COMMON POISSON SHOCK MODELS:
APPLICATIONS TO INSURANCE AND CREDIT RISK MODELLING

BY

FiLiP LINDSKOG* AND ALEXANDER J. MCNEIL*

ABSTRACT

The idea of using common Poisson shock processes to model dependent event
frequencies is well known in the reliability literature. In this paper we examine
these models in the context of insurance loss modelling and credit risk model-
ling. To do this we set up a very general common shock framework for losses
of a number of different types that allows for both dependence in loss
frequencies across types and dependence in loss severities. Our aims are three-
fold: to demonstrate that the common shock model is a very natural way of
approaching the modelling of dependent losses in an insurance or risk man-
agement context; to provide a summary of some analytical results concerning
the nature of the dependence implied by the common shock specification;
to examine the aggregate loss distribution that results from the model and its
sensitivity to the specification of the model parameters.

1. INTRODUCTION

Suppose we are interested in losses of several different types and in the num-
bers of these losses that may occur over a given time horizon. More concretely,
we might be interested in insurance losses occurring in several different lines of
business or several different countries. In credit risk modelling we might be
interested in losses related to the default of various types of counterparty.
Further suppose that there are strong a priori reasons for believing that the
frequencies of losses of different types are dependent. A natural approach to
modelling this dependence is to assume that all losses can be related to a series
of underlying and independent shock processes. In insurance these shocks might
be natural catastrophes; in credit risk modelling they might be a variety of eco-
nomic events such as local or global recessions; in operational risk modelling
they might be the failure of various IT systems. When a shock occurs this may
cause losses of several different types; the common shock causes the numbers
of losses of each type to be dependent.
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This kind of construction is very familiar in the reliability literature where
the failure of different kinds of system components is modelled as being
contingent on independent shocks that may affect one or more components.
It is commonly assumed that the different varieties of shocks arrive as inde-
pendent Poisson processes, in which case the counting processes for the differ-
ent loss types are also Poisson and can be easily handled analytically. In reli-
ability such models are known as fatal shock models, when the shock always
destroys the component, and non-fatal shock models, or not-necessarily-fatal
shock models, when components have a chance of surviving the shock. A good
basic reference on such models is Barlow and Proschan (1975) and the ideas
go back to Marshall and Olkin (1967).

In this paper we set up a very general Poisson shock model; the dimension
is arbitrary and shocks may be fatal or not-necessarily-fatal. We review and gen-
eralise results for the multivariate Poisson process counting numbers of failures
of different types. We also consider the modelling of dependent severities.
When a loss occurs, whether in insurance or credit risk modelling, a loss size
may be assigned to it. It is often natural to assume that losses of different
types caused by the same underlying shock also have dependent severities. We set
up general multivariate compound Poisson processes to model the losses of
each type. Our interest focusses on three distributions in particular, and their
sensitivity to the finer details of the parameterization of the model:

e The multivariate compound Poisson distribution of the cumulative losses
of different types at some fixed point in time.

e The multivariate exponential distribution of the times to the first losses of
each type.

¢ The univariate compound Poisson aggregate loss distribution at a fixed time
point.

There have been a number of other related papers in this area in recent years,
particularly concentrating on the second of these issues. In Savits (1988) non-
homogeneous Poisson shock processes are investigated and the effect of dif-
ferent mean functions for the shock processes on the distributional properties
of the joint component lifetimes is studied. In Li and Xu (2001) the authors
investigate stochastic bounds and dependence properties of the joint component
lifetime distribution for rather general shock arrival processes. In particular
the effect of dependent interarrival times of the shocks and the effect of simul-
taneous shock arrivals on the joint component lifetime distribution are inves-
tigated; the joint impact of these two types of dependency on the behaviour
of the system is analysed.

The present paper is structured as follows. In Section 2 we describe the gen-
eral not-necessarily-fatal-shock model with dependent loss frequencies and
dependent loss severities. In Section 3 we ignore loss severities and examine the
multivariate distribution of loss frequencies and the consequences for the aggre-
gate loss frequency distribution of specifying the shock structure in different
ways. An important key to analysing the model is to see that it may be written
in terms of an equivalent fatal shock model. This facilitates the approximation
of the aggregate loss frequency distribution using the Panjer recursion approach
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and also makes it very easy to analyse the multivariate exponential distribution
of the times to the first losses of each type. In section 4 the analysis is gener-
alised by including dependent loss severities. The dependence in severities is
created using copula techniques and the object of interest is now the tail of the
overall aggregate loss distribution. Sections 3 and 4 are illustrated with a stylized
insurance example; Section 5 consists of an extended example of how the
model might be applied to the modelling of portfolio credit risk.

2. THE MODEL
2.1. Loss Frequencies
Suppose there are m different types of shock or event and, fore=1,...,m, let

{NO@,1= 0}

be a Poisson process with intensity A recording the number of events of type e
occurring in (0,¢]. Assume further that these shock counting processes are
independent. Consider losses of n different types and, for j=1,...,n, let

{N,@.0= 0}

be a counting process that records the frequency of losses of the jth type occur-
ring in (0, 7].

At the rth occurrence of an event of type e the Bernoulli variable I () indi-
cates whether a loss of type j occurs. The vectors

19=(1€,...,19)

forr=1,...,N(r) are considered to be independent and identically distributed
with a multivariate Bernoulli distribution. In other words, each new event rep-
resents a new independent opportunity to incur a loss but, for a fixed event, the
loss trigger variables for losses of different types may be dependent. The form
of the dependence depends on the specification of the multivariate Bernoulli
distribution and independence is a special case. We use the following notation
for p-dimensional marginal probabilities of this distribution (where the sub-
script r is dropped for simplicity).

©_ @_-: \_ (@ . . . .
P<Ij] = ljl,...,ljp—lj) _pjl,...,jp(ljl’""ljp>’lj1""’ljpe {0, 1}.

We also write p!(1) = p’ for one-dimensional marginal probabilities, so that
in the special case of condltlonal independence we have

(e) _ @]
Pj.oy s )= ,}1%
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The counting processes for events and losses are thus linked by

m NO©

Ny(h= 3 3 19, m

e=1r=1

Under the Poisson assumption for the event processes and the Bernoulli
assumption for the loss indicators, the loss processes {N ;(0,1= 0} are clearly
Poisson themselves, since they are obtained by superpositioning m indepen-
dent (possibly thinned) Poisson processes generated by the m underlying event
processes. (N, (), ..., N, (t)) can be thought of as having a multivariate Poisson
distribution.

