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Abstract. We prove that Mazur’s functional characterization for one-sided
estimates can be restricted to smaller classes of functionals in the case in which the
functions under consideration are continuous. We apply this result to stability problems
for dynamical systems in l∞, and in the Banach space of all selfadjoint operators on a
Hilbert space.

2000 Mathematics Subject Classification. 47H06, 34G20.

1. Introduction. Let (E, ‖ · ‖), E �= {0}, be a real Banach space, and let m+ :
E × E → � denote the directional derivatives of the norm given by

m+[x, y] = lim
h→0+

‖x + hy‖ − ‖x‖
h

.

For a function f : D → E, D ⊆ E, and a function α : [0,∞) → �, α(0) = 0, we
consider one-sided estimates of the form

m+[y − x, f (y) − f (x)] ≤ α(‖y − x‖) (x, y ∈ D),

whereat f is called dissipative if α = 0.
One-sided estimates are closely connected to a priori estimates, and to stability,

invariance and existence results for dynamical systems in Banach spaces; see for
example [1], [4], [7], [9], and in particular Martin’s monograph [2] and the references
given there.

Inspired by Redheffer’s and Volkmann’s results on the invariance of the Siegel disk
[4], and Uhl’s characterization of quasimonotone increasing functions [8] we will give
an equivalent characterization for one-sided estimates of continuous functions which
is easily applicable to a wide range of dynamical systems.

2. Pointwise dissipativity. Let us call f : D → E dissipative at x0 ∈ D in case

m+[y − x0, f (y) − f (x0)] ≤ 0 (y ∈ D).

Let (E∗, ‖ · ‖) denote the topological dual of E, and let B∗ be the closed unit ball in E∗.
According to Mazur’s results on sublinear functionals [3], (see also [2, p. 42]) the

following functional characterization of m+ is valid:

m+[x, y] = max{ϕ(y) : ϕ ∈ ∂B∗, ϕ(x) = ‖x‖}. (2.1)
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Thus, dissipativity of f : D → E at x0 is equivalent to

y ∈ D, ϕ ∈ ∂B∗, ϕ(y − x0) = ‖y − x0‖ ⇒ ϕ(f (y) − f (x0)) ≤ 0. (2.2)

Let S be a subset ∂B∗. Let us say that S has property (D) if

M := {x ∈ E : ∃ϕ ∈ S ∪ (−S) : ϕ(x) = ‖x‖}
is a dense subset of E.

For example, S has property (D) if S ∪ (−S) is the set of all extremal points of B∗:
Each x ∈ E generates a weak∗-continuous linear functional �x on E∗, which attains
its maximal value at an extremal point ϕ of B∗. But then ‖ϕ‖ = 1 and

‖x‖ = ‖�x‖ = �x(ϕ) = ϕ(x),

so in this case we have M = E.
Furthermore, if conv(S ∪ (−S)) = B∗, an easy calculation shows M = E and

m+[x, y] = sup{ϕ(y) : ϕ ∈ S ∪ (−S), ϕ(x) = ‖x‖}.
In particular ∂B∗ in (2.2) can be replaced by S ∪ (−S) in this case. However, if M
is merely dense in E, then equivalence of (2.2) with ∂B∗ replaced by S ∪ (−S) and
dissipativity of f at x0 is no longer valid in general (see the example in section 5), but
is still valid for continuous functions.

THEOREM 1. Let D ⊆ E be open, let x0 ∈ D, let f : D → E be continuous, and let S
have property (D). Then, the following assertions are equivalent.

(1) y ∈ D, ϕ ∈ S ∪ (−S), ϕ(y − x0) = ‖y − x0‖ ⇒ ϕ(f (y) − f (x0)) ≤ 0.

(2) If v : [0, T ] → D with T > 0 is any differentiable function satisfying

m+[v(t) − x0, v
′(t) − f (v(t)) + f (x0)] < 0 (t ∈ [0, T ]),

then ‖v(t) − x0‖ ≤ ‖v(0) − x0‖ (t ∈ [0, T ]).
(3) f is dissipative at x0.

