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Abstract

For an integrable function / on 7", we introduce a modified partial sum S^(f, t) and establish its
1} -convergence property. The relation between the sum and 1} -convergence classes is also established.
As a corollary, a new /.'-convergence class is obtained. It is shown that this class covers all known
1} -convergence classes.
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1. Introduction

For an integrable function / defined on the circle group T = R/2TTZ, Sn(f,t)
and on(f,t) denote the nth partial sum and the nth Cesaro sum of its Fourier
series T.^<aof(n)elM, respectively. Define A/(n) as follows: for n > 0, A/(n) =
/(«) - / ( n + 1) and A/ ( -n ) = / ( - n ) - / ( - n - 1). It is well known that there
exists an integrable function on T whose Fourier series does not converge to itself
in //-norm. Hence, many authors have defined L1-convergence classes in terms
of conditions on sequences of Fourier coefficients. An fj-convergence class is a
class of Fourier coefficients {/(n)} for which

(Y) \\Sn(f)-f\\i = o(l) (n-oo)

if and only i f / ( n ) log \n\ = o( l ) ( |n | -» oo).

This development was influenced by [14]. In that paper, A. N. Kolmogorov
proved that even quasi-convex sequences form an //-convergence class. After
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[2] I)-convergence of Fourier series 377

that, many //-convergence classes have been found (see [1, 2, 3, 5, 6, 7, 8, 9, 10,
11, 14,15,16,17,18], and these are subclasses of the following three classes:

[*»]

(i) lim lim £ \kf \^f(k)\ =0 f o r l < / > < 2 ;

(ii) C n BV;

(iii) QM.

Condition (i) is a Tauberian condition of Hardy-Karamata kind (see [12]).
Notations in (ii) and (iii) are defined as follows.

DEFINITION. We say that an even sequence {/(«)} belongs to the class C if for
every e > 0, there exists S > 0, independent of n, such that

c. I M{k)Dk(t)
k~*n

where Dy is the Dirichlet kernel.

dt < e for all n,

DEFINITION. We say that {/(«)} belongs to BV, the class of bounded variation,

DEFINITION. We say that an even sequence {/(«)} belongs to QM, the class of
quasi-monotone sequences, if, for some a > 0, f(n)/na is monotone decreasing as
n varies from 1 to oo.

In this paper, we shall introduce in Section 2 a new modified partial sum
S*(f, t) and establish a result about its /^-convergence property which says that
the L1-convergence problem of 5n

A(/, t) is closely related to the behavior of a new
series Ln*obf(n)Ef(t). The series has the form E^=1 A/(n)Dn(t) in the case
that / is even, or equivalently, the Fourier series of / is a cosine series. In Section
3, it will be shown that S?(f,t) controls the truth of the statement (Y). As a
corollary, we shall establish a new /^-convergence class which covers all known
//-convergence classes mentioned before.

2. A modified partial sum SH
A( / , t)

For n > 0, define E*(t) as follows:

E*(t) = —?— = £ e'k< +
2ieil/2sint/2 k=0 2ie"/2sint/2
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378 Chang-Pao Chen [3]

and E*n(t) = E*(-t). Clearly, for any positive integer n, we have the following
identities:

(i)

(ii)

(iii)

We introduce a new modified partial sum 5n
A(/, /) as follows.

= S?(f,t) = Sn(f,t) -(f(n)E?(t) +f(-n)E*n(t)).

In order to establish the /^-convergence property of S*(f,t), we need the
following two lemmas.

LEMMA 2.1. Let {An} be a sequence of integers with \n > n for all n. Then for
any 0 < |f | < w, we have

S?(f, 0 ~ an(f, t) = ^ 4 ^ ( a A ( / , 0 - aB( / , t))
An n

-V ^^
\ k \ - n X » -

where

=r

https://doi.org/10.1017/S144678870003384X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003384X


[4 ] L1-convergence of Fourier series

P R O O F . It is well known that

$,(/, 0 - *„(/. 0 = r^K//, f ) ~
An — n

\n x , i

379

By using summation by parts, we get

E \+1_Zkf(k)e'kl- I V^-X . - »
x,-i

= E
k

n
Af(k)E*{t)-f(n)En*(t)

X . - n
/(/c -f(n)E:(t)+f(\n)Ef(t)

k = n

Similarly, we have

= V V
A

— n

i
f{-k - \)E*k{t) -/(-«)£*„(/) +/(-Xj£*x (0

From these identities we get the desired result.