However the total number of losses N(¢) = Z;L:lN (1) 1s in general not
Poisson but rather compound Poisson. 1t is the sum of m independent com-
pound Poisson distributed random variables as can be seen by writing

m NOW n

NO=2 3 2 1Y. @

e=1r=1j=1

The compounding distribution of the eth compound Poisson process is the
distribution of 37_, I/, which in general is a sum of dependent Bernoulli vari-
ables. We return to the compound Poisson nature of the process {N(z), ¢ > 0}
after generalising it in the next section.

2.2. Adding Dependent Severities

We can easily add severities to our multivariate Poisson model. Suppose
that when the rth event of type e occurs a potential loss of type j with sever-
ity X can occur. Whether the loss occurs or not is of course determined
by the value of the indicator If“l, which we assume is independent of X](er)
The potential losses { X ﬁ‘),, r=1,...N9@),e=1,...,m} are considered to be iid
with distribution F;. Potential losses of different types caused by the same event
may however be dependent. We consider that they have a joint distribution
function F. That is, for a vector X of potential losses generated by the same
event we assume

XY= (X9, XY

r Lr>

n, r) ~ I

In a more general model it would be possible to make the multivariate distri-
bution of losses caused by the same event depend on the nature of the under-
lying event e. However, in practice it may make sense to assume that there is
a single underlying multivariate severity distribution which generates the sever-
ities for all event types. This reflects the fact that it is often standard practice
in insurance to model losses of the same type type as having an identical claim
size distribution, without necessarily differentiating carefully between the events
that caused them.
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The aggregate loss process for losses of type jis a compound Poisson process
given by
2"V 0 o
e e
Z,0=2 Z 19X0. 3)

e=1r
The aggregate loss caused by losses of all types can be written as

m NOW n NO(

Z0=3 3 N19x9=3 RN )

e=1r=1j =1 e=1r=1

and is again seen to be a sum of m independent compound Poisson distribu-
ted random variables, and therefore itself compound Poisson distributed.
Clearly (2) is a special case of (4) and (1) is a special case of (3). Thus we can
understand all of these processes by focusing on (4). The compound Poisson
nature of Z(f) can be clarified by rewriting this process as

S ()

Z(t) Y.,

s=1

where {S (1), > 0} is a Poisson process with intensity A = 2:":1/1(5’), counting
all shocks s generated by all event types, and where the random variables
Yi,..., Yy are iid and independent of {S(7), = 0}. Y; has the stochastic rep-
resentation

(Zl( I wmizj_zlmm)(U)I(E) X

where U, 1, X are independent, U is uniformly distributed on (0,1), I is a
generic random vector of indicators for shocks of event type e, and X is a
generic random vector of severities caused by the same shock. In words: a
shock s is of event type e with probability 19 /A.

We consider two examples that fit into the framework of the model we
have set up. The first one, an insurance application of the model, we continue
to develop throughout the paper. The second one, a credit risk application, is
presented separately in Section 5.

2.3. Insurance example: natural catastrophe modelling

Fix n=2, m=3. Let N,(r) and N,(¢) count windstorm losses in France and
Germany respectively. Suppose these are generated by three different kinds of
windstorm that occur independently. NV (¢) counts west European windstorms;
these are likely to cause French losses but no German losses. N (¢) counts
central European windstorms; these are likely to cause German losses but no
French losses. N® () counts pan-European windstorms, which are likely to
cause both French and German losses.
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3. THE EFFECT OF DEPENDENT L0OSS FREQUENCIES

To begin with we look at the distribution of the random vector (Ny(7),...,
N,(1))', particularly with regard to its univariate and bivariate margins as well
as the correlation structure. Part 2 of the following proposition is from Barlow
and Proschan (1975), p. 137.

Proposition 1.

1. {W™V,Q),...,N,@),t= 0} is a multivariate Poisson process with
E(N;@)=1 2" A9 pY. (6)
2. The two-dimensional marginals are given by

P(N;()=n;, N, ()=n,)= e M@ (L D)+ py(1.0)+p; (0, 1)y

i (g 0.1)' (i 1,0)" (A 0.0)" )
i=0 i!(nj—i>!(nk—i)!
where A = ZZ": 11(6) and

P_j,k(i_;aik): A Z A(E)P;f)k (ijaik)a ij’ike {0,1}.

e=1

3. The covariance and correlation structure is given by

cov(N(0.N, 0) =1 33 29 p%,1.1) ®
e=1 ’
and
25 A9
P (NN (0) = - .
( S @ p@)( ST @ p/(f))
\ e=1 / e=1
Proof

1. obvious using thinning and superposition arguments for independent
Poisson processes.
2. is found in Barlow and Proschan (1975), p. 137.
3. is a special case of Proposition 7 (part 2).
O
Clearly, from Proposition 1 part 3, a necessary condition for N,(7) and N,(7)

to be independent is that p}f’,ﬁ(l, 1) =0 for all e; i.e. it must be impossible for
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losses of types j and k to be caused by the same event. If for at least one event
it is possible that both loss types occur, then we have positive correlation
between loss numbers. However Proposition 1, part 2 allows us to make a stronger
statement.

Corollary 2. N;(1) and N,(t) are independent if and only if p(e) (1,1)=0for all e.

Note that if p) (1,1)= 0 for all j,k with j# k, then

P(19=0)=1-P(ur_ {1¥,=1})

N

n
[Z © - Zpﬁ‘f)k(l,1)+---+(—1)"‘1 © (1,...,1)
= <k

Hence if Z . p ’'> 1 for some e, then p(e)

alently:

(1,1) > 0 for some j # k, or equiv-

Corollary 3. If Z 1 p(e) > 1 for some e, then N(1),...,N (t) are not indepen-
dent.

Thus if we begin by specifying univariate conditional loss probablhtles p(” it
is not always true that a shock model can be constructed which gives inde-
pendent loss frequencies.

We have already noted that the process of total loss numbers N(z) =

Z;: 1 V() is in general not Poisson (but rather a sum of independent compound

Poissons). If there is positive correlation between components N, (7) then
{N(1),t = 0} itself cannot be a Poisson process since it is overdispersed with
respect to Poisson. It can easily be calculated (see Proposition 9 later) that

var (N () = f‘,l kfl cov(N;(0.N, () > E(N @) 9)
J= =

Suppose we define a new vector of independent Poisson distributed loss coun-

ters N, () such that N ) N (). Clearly N@©) = Z N (¢) 1s Poisson distribu-
ted and

var (N (@)= E(N@®)=E (N()).