Proof. (1) ⇒ (2). Let v be as in (2), fix any r > ‖v(0) − x0‖, and set d(t) = v(t) − x0.
Assume that ‖d(t)‖ < r (t ∈ [0, T ]) is not valid. Then there exists t0 ∈ (0, T ] such that

‖d(t)‖ < r (t ∈ [0, t0)), ‖d(t0)‖ = r.

We have

m+[d(t0), d ′(t0) − f (v(t0)) + f (x0)] < 0,

hence, in turn, there exist h > 0, t1 ∈ (0, t0), and ε > 0 such that

‖d(t0) + h(d ′(t0) − f (v(t0)) + f (x0))‖ − ‖d(t0)‖ < 0,

∥∥∥∥d(t0) + h
(

d(t1) − d(t0)
t1 − t0

− f (v(t0)) + f (x0)
)∥∥∥∥ − ‖d(t0)‖ < 0,

∥∥∥∥d(t0) + z + h
(

d(t1) − (d(t0) + z)
t1 − t0

− f (v(t0) + z) + f (x0)
)∥∥∥∥

−‖d(t0) + z‖ < 0 (z ∈ E : ‖z‖ ≤ ε). (2.3)
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Since x ∈ M implies λx ∈ M (λ ∈ �), and since the homotetic projection of {x ∈ E :
‖x‖ ≥ r} onto {x ∈ E : ‖x‖ = r} is Lipschitz continuous, we find z ∈ E such that

‖z‖ ≤ ε, d(t0) + z ∈ M, and ‖d(t0) + z‖ = r.

Hence there exists ϕ ∈ S ∪ (−S) such that

ϕ(d(t0) + z) = ‖d(t0) + z‖ = r.

Since t1 < t0 we have ‖d(t1)‖ < r.
In the case where ϕ(d(t0) + z) = ϕ(v(t0) + z − x0) = r, keeping in mind that ‖ϕ‖ =

1, inequality (2.3) leads to

ϕ

(
d(t1) − (d(t0) + z)

t1 − t0
− f (v(t0) + z) + f (x0)

)
< 0.

Therefore

0 < ϕ

(
d(t1) − (d(t0) + z)

t1 − t0

)
< ϕ(f (v(t0) + z) − f (x0)) ≤ 0,

a contradiction. Thus, ‖d(t)‖ < r (t ∈ [0, T ]), and r → ‖v(0) − x0‖ from the right
proves

‖v(t) − x0‖ ≤ ‖v(0) − x0‖ (t ∈ [0, T ]).

(2) ⇒ (3). Let y ∈ D, and without loss of generality let y �= x0. Fix ε > 0 and set

v(t) = y + t(f (y) − f (x0) − ε(y − x0)).

First, restrict t to an interval [0, T ] such that v(t) ∈ D (t ∈ [0, T ]), and

‖f (y) − f (v(t))‖ − ε‖v(t) − x0‖ + tε‖f (y) − f (x0) − ε(y − x0)‖
≤ −ε

2
‖y − x0‖ (t ∈ [0, T ]),

which is possible since the left hand side in this inequality tends to −ε‖y − x0‖ as
t → 0+.
Consider

m+[v(t) − x0, v
′(t) − f (v(t)) + f (x0)] = m+[v(t) − x0, f (y) − f (v(t)) − ε(y − x0)].

Fix t ∈ [0, T ], and let ϕ ∈ E∗ be such that

‖ϕ‖ = 1, ϕ(v(t) − x0) = ‖v(t) − x0‖.
Then

ϕ(f (y) − f (v(t)) − ε(y − x0)) = ϕ(f (y) − f (v(t))) − εϕ(v(t) − x0) + tεϕ(f (y) − f (x0)

− ε(y − x0))

≤ ‖f (y) − f (v(t))‖ − ε‖v(t) − x0‖ + tε‖f (y) − f (x0)

− ε(y − x0)‖
≤ −ε

2
‖y − x0‖,
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so by means of (2.1)

m+[v(t) − x0, v
′(t) − f (v(t)) + f (x0)] ≤ −ε

2
‖y − x0‖ < 0 (t ∈ [0, T ]).