LEMMA 2.2. Let {Xn} and Rn(t) be as in Lemma 2.1. / / a sequence {p,,}

satisfies pn = 0(An - n) and pn > 1 /or a//«,

lim
n —* oo

\Rn(t)\dt = O.

PROOF. From the fact that

* (r) | dt < 77 log pn for all integers k,

we find that

lim f
n —• oo •* 77

•^-(/(n)£*(*)+/(-«)£•„(/)) = 0
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—{f(Xn)El(t)+f(-Xn)E*K(t))
n dt = 0.

Therefore, it suffices to show that if {<:„} is a sequence tending to 0 as \n\ -» oo,
then

lim f 1
r/pa

If we apply the Holder inequality and the Parseval formula, then we get

r

Similarly,

X - 1

E ckE?(t)

we have

1

y
12 sin t/2

k

1/2

1
2 sin f/2

n
i'

k = n

r
Jo

Cke'W

Xn-1
1/2

X - 1

From the last two results, we get

1/2

— nl*l=i

Pn
x - i

It follows that

1
lim f

it—co '•n>\t\-»m
= 0.
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It is well-known that for any integrable function / on T, an(f, t) converges to /
in //-norm. If we apply Lemmas 2.1 and 2.2 to the case Xn = [\n] and pn = n,
then we get the following /^-convergence property of Sn

A(/, t).

THEOREM 2.1. Letfe Ll(J). Then the following are equivalent

0) lim / \S?(f,t)-f(t)\dt = O,

(ii) lim lim
Ail n-,00

\\n\-\ [Xn] - \k\
% \\n\-n

dt = 0.

REMARK. The sum inside the second integral of the above theorem can be
written as

[ " \ lkl ^

which is the average of the sums

\k\ = n

Therefore, the above theorem tells us that the /^-convergence problem of S^(f, t)
is closely related to the behavior of the new series Zn # 0A/(n)E*{t) , which is
E^Lj Af(n)Dn(t) for the case that / is even, or equivalently, the Fourier series of
/ is a cosine series. In Section 3, we shall describe the relation between S^(f, t)
and the statement (Y).

In the rest of this section, we shall discuss the relation between S*(f, t) and the
modified partial sum gn defined in [7,8]. Therefore, throughout this part, we shall
assume that / is even, or equivalently, that E|n |< o o/(«)em t is a cosine series. We
have

S?(f,t) = Sn{f,t)-f(n)Dn(t).

From the following estimate

S?(f,t)\dt=f \Sn(f,t)-f(n)Dn(t)\ dt

we get

lim / \S*(f,t)-f(t)\dt = O.

Therefore, in this case, Theorem 2.1 can be transformed into the following form.
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382 Chang-Pao Chen 17]

COROLLARY 2.1. Let f be an even integrable function on J. Then
converges to f in l}-norm if and only if

lim lim
A 4.1 ,,--.00 Jv>\t\>v/nI YW^M(k)Dk(t)

k = n

We have the following relation

For any 5 > 0 and m > n, we have

[
and

k = n

*f(k)Dk(t)
k-n

dt

f *f(k)Dk(t) dt+f

It follows that if {/(«)} belongs to C, then
so

t) dt.

= o(l) (n -» oo), and

If in addition, (f(n)} belongs to BV, then for any A > 2, we have
[ A n J - l r , 1 _ .

lim E T~\ Af(k)D, = 0.

This follows from the observation that the last sum is the average of the sums
m

Z*f(k)Dk(t) (n<m<[\n]).

By Corollary 2.1, gn converges to / in //-norm. Therefore, S^(f,t) can be
regarded as a generalization of gn{t).

3. //-convergence classes

In this section, we first establish the relation between Sn
A(/, 0 and the

statement (Y). As a corollary, we establish a new L1 -convergence class, and then
show that this class covers all known //-convergence classes mentioned before.
To establish these, we need the following lemma.
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LEMMA 3.1. Suppose that pn = O(na) for some a > 0 and that pn > 1 for all n.
Then

f \f(n)En*(t) +f{-n)E*n{t)\dt = o{\) (n - oo)

if and only iff(n) logp | n | = o( l ) (\n\ -> oo).

PROOF. The " iF' part follows from the inequality

I | Ej* ( t ) | dt < IT log pn for all integers k.
JT7>\t\>1T/p

To establish the "only if" part, it suffices to show that for some M > 0,
dependent on a,

f \aE:(t) + bE*H(t)\dt > M(\a\ + \b\)logp

for all complex numbers a, b, all n 5* 3, and all p of the form 3 < p < na. The
last inequality can be proved as follows:

\ae" - be~"
dt.