The case where the components N;(¢) are dependent is clearly more dangerous
(in the sense of higher variance) than the case with independent components.
Although the expected number of total losses is the same in both cases the
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variance is higher in the dependent case and, using (9) and (8), we can calcu-
late the inflation of the variance that results from dependence.

3.1. Insurance example (continued)

Consider a 5 year period and suppose French losses occur on average 5 times
per year and German losses on average 6 times per year; in other words we
assume A, = 5and A,= 6. We consider three models for the dependence between
these loss frequencies.

e Case 1: No common shocks. If there are no common shocks, then N(5) =
N,(5)+ N, (5) has a Poisson distribution with intensity A =1, + 4, =5+ 6=
11.

In reality we believe that there are common shocks, in our case particularly the
pan-European windstorms. Suppose west, central and pan-European wind-
storms occur on average 4, 3 and 3 times per year respectively. In terms of
event intensities we have

AD=4,21®=3 and 1®=3

In terms of the indicator probabilities we assume that empirical evidence and
expert judgement has been used to estimate

p=112, pV=1/4, p?'= 116, p\'= 516, pP'= 5/6 and p{’=5/6

which means that, although unlikely, west European windstorms can cause
German losses and central European windstorms can cause French losses.
Note that these choices provide an example where the assumption of no com-
mon shocks is not only unrealistic but also impossible. To see this consider
Corollary 3 and note that p¥ + p{’ > 1.

To make sure that our estimates of event frequencies and indicator proba-
bilities tally with our assessment of loss frequencies we must have that

7[ =AM (1)+;t(2) (2)+7L(3) (3) j=1,2.

However the specification of the univariate indicator probabilities is insuffi-
cient to completely specify the model. We need to fix the dependence struc-
ture of the bivariate indicators (1”,1¥)" for e=1,2,3. For simplicity we will
consider two possibilities.

e Case 2: Independent indicators.

PO 1)=p pY fore=1,2,3.
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e Case 3: Positively dependent indicators.
P20, 1= p pY fore=1,2,3.

To be specific in Case 3 we will consider pfg(l, 1) =min ( pl("), p;“)), which is the

strongest possible dependence between the indicators, sometimes known as
comonotonicity; the random variables X, ..., X, are said to be comonotonic if

there exist increasing functions v, ...,v,:R — R, and a random variable Z such

that (X}, ....X,) = (2),...,v,(2))". For more on comonotonicity see Wang
and Dhaene (1998) and the references therein. See also Joe (1997) for some
discussion of dependence bounds in multivariate Bernoulli models. In terms
of interpretation in our application this means:

e if a west European windstorm causes a German loss, then with certainty it
also causes a French loss;

e if a central European windstorm causes a French loss, then with certainty
it also causes a German loss;

e if a pan-European windstorm causes one kind of loss, then with certainty
it causes the other kind of loss.

For cases 1, 2 and 3 we get var(N(5)) =55,85 and 95 respectively. Of more
interest than the variance as a measure of the riskiness of N(5) are the
tail probabilities P (NV(5) > k). In this example these probabilities can be cal-
culated analytically using formula (7) for the bivariate frequency function.
The left plot in Figure 1 shows exceedence probabilities P(N(5) > k), for

0.03 0.04 0.05 0.06
60

0.02

0.01

0.0

70 75 B0 85 20 70 75 80 a5 20

Figure 1: Left: Exceedence probabilities P(N(5) > k) for k = 70,71, ...,90, for case 1 (lower), 2 (middle)
and 3 (upper). Right: Ratios of such exceedence probabilities for cases 1-2 (lower) and 1-3 (upper).
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k=70,71,...,90, for the three cases. The right plot shows by which factor such
an exceedence probability is underestimated by case 1 if the correct model
would be given by case 2 or 3. Clearly, both the presence of common shocks
and then the subsequent addition of dependent indicators have a profound
effect on the aggregate frequency distribution of N(5).

3.2. The Equivalent Fatal Shock Model

The not-necessarily-fatal shock model set up in the previous section has the
nice property of being easily interpreted. As we will now show this model has
an equivalent representation as a fatal shock model. Basically, instead of count-
ing all shocks, we only count loss-causing shocks. From this representation we
can draw a number of non-trivial conclusions about our original model.

Let S be the set of non-empty subsets of {1,...,n}. For s € § we intro-
duce a new counting process N,(7), which counts shocks in (0,7] resulting
in losses of all types in s only. Thus if s ={1,2,3}, then 1\—/3([) counts shocks
which cause simultaneous losses of types 1, 2 and 3, but not of types 4 to n.

We have
. m N ) ©
Ny(0= Z 2 Z (- 1)|S|_|S|er s’lke:r’
e=1r=1s5"s25
where 33 (~DPFIITT, _ 1€ is an indicator random variable which takes

the value 1 if the rth shock of type e causes losses of all type in s only, and the
value 0 otherwise. Furthermore let N(¢) count all shocks in (0, ¢] which result
in losses of any kind. Clearly we have

N@O= 2N0.

SES

The key to a fatal shock representation is the following result.

Proposition 4.

1. {]\7 L0,t= O} for s € S are independent Poisson processes with intensities

A= B9 3 ),

e=1 ss2 s
where pge,)z P(erS,I;?r: 1), and

2. {N(®),t= 0} is a Poisson process with intensity

A=22= i}lxl@(l—P(Ig") =0)).

sES
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Proof. Let J©=3 . _ (= DI _ I} First note that the random vari-
able J*) takes values in {0,1}, and that P (Jf‘)rz ) =20 (DT PO Swhere
p9=P([1,..1¢=1), does not depend on r. Hence {Zfﬁp;(”Jf’r,t > O} is
obtained by thinning the Poisson process {N(e)(t),tz 0}, and is therefore a
(= 1y p'9 {N (2),t = 0} is obtained
N© (1) ()

JOt= O} for

r=1 s,r?