Consequently,

‖v(t) − x0‖ ≤ ‖v(0) − x0‖ = ‖y − x0‖ (t ∈ [0, T ]).

We obtain

m+[y − x0, f (y) − f (x0) − ε(y − x0)] = lim
t→0+

‖v(t) − x0‖ − ‖y − x0‖
t

≤ 0,

and, since m+ is continuous in its second variable, ε → 0+ proves

m+[y − x0, f (y) − f (x0)] ≤ 0.

(3) ⇒ (1) follows immediately from (2.2). �

3. One-sided estimates. In the sequel let α : [0,∞) → � be continuous with
α(0) = 0.

THEOREM 2. Let D ⊆ E be open, x0 ∈ D, let f : D → E be continuous, and let S
have property (D). Then, the following assertions are equivalent:

(1) y ∈ D, ϕ ∈ S ∪ (−S), ϕ(y − x0) = ‖y − x0‖ ⇒ ϕ(f (y) − f (x0)) ≤ α(‖y − x0‖);
(2) m+[y − x0, f (y) − f (x0)] ≤ α(‖y − x0‖) (y ∈ D).

As an immediate consequence of Theorem 2 we have a global version of this result.
Note that then S ∪ (−S) can be replaced by S, since x and y can be interchanged.

THEOREM 3. Let D ⊆ E be open, let f : D → E be continuous, and let S have property
(D). Then, the following assertions are equivalent:

(1) x, y ∈ D, ϕ ∈ S, ϕ(y − x) = ‖y − x‖ ⇒ ϕ(f (y) − f (x)) ≤ α(‖y − x‖);
(2) m+[y − x, f (y) − f (x)] ≤ α(‖y − x‖) (x, y ∈ D).

Proof of Theorem 2. (1) ⇒ (2). Let g : D → E be defined by

g(y) = α(‖y − x0‖)
‖y − x0‖ (y − x0) (y ∈ D \ {x0}), g(x0) = 0,

and note that g is continuous everywhere since α(0) = 0. Let

y ∈ D, ϕ ∈ S ∪ (−S), ϕ(y − x0) = ‖y − x0‖.

Then

ϕ(f (y) − g(y) − (f (x0) − g(x0))) = ϕ(f (y) − f (x0)) − α(‖y − x0‖) ≤ 0.

According to Theorem 1

m+[y − x0, f (y) − g(y) − (f (x0) − g(x0))] ≤ 0 (y ∈ D),
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and since m+ satisfies the triangle inequality in its second variable we have

m+[y − x0, f (y) − f (x0)] ≤ m+[y − x0, g(y)] = α(‖y − x0‖) (y ∈ D).

Finally, (2) ⇒ (1) follows from (2.1). �

4. Applications to differential equations in l∞. Let A be a nonempty set, and let
l∞(A) denote the Banach space of all bounded functions x : A → � endowed with the
supremum norm. Let

S = {ϕa : ϕa(x) = xa, a ∈ A}.

Here M is the set of all x ∈ l∞(A) where {|xa| : a ∈ A} has a maximum. Obviously S
has property (D).

Now, let D ⊆ l∞(A) be open, let f : D → l∞(A) be continuous, and let x0 ∈ D with
f (x0) = 0. Assume that

m+[y − x0, f (y) − f (x0)] ≤ −L‖y − x0‖ (y ∈ D),

for some L > 0 let g : D → l∞(A) be continuous and such that for some c > 0

(g(x))a ≥ c (x ∈ D, a ∈ A).

Within these settings we have the following result.

THEOREM 4. Let F : D → l∞(A) be defined by (F(x))a = (g(x))a · (f (x))a (a ∈ A).
Then

m+[y − x0, F(y)] ≤ −cL‖y − x0‖ (y ∈ D).