If we can get a favorable estimate for the last integral, we shall be done. The last
integral can be estimated by using the following inequality:

for all complex numbers a and b, and any real number / of the form

It = -arg(afe) + T + Ik-u,

where k is an integer and w/3 < |T| < TT. TO see this, first divide the interval
[(n + \)m/p, (n + J)IT] into intervals of the form

[ - \ arg(aB) - JT/2, - \ ax%{ab) + ir/l] + kir,
with something left over. Second, apply the mentioned inequality to the last
integral and then do a calculation similar to that used in the estimate of
Lebesgue's constants (cf. [4, Vol. 1, p. 80] or [19, p. 172]). Note that the condition
logp ^ a(logn) will be used at the last step. After that, the desired result will
follow.

It is clear from the Riemann-Lebesgue lemma and from the integrability of /
that

lim ( \Sn(f,t)-f(t)\dt = O.
n—*oo
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If we apply Lemma 3.1 to the case pn = n, then we get the following theorem,
which says that S*(f, t) controls the truth of the statement (Y).

THEOREM 3.1. Letfe L\J). If

lim / \Sn
A(f, t)-f(t) \dt = 0,

then \\Sn(f) - / IK = o(l) (n - so) if and only iff(n) log \n\ = o(l)(\n\ -* oo).

As a corollary of Theorems 2.1 and 3.1, we get the following //-convergence
class.

THEOREM 3.2. Letfe L\J). If

lim lim /
A l l •'„

dt = O,

then \\Sn(f)-f\\l = o(l) (n - oo) if and only iff(n) log \n\ = o(l)(\n\ - oo).

REMARK. If both conditions in the statement (Y) are true, then it is easy to see
from Lemma 3.1 that the condition (i) in Theorem 2.1 holds, and so the condition
(ii) in Theorem 2.1 holds, i.e., the hypothesis of Theorem 3.2 holds. This shows
that the above //-convergence class is best possible.

In the rest of this section, we shall show that the above //-convergence class
covers all known /.'-convergence classes mentioned before. The first case we want
to investigate is the following Tauberian condition of Hardy-Karamata kind (I
was informed that Professor W. O. Bray and Professor C. V. Stanojevic also got
this result by using the Holder-Hausdorff-Young technique).

COROLLARY 3.1. Let f e //(T). If for some 1 < p ^ 2, we have

(HK)

then (Y) holds.
lim lim
M l „_»(»

|A/(*)f = 0,

PROOF. Let 2 denote the integral
[Xn]-1

E dt.

Then we have

= / *(')
2 sin t/2

dt,
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where
[\n]-l

L1-convergence of Fourier series

[An]-1

385

Applying first the Holder inequality and then the Hausdorff-Young inequality,
we get

sin r

Apn
l/"

[\n] -\k\
[Xn]-n W)

I/P

where \/p + \/q = 1, and where Ap is a constant dependent on p only. From
the last estimate, we find that this corollary follows from Theorem 3.2.

From the following set of implications

\ I |*f|A/(*)f = 0(l)
\k\ = n

lim lim
[\n]

we find that the following three classes are /^-convergence classes:

(i) C / n B V (cf.[l5]),

(ii) Cp n BV (cf. [15]),

(iii) v ; n F (cf. [l]).

Moreover, Corollary 3.1 generalizes those corresponding results in [1, 2, 3, 10, 15,
16]. It is easy to see that the condition nAf(n) = 0(1) implies

1*1=1

for some absolute constant M. Therefore, the above corollary has the following
consequence.
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COROLLARY 3.2. L e / / e L\l). IfnAf(n) = 0(1) (|«| -> oo), then (Y) holds.

Recall the proof of Corollary 3.1. We used the Holder-Hausdorff-Young
technique to get an estimate of

t n [A«]-«
dt

and then got the desired result. In fact, we can directly get the following estimate
of 2 without using the above famous inequalities

H L |A/(*)| / —d±—
\ \k\=n I J*>\t\>v/n 12 s in/ /21

^Oog*)[ E W ( * ) I -
\k\ = n

From this point of view, we get the following ^-convergence class, which
corresponds to the limit of condition (HK) as p -* 1.

COROLLARY 3.3. Letf e L\J). If

[An]

lim Urn (logn) Y. | A/( A:) | = 0,
All n-.cc \k\ = n

then (Y) holds.