Poisson process with intensity A >}

shs2 s

by superpositioning the independent Poisson processes {Z
e=1,...,m, and is therefore a Poisson process with intensity A, = 2:7:1/1@

Dy, CDFIIPO Since P(X 3o DI, 10 =1))
(the probability that the rth shock of type e causes at least one loss) does not
depend on r, thinning and superpositioning arguments give that {N(¢),> 0}
is a Poisson process with intensity =3 _ A,=>" A“(1-P(1=0)).
Each jump in the process {]\7 (0,t= O} corresponds to a jump in exactly one of
the processes {]\7 NN = O} for s € S. Given a jump in {]\7 (1),t= 0}, the proba-
bility of the jump being in {N, (1), = 0} is given by ¢,= A,/A for s € S. Order
the /=|S|= 2"~ 1 non-empty subsets of {1,...,n} in some arbitrary way.

Then
~ 5 ~ ﬁ!Hl.7 <qnj/n'!>aﬁzzl.7 n.,
P(N,(0=n,...N,(0=n|N@®=17)= j=1\4s, /1 _;_1 ;
0 an¢zj:1nj
and hence
~ - . ] ] / qf/
PN ®=n,...N,@®=n) —P{N(t): » n]][z nj]z [1-%
Jj=1 Jj=1 j=1"J"
/ lv_t " /
= H e_lsjl( J ') — H P(Né (t):n])
Jj=1 ny: j=1

It follows that the processes {Ns(t),zz 0} for s € § are independent Poisson
processes.
O

Since the Poisson processes {NS(Z), > O} for s € Sare independent and since
the loss counting processes may be written as

Nj(t): ZNs(t):

sSjE S
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it also follows that we have obtained a fatal shock model representation for
the original not-necessarily-fatal set-up.

Furthermore, since A,=0 for all s with |s|>2 if and only if p}j{’(l,l) =0
for all e and all j,k with j# k, Corollary 2 concerning pairwise independence
can be strengthened.

Corollary 5. N,(?),...,N, (1) are independent if and only if p](.fk)(l,l) =0 for
all e and all j, k with j# k.

A direct consequence of the fatal shock model representation of the original
not-necessarily-fatal shock model is that the multivariate distribution of the
times to first losses can be easily analysed. Let 7; =inf{z: N;(r) > 0} denote
the time to the first loss of type j. We now consider briefly the distribution of
(T;,....,T,)" whose dependence structure is well understood. For se S let

Z,=inf{t:N (5 > 0}. {2}, ; are independent exponential random variables
with parameters {A,} _ .. Hence

T, =inf{1:N, () > 0} = inf{z: SN () > o} = minZ,

SijEs s:jEs

and (7}, ....T,) = (min Z,...,min ZX>. Survival probabilities for (7}, ...,7,) can

e dy,
s:l€s s:neEs

be calculated as follows.

P(T,>1,...T,>1)
ZP(DI.N([}(tI.):O,ﬂ. N, (max(z, t.))ZO,...,N(l ,,,,, ”)(max(tl,...,tn))ZO)

i<j i} 27

:H P(N,,(t)= O)iU.P(N\,l..j;(max(ti,tj»:O) -P(N,._,(max(y,....,))=0)

= exp (—Zlmzi— DA, max(6,1) = ... = A, max(i,..., ln)> (10)

i<j

The multivariate exponential distribution with this joint survival probability is
the multivariate exponential distribution of Marshall and Olkin (Marshall and
Olkin (1967)). The distribution has been studied extensively, see Barlow and
Proschan (1975), Joe (1997), Marshall and Olkin (1967) or Nelsen (1999). The
multivariate exponential distribution of Marshall and Olkin has the property
that

P(Ty> ty+s,...T,> t,+s,|T;>1,...T,>t,) = P(T;>s,,....T,>s,),

for all ¢,...,t,, s,...,5, > 0. This is the multivariate version of the lack of
memory property which is well known for the univariate exponential distribu-
tion. Not that this does not apply to general multivariate distributions with
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exponential marginals. The expression for the joint survival probability (10)
might not be very convenient to work with if the model was set up as a not-
necessarily-fatal shock model. However, it can easily be rewritten in a more
convenient form.

m

P<Tl> ll) ] Tn> ln) = CXp[— Z A’(E)[Z_pz@li-i_ Z pl(,ej)(lv l)min<li’tj>
i

e=1 i<j

+op? (L. Dmin(r, . 1,)

].

Recall that for a Poisson process with intensity u, the time to the kth jump
is I'(k,1/u)-distributed, where I'(-,-) denotes the Gamma distribution.
Hence the time to the kth loss-causing shock is I'(k, 1/1)-distributed, where

A= 2 A (1 -P (If,")z 0)) The time to the kth loss is inf {¢: N(¢) > k}, where

NO=3i N0,

i=1 s:s|=i

{N(t),t = 0} is in general not a Poisson process but rather a compound Pois-
son process, the time to the kth jump is still T" (k, 1/1)-distributed but there are
non unit jump sizes. By noting that the probability that the time to the kth
loss is less than or equal to ¢ can be expressed as P(N(t) = k), it is clear that
the distribution of the time to the kth loss can be fully understood from the
distribution of N(¢) for >0, and this distribution can be evaluated using
Panjer recursion or other methods.

3.3. Panjer Recursion

If there are common shocks, then N(¢) = 2;21]\71. (¢) does not have a Poisson

distribution. In our insurance example we have considered only two loss types
and it is thus easy to calculate the distribution of N(¢) directly using convolu-
tion and the bivariate frequency function in (7). A more general method of
calculating the probability distribution function of N(¢), which will also work
in higher dimensional examples, is Panjer recursion (Panjer (1981)). We use
the notation of the preceding section. In addition, let W; denote the number
of losses due to the ith loss-causing shock. The total number of losses, N(?),
has the stochastic representation

d N@®
NOS 2.
=1

,)((le) are iid and independent of N(7). The probability
P(N(H)=r) can now easily be calculated using Panjer recursion.

where W, ..., Wy,
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Proposition 6.

min(r, n)l &
P(NG)=1)= kzzjl EZPW=k)P(NO=r-k), (11

exp(- Zl), r=0,

where

2 bk
ATRAOL X PO+ B )
P(W:k): e=1 sils|=k i=1 <k+l> sls|=k+i

1—1 i 21© p(e)
e=1

..,y

Proof. The formula (11) follows from Theorem 4.4.2, p. 119 in Rolski, Schmidli,
Schmidt and Teugels (1998), and that the maximum number of losses due to
a loss-causing shock is n. The probability that a loss-causing shock causes
exactly k losses is given by P(W=k)=1"" Zq ek A,, where