Proof. Fix a ∈ A and let y ∈ D. Theorem 2 applies since ϕa(y − x0) = ya − (x0)a =
‖y − x0‖ implies

ϕa(f (y) − f (x0)) = (f (y))a ≤ −L‖y − x0‖
⇒ ϕa(F(y) − F(x0)) = (g(y))a · (f (y))a ≤ −cL‖y − x0‖,

and −ϕa(y − x0) = −(ya − (x0)a) = ‖y − x0‖ implies

−ϕa(f (y) − f (x0)) = −(f (y))a ≤ −L‖y − x0‖
⇒ −ϕa(F(y) − F(x0)) = −(g(y))a · (f (y))a ≤ −cL‖y − x0‖.

�

For example, let f : l∞(A) → l∞(A) be continuous, and let

m+[y − x, f (y) − f (x)] ≤ −L‖y − x‖ (x, y ∈ l∞(A)),

with L > 0. According to Martin’s fixed point Theorem [2, p. 257], f (x) = 0 has a
unique solution x0 ∈ l∞(A). Let g : l∞(A) → l∞(A) be continuous, and such that to
each bounded set B ⊆ l∞(A) there is a constant γB > 0 with

(g(x))a ≥ γB (x ∈ B, a ∈ A).
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By means of Theorem 4, for each r > 0 there is some constant cr > 0 such that

m+[y − x0, F(y)] ≤ −crL‖y − x0‖ (‖y − x0‖ ≤ r).

In addition, let f, g be Lipschitz continuous on bounded subsets of l∞(A). Then the
initial value problem

v′(t) = F(v(t)), v(0) = v0 (4.1)

is uniquely locally solvable. Let v : [0, ω+) → l∞(A) be the nonextendable solution to
the right, let r = ‖v0 − x0‖ and ρ(t) = ‖v(t) − x0‖. According to [2, p. 228],

‖v − x0‖′
+(t) = m+[v(t) − x0, v

′(t)] (t ∈ [0, ω+)),

and thus

‖v − x0‖′
+(t) = m+[v(t) − x0, F(v(t))] ≤ −cρ(t)L‖v(t) − x0‖ (t ∈ [0, ω+)).

Hence ρ(t) ≤ r (t ∈ [0, ω+)) and therefore

‖v(t) − x0‖ ≤ exp(−crLt)‖v0 − x0‖ (t ∈ [0, ω+)).

In particular, ω+ = ∞ and the stationary solution x0 is globally asymptotically stable.
For example, let A = �, and consider f, g : l∞(�) → l∞(�) defined by

f (x) = (xn+1 − 3xn + xn−1)n∈�,

g(x) =
(

1 + (xn)2

1 + (xn+1 − xn)2

)
n∈�

.

It is easy to check that m+[y − x, f (y) − f (x)] ≤ −‖y − x‖ on l∞(�). Therefore x0 = 0
is a globally asymptotically stable solution of the differential equation in (4.1) which
reads

u′
n(t) = 1 + (un(t))2

1 + (un+1(t) − un(t))2
(un+1(t) − 3un(t) + un−1(t)), n ∈ �.

Note that this equation can be considered as a semidiscretization of the quasilinear
parabolic equation

ut = 1 + u2

1 + u2
x

(uxx − u).

5. A counterexample for discontinuous functions. The following example shows
that the equivalence in Theorem 1 is no longer valid for discontinuous functions. Let
f : l∞(�) → l∞(�) be defined as

f (x) = (sin(n2(‖x‖ − |xn|)))∞n=1,

and let S be as in section 4 for A = �. Then |ϕn(y)| = |yn| = ‖y‖ implies ϕn(f (y)) = 0.
On the other hand consider

z =
(

8 − π

2n2
− 2π

n

)∞

n=1
.
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Then ‖z‖ = 8 and n2(‖z‖ − zn) = π/2 + 2nπ (n ∈ �). Therefore f (z) = (1, 1, 1, . . .) and
m+[z, f (z)] = 1.

6. Applications to Operator differential equations. Let H �= {0} be a complex
Hilbert space with inner product (·, ·), and let Ls denote the real Banach space of all
continuous linear selfadjoint operators on H, endowed with the operator norm ‖ · ‖.

For each ξ ∈ H let ϕξ ∈ L∗
s be the functional

ϕξ (X) = (Xξ, ξ ) (X ∈ Ls).