The second case we want to investigate is the L'-convergence class C n BV,
which was obtained in [7, 8]. From the discussion at the end of Section 2, we find
that the following is a consequence of Theorem 3.2.

COROLLARY 3.4. Letfe L\J). If {/(«)} e C n BV, then (Y) holds.

Let S and F̂  be as in [15]. As shown in [15], the following relations hold

(even quasi-convex null-sequences} c S c Fp c C n BV.

From these relations, we find that all the above classes are L1-convergence classes,
and Theorem 3.2 generalizes those corresponding results in [6, 7, 8,14,17].

The third case we want to investigate is the class QM. Suppose that {/(«)} is
even and belongs to QM. The quasi-monotonicity of {/(«)} yields
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where c = max(2 ,2") . This implies that

Y l'v"J !"•!
!*!_„ [ A n ] - «

387

\k\ = n

(Wlog«) /(«) +/(-«) -/([An]) -/(-[A/i])

•( sup /(Jfc)WlogA

for some absolute constant M. Therefore, if f(n) log \n\ = o(l) (|«| -» oo), then

lim lim /
^il n-ao ^

By Theorem 3.2, we get the following corollary.

dt = 0.

COROLLARY 3.5. Let f ^ L\l). If {/(«)} e QM andiff(n) log|n| = o(l)
oo, rAen \\Sn(f) - /||x = o(l) (n -» oo).

Under a suitable definition of QM for a Fourier sine series, such as that given
in [9] and [18], we can obtain the same result for sine series as Corollary 3.5
provides for cosine series. We know that the concept of quasi-monotonicity is a
generalization of the concept of monotonicity, so the above corollary generalizes
the corresponding result in [5]. It is easy to see that if {/(«)}"_i is decreasing
and L^_!/(«)/« < oo, then f(n) log« = o(l) (n -» oo). This shows that the
above corollary also generalizes the corresponding result in [11].

4. A modified approach

It was seen in Sections 2 and 3 that the ̂ -convergence problem of the Fourier
series of / is closely related to the ̂ -convergence problem of the modified partial
sum S^(f,t), and, moreover, that the L1-convergence problem of S*(f,t) is
completely determined by the following two factors.

(0 and
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(ii)
\k\ = n - n

dt.

Therefore, it becomes a crucial issue as to how to control the above two
quantities. We have seen in Sections 2 and 3 how the choice Xn = [Xn] and
pn — n works. In this section, we shall see how the new choice Xn = n + [«//„]
and pn = [n/ln] also works, where {/„} is defined below. Assume that for an
integrable function / on T, the following better estimate of \\ax ( / ) - » „ ( / ) | \i
holds:

for some sequence {/„} satisfying 1 < /„ < n for all n. From the first identity in
the proof of Lemma 2.1 and the following estimate

L [f(k)eikl

\k\ = n
dt

k>n

we get

\Sn(f,t)-f(t)\dt = o(

If we apply the argument in Sections 2 and 3 to the choice Xn = n + [«//„] and
P« = ["/'/,]> then the results corresponding to Theorems 2.1, 3.1, 3.2 and their
consequences will follow, especially the following results, which correspond to
Corollaries 3.1 and 3.3.

RESULT 1. Let f & /^(T). Assume the existence of the sequence {/„} defined
above. If for some 1 < p < 2 (1/p + \/q = 1), we have

/« + [«//„] \1/p

\\Sn(f)-f\\1 = o(l) (« - oo) if and only iff(n) logflif|//w) - o(l) (|«
00).

RESULT 2. Le? / e L}(T). Assume the existence of the sequence {/„} defined
above. If

« + [»/'»]
(log [«//.]) I |A/(*)|=o(l) («-oo),

\k\ = n
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then \\SH(f)-f\\i = o(l) (» "» « ) if and only iff(n) log(M// | n | ) = o(l) (|/i| -»
oo).

It is obvious that the above two results are better than Corollaries 3.1 and 3.3
for the case that the sequence {/„} exists. From the fact that

K ( / ) " /Hi = O{n~a) f o r / e Lipa(T), 0 < a < 1,

and

hnU) - /H i = O(\ogn/n) f o r / e LiPl(T),

we know that the sequence {/„} exists at least for functions satisfying a Lipschitz
condition. This shows that the above two results make sense at least for Lipschitz
classes. From the definition of {/„}, we know that the existence problem of the
sequence {/„} is completely dependent on the estimate of the quantity ||o\n(/) —
ff«(/)lli- Therefore, how to obtain a better estimate of the quantity \\axjif) -
on(f)\\i is a problem of special significance.
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