D WS N R

sils|=k e=1 si|s|=ks:s2s

The expression of the probability that a loss-causing shock causes n losses
can be simplified to

m
P(Wzn):l—l Zl,l(e)pﬁ) _/1 1 Z 1@ p (c) n(l,...,l).
e =

e=1
For k <n we note that there are ( ) sets s with |s|=k, and for each such s

there are ( ; ) sets of size k +i(i €{l,...,n— k}) which contain s as a proper
subset. Hence

2 )RR BB e (12)
=kss2s
consists of (")(” B k) terms (— 1)1¥11s 'pi?) for which |s'|=k+i and s C s". Since

there are ( K+ ) sets 5" with |s'|= k + i it follows that (12) is equal to

n—k
P 1l B
i=1 <k+ ) s:ls|=k+i
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For large n, say n > 100, the usefulness of the Panjer recursion scheme relies
heavily on the calculation of 35 | _, pY for k € {1,...,n}. We now look at two

specific assumptions on the multivariate Bernoulli dlstrlbutlon of 1© condi-
tional on a shock of type e. The assumption of conditional independence is
attractive for computations since in this case

DRI T

J=1h> ) /k>JA—1

Under the assumption of conditional comonotonicity

Z p(e)_ Z Z Z mm( (c), p(e) p("))

si|s|= A= 1p>h ]k>]k |

The latter assumption leads to very efficient computations of 2 - p(e)

Let

(s nfl)

denote the sorted vector of univariate conditional indicator probabilities, such
that pgl)S pEZS L= pﬁ?i Then

n
Y= Z[ ]pﬁ?,

s:|s| =k

where (Z: i) is the number of subsets of size k of {1,...,n} with i as smallest
element.
4. THE EFFECT OF DEPENDENT SEVERITIES

We now consider adding severities to our shock model and study the multi-
variate distribution of (Z,(?),...,Z,(1))". Again we can calculate first and
second moments of the marginal distributions and correlations between the
components.

Proposition 7.

1. {(Z,(0),....Z,(1))",t = 0} is a multivariate compound Poisson process. If

E(| X ;])< oo, then
E(Z;®)=E(X;)E(N,0).
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2. If E (X?),E (X,f) < oo, then the covariance and correlation structure is given

by
cov(Z; (0),Z, ()= E(X; X)) cov (N, (0),N (0)
and ( )
E(X
Z.(),Z, () = JTk N.(),N,(@1).
p(2,0.2,0)= (Xi)E(Xi)p< 0N )
Proof

1. is easily established from formula (3).
2. We observe that Vj, ke {1,...,n},

m NO() NO()
cov(Z;(0.Z, 1) = Z] cov[ 2 1@ Xﬁ, Z I(‘) X@]

S N0 0 v " ) v
e e
+ 20 2cov| 2 IN XD 20 L)X

e=1f#e r=1 r=

"o o e o
e e e e
= Z cov[ 2 19x0, 2 IkJXk’r]

e=1

=E(X,; X)) > E(NOW)E(1917)

e=1
SFICIC
S B B A0

E(X ;X )cov(N ,().N, ()

O

Now consider the distribution of the total loss Z(¢) = Z
total loss is easily calculated to be

E(Z0)= 2 E(X)E(N,0)

Z (). The expected

=17

and higher moments of Z(z) can also be calculated, by exploiting the com-
pound Poisson nature of this process as shown in (5). Since {Z(¢), Z >0} is the
most general aggregate loss process that we study in this paper we collect some
useful moment results for this process.
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Lemma 8. The pth derivative of the characteristic function @, of Z (1) satisfies

o), (9= At 2( e ot Wkt . (13)

where @y denotes the characteristic function of Y.

Proof. The formula (13) is proved by induction using the binomial relation

(p ]z 1) + (i; 11> (k L 1) The induction step reads as follows. Fix p and sup-

pose that (13) holds. Then

+ P! _1 + - + _
0,00 = 3 (7)o e, el g, ")

2/
=4 3 (oWl 0+ gl

k=0

+ )Ll(0<1)(x)(/’z(r) (x)+ At Z (k+ 1) (Dglf +2) (X)(Dg(,)k D)

- A P2, )+ Ar Y ( Joi gl 0o
k=1
+ A1y "V ()P, ()
14
=21 3 (£) o gt o
k=0

Using Lemma 8, the moments of Z(#) can be calculated as follows.

Proposition 9.

1. If they exist, the 2nd and 3rd order central moment of Z(t) are given by
E((Z@)-E(Z®))")= MEXY?), p=2,3, (14)

where A=21"_ A® and
e (e)
E(Y”)— 2 Z EX;..X, )EZ}IAU AR 2 (15)

2. Whenever they exist, the non-centml moments of Z(t) are given recursively by
p—1
_ r-1 k+1 —k-1
E(Z@))= M kgo( c JEE ) E(Zor4)

with E(Y**1) given by (15).
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Proof

1. For a compound Poisson process of the form (5) the formula (14) is well
known. We can calculate that for all p

£y = 5 A E@xy)

A(e) 4 u (e
LZI 2 Z ij le...ij
_ 2 S ©

DWW LCD: iz_lE(le...ij)pj“m’j (L,....1)

jl:1 P

e=1
n
AT 2

2. If E(|Z(@®)|?) < o, then (D<Zk)®(0) *E(Z(t)*) for k=1, ...,p. The conclu-
sion follows by applylng this to (13).

O

We are particularly interested in the effect of different levels of dependence
between both loss frequencies and loss severities on the tail of the distribution
of Z(t), and on higher quantiles of this distribution. The distribution of Z(¢)
is generally not available analytically but, given the ease of simulating from our
Poisson common shock model, it is possible to estimate quantiles empirically
to a high enough degree of accuracy that differences between different depen-
dence specifications become apparent.

It is also possible, given the ease of calculating moments of Z(¢), to use a
moment fitting approach to approximate the distribution of Z(¢) with various
parametric distributions, and we implement this approach in the following
example.

4.1. Insurance example (continued)

Assume that French and German severities are Pareto(4,3) distributed, i.e.

3
3+ x

Fi)=P(X,<x)=1-( )4, E(X)=1, E(x?)=3, E(Xx})=27, i=1,2.