We have ‖ϕξ‖ = (ξ, ξ ).
A classical result on selfadjoint operators reads

sup
(ξ,ξ )=1

|ϕξ (X)| = ‖X‖ (X ∈ Ls), (5.1)

see for example [6, 12.25]. Moreover, each point at which this supremum is attained is
an eigenvector of X : If (η, η) = 1 and ϕη(X) = ±‖X‖, then Xη = ±‖X‖η, respectively.

In general the supremum in (5.1) is not a maximum, the typical examples are
multiplication operators in L2 which may have no eigenvalues, but we have the following
result.

THEOREM 5. The set

S = {ϕξ : ξ ∈ H, (ξ, ξ ) = 1}.

has property (D).

Proof. Fix X ∈ Ls, and let ε > 0. As a consequence of the spectral theorem for
selfadjoint operators there exists a finite number of pairwise orthogonal nonzero
selfadjoint projections P1, . . . , Pn : H → H with P1 + · · · + Pn = idH, and real
numbers α1, . . . , αn such that

‖X − Q‖ < ε, Q :=
n∑

k=1

αkPk.

(See for example [5, p. 258], or [6, 12.24].)
Let |αm| = maxk=1,...,n |αk|. For (ξ, ξ ) = 1,

|ϕξ (Q)| =
∣∣∣∣
( n∑

k=1

αkPkξ,

n∑
k=1

Pkξ

)∣∣∣∣ ≤
n∑

k=1

|αk|(Pkξ, Pkξ ) ≤ |αm|
n∑

k=1

(Pkξ, Pkξ ) = |αm|

Moreover, for η ∈ Pm(H), (η, η) = 1,

|ϕη(Q)| = |(αmPmη, Pmη)| = |αm|.

Hence, according to (5.1),

|ϕη(Q)| = |αm| = max
(ξ,ξ )=1

|ϕξ (Q)| = ‖Q‖. �
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Now let A1, . . . , An : H → H be continuous linear operators such that B :=∑n
k=1(Ak + A∗

k) ≤ −c idH, that is (Bξ, ξ ) ≤ −c(ξ, ξ ) (ξ ∈ H) for some c > 0. We
consider the mapping f : Ls → Ls defined by

f (X) =
n∑

k=1

(Xjk AkXlk + Xlk A∗
kXjk )

where j1, . . . , jn, l1, . . . , ln ∈ �0 are such that

jk + lk = N (k = 1, . . . , n)

with N ∈ � odd. Under these assumptions we have the following result.

THEOREM 6. The function f satisfies

m+[X, f (X)] ≤ −c‖X‖N (X ∈ Ls).

Proof. According to Theorem 5 we may apply Theorem 2 (with X0 = 0). Fix
X ∈ Ls.

If ϕη ∈ S and ϕη(X) = ‖X‖ then Xη = ‖X‖η, and so

ϕη(f (X)) = ‖X‖N(Bη, η) ≤ −c‖X‖N .

Analogously, if −ϕη ∈ S and −ϕη(X) = ‖X‖ then Xη = −‖X‖η, and since N is odd
we obtain

−ϕη(f (X)) = ‖X‖N(Bη, η) ≤ −c‖X‖N . �

The function f above is Lipschitz continuous on bounded subsets of Ls, hence the
initial value problem

U ′(t) = f (U(t)), U(0) = U0 (6.1)

is uniquely locally solvable. Let U : [0, ω+) → Ls be the nonextendable solution to the
right. Again by [2, p. 228], and by means of Theorem 6

‖U‖′
+(t) = m+[U(t), f (U(t))] ≤ −c‖U(t)‖N (t ∈ [0, ω+)).

Thus, for N = 1,

‖U(t)‖ ≤ exp(−ct)‖U0‖ (t ∈ [0, ω+)),

and, for N ≥ 3,

‖U(t)‖ ≤
( ‖U0‖N−1

1 + (N − 1)c‖U0‖N−1t

)1/(N−1)

(t ∈ [0, ω+)).

In particular ω+ = ∞, and the differential equation in (6.1) has X0 = 0 as a globally
asymptotically stable solution.
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