time-independent curvature equation, which is relevant to
capillary surfaces, for example (see King et al. [12]):

Vu
A:=«k(x,y)—V- <W> =0. (7.7

This expresses the curvature of plane curves of constant u (i.e. level sets), in terms of a given function
k(x,y). Equation (7.7) is the Euler—Lagrange equation corresponding to the functional

L’:// (|Vu| + k(x, y)u) dxdy. (7.8)

While (7.7) is evidently invariant under u — U(u), U'(u) # 0, these symmetries are not variational.
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In the special case where k is independent of x, there exists a family of multipliers, Q = g(u)u,. These
are non-trivial in any neighbourhood where u, # 0, so a conservation law-reduction can be obtained
by a hodograph transformation, treating u as an independent variable and x as the dependent variable.
To transform (7.7), without restricting k in advance, let ¢(u,y) = k(x(u,y),y) to obtain the following
family of conservation laws that hold, remarkably, for all k(x, y):

Xy _ _
D, {g(u) (m + Cb(u,y)) } =0, where O(u,y)= / o(u,y) dy. (7.9)

This leads to the first integral

e ) =,

from which (7.7) can be solved by quadrature:

(u) — P(u, y)
x:fz(u):t/ /i = dy.
{1 — (i) — D(u, y))*}
Here, f| and f, are arbitrary, subject to the constraint |f,(u) — ®(u, y)| < 1 (which amounts to u, being
real and non-zero). A similar reduction, with'y = y(x, u), is applicable in neighbourhoods where u, # 0.

8. Concluding remarks

We have shown that conservation law multipliers that depend on arbitrary functions of the independent
variables can be used to simplify or solve PDEs. Reduced Euler—Lagrange systems generally inherit
equivalence transformations from the multipliers, though a subset of solutions may be invariant, leading
to a second reduction by the inherited symmetries.

Where there are two independent variables, the reduced PDE yields a first integral. More generally,
if there are p > 2 independent variables, reduction using multipliers that have arbitrary dependence on
s < p independent variables leads to a conservation law with p — s components (or a first integral when
s =p — 1). Hodograph transformations enable u to be used as an independent variable.

For variational problems, multipliers are characteristics of variational symmetries, from which
Noether’s theorems follow. Indeed, in the variational case, Theorem 3.1 reduces to a theorem in
Hydon and Mansfield [8] that bridges the gap between Noether’s theorems (and so has become known
informally as Noether 17).

Throughout, we have imposed the restriction that arbitrary functions in multipliers depend only on
whichever variables are being regarded as independent. However, a non-trivial conservation law is zero
only on solutions of the PDE, which are graphs x — (x, [u(x)]). So, each g" can depend on (x, [u]),
subject to the system of constraints (3.1) being satisfied for all solutions. (Where the arbitrary functions
are unconstrained, this observation amounts to the substitution principle of Kiselev [13], which is used
in Olver [18] to prove that the variational symmetry characteristics associated with Noether’s Second
Theorem can depend on arbitrary functions of (x, [u]).) Nevertheless, the calculations are considerably
easier if one restricts to functions g’(x), as Noether did.

This paper has focused on reduction and simplification of PDEs. However, Lie pseudogroups of
symmetries have several other applications to conservation laws. These include mapping a non-linear
PDE to a linear PDE (see Anco et al. [4] and Wolf [28]) and determining conditions under which an
initial-value problem is well-posed (see Anco and Recio [3]).
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