We have to fix the dependence structure of potential losses (X}, X,)" at the
same shock. We do this using the copula approach. The copula C of (X;, X5)' is
the distribution function of (F;(X}), F>(X5))". The distribution function of
(X, X5)" can be expressed in terms of C as

F(x,x)=C (Fl (%), F (xz))-
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For more on copulas see Embrechts, McNeil and Straumann (2001), Nelsen
(1999) or Joe (1997). We consider three cases.

* Independent severities:
F(x1,%) = Fi (%) F (x,).
» Positively dependent severities with Gaussian dependence:

F(x1,%,) = Cga<F1 (X)), > (x3)),

where

a B (D—l(u) (p—l(v) 1 —(Sz— 2pst+ 12)
CS’ (u,v)—/_oo j:oo 2ﬂ<1_p2)1/2 exp{ 2(1—,02) dsdt.
and p € (0,1).

 Positively dependent severities with Gumbel dependence:

F(x,0,) = CS“(FI (x1), F (xz>)’
where
Cg" (u,v)=exp (— {(— logu)?+ (- logv)e} 1/9),
and 6> 1.
For both of the positive dependence models we will parameterize the copulas

such that Kendall’s rank correlation (7) (see e.g. Embrechts, McNeil and Strau-
mann (2001) for details) between X, and X, is 0.5. This is achieved by setting

p=sin<%’c) and Ozﬁ.

As we have discussed there are several possibilities for modelling the tail of
Z(5). One approach is to fit a heavy-tailed generalised F-distribution (referred
to as a generalised Pareto distribution in Hogg and Klugman (1994)) to Z(5)
using moment fitting with the first three moments. The distribution function
is given by

Ho 3,0 = G (2k,20, 2 x) for > 0,4> 0,k >0,

where G(v,,V,, -) is the distribution function for the F-distribution with v; and
v, degrees of freedom. The nth moment exists if @ > n and is then given by

An (’:f[;(m i)) / (f[l(a - i)).
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By calculating the first three moments of Z(5) for different frequency and
severity dependencies we fit generalised F-distributions and study the differ-
ence in tail behaviour. Figure 2 shows quantiles of generalised F-distributions
determined by fitting the first three moments to Z(5) for case 1, 2 and 3 and
for different dependence structures between the severities. It clearly shows the
effect of common shocks on the tail of Z(5) and perhaps even more the dras-
tic change in tail behaviour when adding moderate dependence between the

severities.
Independence Gaussian Gumbel

---- cond. comon. ---- cond. comon. ---- cond. comon.

----------- cond, indep. -~ cond. indep. -~ cond. indep.

—= no com. shocks —— na com. shecks —— no com. shocks
= 2 2 '
=) “.-": o ,";:F
= |8

o [=]
& &
2 3
ol =
~ =
0.90 0.92 0.94 096 (0.98 090 0.92 0.94 0.96 0.88 0.90 092 0.94 0.96 0:98

Figure 2: The curves from lower to upper show the quantiles H &Ala‘ « (@) of moment fitted generalised
F-distributions for case 1, 2 and 3 and ¢ € [0.900, 0.995]. The first three moments coincide with those
of Z(5).

It should be noted that the quantile estimates of Z(5) given by moment
fitted generalised F-distributions are slight overestimates of the true quantiles
for a €[0.900,0.995]. However the accuracy is sufficient to show the major
differences between the quantile curves of Z(5) for our different copula choices.

5. APPLYING THE METHODOLOGY TO PORTFOLIO CREDIT RISK
We consider here the problem of quantifying risk in large portfolios of default-

able assets, the simplest example being loan portfolios. Models that are used
for this purpose address the phenomenon of dependent defaults and a number
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of approaches have been suggested in the literature in recent years and imple-
mented in widely-used industry solutions such as the model proposed by the
KMYV corporation (KMV-Corporation 1997), the model of the RiskMetrics
group (RiskMetrics-Group 1997), or CreditRisk*, developed by Credit Suisse
Financial Products (Credit-Suisse-Financial-Products 1997). In this section we
describe how the common Poisson shock model provides a simple alternative
framework for modelling portfolio credit risk.

We emphasise that our focus here, and that of the industry models, is on
overall portfolio credit risk. We are less concerned with providing detailed analy-
sis of the individual default potential of a single credit risk, such as is required
in the pricing of defaultable bonds or standard credit derivatives. For this pur-
pose the class of default intensity models has emerged as the most important;
see for example Jarrow and Turnbull (1995).

5.1. Poisson shock models for defaults

We consider a portfolio of loans and develop a shock model by considering
that every counterparty in the portfolio defines a loss type and that a variety
of different kinds of economic shock may lead to the default of these coun-
terparties: global shock events may potentially affect all counterparties; sector
shock events may affect only certain kinds of company, such as companies in
a particular geographical area or companies concentrated on a particular indus-
try; idiosyncratic shock events (such as an episode of bad management) may
affect only individual counterparties; one might also think of endogenous shock
events where the default of important primary counterparties might affect
other counterparties, so that default was contagious.

In all cases the common shock construction means that defaults of indi-
vidual counterparties are modelled by the first events in a series of dependent
Poisson process. Suppose the random vector T=T,,...,7,)" describes the
times to default for the n counterparties in the portfolio. In Section 3.2 we
observed that this vector of default times has a multivariate exponential
distribution with the Marshall-Olkin survival copula. Suppose that time is
measured in years and that we are interested in the portfolio credit loss dis-
tribution for a time horizon of 1 year; suppose further that the exposures (loan
sizes) are known and given by ¢, ..., ¢,. If we neglect interest rates and assume
that nothing is recovered from defaulted firms then the overall portfolio loss
is given by

n
1=

Frey and McNeil (2001) have shown that the distribution of L is fully deter-
mined by the set of individual default probabilities {p,= P(T'< 1),i=1,...,n}
and the copula C of the vector T; the exponential distributional form for the
margins of T is not a critical feature of the model. They also show that the tail
of the distribution of L and related risk measures are often much more sensitive
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to the assumptions about the dependence between the defaults as summarised
by the copula, than they are to the accurate specification of individual default
probabilities.

5.2. Relation of the shock model to standard models

All other models that have been suggested for portfolio credit risk also imply mul-
tivariate distributions for the vector of default times of the portfolio members.
Regardless of whether these models are set up as one-period or multi-period
models, or whether they assume constant intensities of default (as in the Pois-
son shock model), non-homogeneous intensities or stochastic intensities, they
all imply a distribution for the counterparty survival times. From model to
model, these distributions will vary with respect to both their marginal distri-
butions and their copulas, but as far as determining the loss distribution is
concerned, if they have been calibrated to give broadly similar individual default
probabilities it is the copula that will be decisive in determining the tail of the
portfolio loss distribution.

Both KMV and CreditMetrics may be considered to descend from the firm-
value model of Merton (1974), where default is modelled as occurring when
the asset value of a company falls below its liabilities, and asset value changes
are considered to have a multivariate normal distribution. Although this
appears very different to the Poisson shock model, as far as the loss distribu-
tion for a fixed time horizon is concerned, both KMV and CreditMetrics are
in fact structurally equivalent to a model in which default times have a multi-
variate exponential distribution with the Gaussian copula (i.e. the copula that
describes the dependence inherent in a multivariate normal distribution); see
Li (1999) and Frey and McNeil (2001) for more detail. Thus the crucial dif-
ference in the one-period framework lies in the fact that these industry models
imply a Gaussian copula whereas common shocks imply a Marshall-Olkin
copula to describe the dependence of the survival times.

The CreditRisk+ model employs a mixture-modelling philosophy which
assumes that conditional on a vector of independent gamma-distributed macro-
economic factors, the default of a counterparty occurs independently of other
counterparties and is the first event in a Poisson process with an intensity that
depends on these factors. Survival times are not exponential (but rather con-
ditionally exponential), but for portfolio risk modelling in a one-period setting,
this is again not a decisive factor. Assuming that the model has been calibrated
to give plausible values for individual default probabilities, it is the copula of
the default times that is most important in determining the overall loss distri-
bution, although this copula is difficult to isolate in closed form in the general
version of CreditRisk+.

There have been a number of papers on the subject of extending the inten-
sity-based approach to modelling the default of single counterparties to
obtain models for dependent defaults of several counterparties, principally
with the problem of pricing so-called basket credit derivatives in mind; see
Schoenbucher and Schubert (2001) for a useful summary of these approaches.
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We mention in particular a model of Duffie and Singleton (1995) where indi-
vidual defaults follow Cox processes with stochastic intensities. These intensi-
ties may jump (by a random amount) when certain common shocks occur
which have the potential to affect all counterparties, or when idiosyncratic
shocks occur affecting an individual company; as in our model shocks occur
as Poisson processes. Our model can be thought of a cruder version of the
Duffie & Singleton model with constant and deterministic intensities for indi-
vidual defaults.

5.3. Setting up the shock model

Consider a loan portfolio consisting of n obligors. Suppose the counterparties
can be divided into K geographical or industry sectors. We consider a model
where obligors are subject to idiosyncratic, sector and global shocks, so that
there are a total of m=n+ K+ 1 shock event processes.

Suppose that the jth obligor belongs to sector k = k; where k € {1,...,K}.
From formula (6) we know that N;(z), the number of defaults of obligor j in
(0,7] is Poisson with intensity given by

A= /W)+p§."+k)/1("+k)+pg”)/'{(m), k=k(j),

where the three terms represent the contributions to the default intensity of
idiosyncratic, sector and global events respectively. Note that in general this
intensity will be set so low that the probability of a firm defaulting more than
once in the period of interest can be considered negligible.

This is a very general model and to obtain a model that we would have a
hope of calibrating in a real application we need to drastically reduce the num-
ber of parameters in the model. We assume first that companies can be grouped
together into rating classes within which default rates can be considered con-
stant and known. It is very common in portfolio default risk modelling to base
the assessment of default intensities for individual companies on information
about historical default rates for similarly rated companies. Suppose that the
jth obligor belongs to rating category /=1/(j) where / € {1,...,L}. We assume
for the overall default intensity /'tf that

A= Ao 1210 j=1seem. (16)

To achieve (16) we assume that the rate of occurrence of idiosyncratic shocks
also depends only on the rating category and we adopt the notation

AL =Nigio,s» 1=1(j)j=1,....m,
A/(M‘Fk):/l kzl,...,K
A =),

sector, k »

global *
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Clearly we now have a total of L+ K+ 1 shock intensities to set.

We assume also that the conditional default probabilities given the occur-
rence of sector shocks only depend on the rating class of the company and write
for an obligor j

k .
Pﬁ“ =5 1=10).

We assume moreover that the default indicators for several companies in the
same sector are conditionally independent given the occurrence of an event in
that sector. Analogously, we assume that the conditional default probabilities
given the occurrence of global shocks depend on both rating class and sector
of the company and write

pgn):gk,la Z:Z(])a k:k(])

We assume that the default indicators for any group of companies are condi-
tionally independent given the occurrence of a global event.

In total we have 2KL conditional default probabilities to set and we have
the system of equations

/’ltotal,l:Aidio,l+Sk,lﬂ‘sector,k-’_gk,laglobah k= 1’ “"I(’I: 1’ “'7L7

subject to the constraint, imposed by (16), that

— ’
Sk, / A‘sector, k + gk, / A’global - Sk’, / 2“sector, K + gk’, / 2“global ’ vk # k. (16)

5.4. Understanding the factors determining the risk

We are interested in the behaviour of N(¢), the total number of defaults, for
fixed ¢. If we suppose that the individual default rates have been fixed then
E (N (1)) has been fixed. However, depending how we set the various shock
intensities and individual default probabilities the risk inherent in N(¢) may
vary considerably. If we measure risk by variance we can get analytically an
idea of which factors affect the risk by considering

var(N@)-E(N@®)= X cov(N;().N, 0).
JisJa h# I

For simplicity we set # =1 and consider a model with one rating class (L =1)
and assume that the conditional default probabilities do not depend on the
sector for all global shocks (g, ;= g,Vk). Let there be n, obligors in sector k.
We have for j, # j, that

2 i Z
2" Agiobal k() # k(o)
cov(N; (D),N; (1)) = ‘ ' '
( /1 /2 ) g2 /’l’global—i— Sl% Asector,k k (]1) =k <j2) =k,
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which allows us to calculate that
K
Var(N(l))_ E(N(l)): (}’l2_ n)gz Aglobal-’_ kZ (nli_ nk) S/% /lsecto;k .
=1

In view of (17) we have that s; Aqorr, the intensity of default due to sector
shocks in sector k, must be equal for all k in this special case. If we write
Oglobal = &4 global AN Ogecior = Sk Asectork» VK, for the default intensities due to global

or sector causes we obtain finally
K
var(N(1)= E(N(1)= 8 yigpa (1= 1) g + S eeior 20 (17— 115
k=1

This expression allows us to draw two broad conclusions about the riskiness
of the model as measured by the variance of the number of defaults.

* The higher the portion of the default intensity that we attribute to sector and
global shocks (common shocks) the riskier the model. As before, the only
way we can have a Poisson distribution for N(1) is if the default intensity
can be attributed entirely to idiosyncratic shocks.

* Suppose we assume common shocks and fix the portions of the default
intensity that we attribute to common shocks (dgiopa and Jyeeyor). The overall
risk also depends on how we set the conditional default probabilities g and ;.
Low shock intensities and high conditional default probabilities are riskier
than the other way around.

These conclusions are confirmed in the following simulation example where
we allow two rating categories and more heterogeneous conditional default
probabilities.

5.5. A simulation study

In our examples we take =1 year and consider K =4 sectors and L =2
rating categories; we assume that overall default rates for these categories are
Aota1 = 0.005 and Ao, =0.02. Let n,; denote the number of companies in
rating class / and sector k. We set

ny 1= 10000, n, ;=20000,7; ;= 15000, n, ;= 5000,

ny ,=10000,n, ,=25000,7; ,= 10000, 7, ,=5000.
In the following two cases we investigate the sensitivity of the tail of N(1) to
the specification of model parameters. Results are based on 10000 simulated

realizations of N(1) and models are compared with respect to estimates of the
95% and 99% quantiles.

* Case 1l
We study the effects of increasing the intensity of the common shocks
and decreasing the intensity of the idiosyncratic shocks when the univariate
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conditional default probabilities are held constant. We set the values of these
parameters to be

(51,1552, 1553, 1554, 1>51,2552,2553, 1> 54,2)
=(0.25,0.08,0.05,0.1,1,0.3,0.25,0.25) 1072

(g1, 1082,1-83,1-84,1-81,2-82,2-83, 1,g4’2)
=(0.25,0.1,0.4,0.1,1,0.5,1.5,1)1072.

We have some flexibility in choosing the intensities

(0.005,0.02,0.0,0.0,0.0,0.0,0.0) - (0.004,0.016,0.2,1.0,0.4,0.8,0.2) —
(0.002,0.008,0.6,3.0,1.2,2.4,0.6) — (0.0,0.0,1.0,5.0,2.0,4.0,1.0)).

Hence we start with the special case of no common shocks and a situation
where every individual default process N;(7) is independent Poisson and the
total number of defaults N(7) is Poisson. In the second model we still attribute
80% of the default intensities /; to idiosyncratic shocks, but we now have 20%
in common shocks. In the third model we have 60% in common shocks and
in the final model we have only common shocks. The effect of the increas-
ing portion of defaults due to common shocks on the distribution of N(1)
is seen in Figure 4 and empirical quantiles of N(1) are given in Table 1.

* Case 2
Suppose we attribute 40% of defaults for companies in both ratings classes
to idiosyncratic shocks and 60% to common shocks. That is we assume

Migia 1> Aidia 2) = 0.002,0.008).

Suppose, for both rating classes, we attribute to sector specific causes, 20%
of defaults of sector 1 companies, 50% of defaults of sector 2 companies,
10% of defaults of sector 3 companies and 40% of defaults of sector 4 com-
panies. Moreover we believe that the frequencies of sector and global shocks
are in the ratio

Asector, 1: A’sector, 2: A‘sector, 3 : Asector, 4: ;“globalz 1:5:2:4:1

We have now specified the model up to a single factor f. For any f = 0.05
the following choices of model parameters would satisfy our requirements

(A’sector,l ’ Asector,2 ’ A‘sector, RE /’lsector, 4> ;1’ global )
= £(0.2,1.0,0.4,0.8,0.2)

(Sl, 1552,1593, 1aS4,1’51,2a52,2953,1as4,2)

- %(0.5,0.25,0.125,0.25, 2,1,0.5,1)10"2
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(©1,1:82,1-83,1-84,1-81,2:82,2-83,1-84,2)

1

f

The condition £>0.05 is to ensure that s,...,s3, gl,..., g3 < 1. When f'is

increased by a factor Af the intensities of the common shocks are increased

by a factor Af and the univariate conditional default probabilities are

decreased by a factor 1/Af. The effect of increasing f on the distribution of

N(1) is seen in figure 3, where histograms are plotted by row for f=1,2,4,8.

The key message is as anticipated that low shock intensities and high con-

ditional default probabilities are more riskier than the other way around. Values

for the empirical 95th and 99th percentiles of the distribution of N(1) are
given in Table 1.

(1,0.25,1.25,0.5,4,1,5,2)1072.
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Figure 3: Histograms of 10000 independent simulations of N(1), the number of defaults in a one year
period, for f= 1 (upper left), /= 2 (upper right), /= 4 (lower left) and f= 8 (lower right).

TABLE 1

EMPIRICAL QUANTILES OF N(1) CORRESPONDING TO THE SAMPLES OF SIZE 10000 SHOWN IN FIGURES 3 AND 4.

Case 1 Case 2
f=1 f=2 f=4 f=8 f=1 f=2 f=4 f=8

a=0.95 2742 2307 1957 1734 1308 1769 2106 2346
a=0.99 3898 2889 2381 1972 1331 2180 2622 2948
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Figure 4: Histograms of 10000 independent simulations of N(1) when increasing the intensities of the
common shocks and decreasing the intensities of the idiosyncratic shocks while holding the univariate
conditional default probabilities fixed. (1) upper left, (2) upper right, (3) lower left, (4) lower right.

5.6. Conclusion

Clearly the calibration of such models is a difficult and highly judgemental
enterprise and the method would seem most useful as a broad brush approach
to assessing the risk of a portfolio about which relatively little is known; it
might be useful for instance in generating possible future loss scenarios under
a variety of assumptions about the frequency and severity of economic down-
turns. Obviously the higher the number of rating classes and sectors that are
introduced the more difficult the calibration will prove to be. Our analysis in
Section 5.4 and our simulations in Section 5.5 suggest that calibration might
proceed along the following lines.

1. For each combination of rating class and sector, historical data on defaults
should be used to estimate what proportions can be attributed to idiosyn-
cratic, sector or global causes. In determining these proportions the con-
straints imposed by (16) must be respected.

2. Having carved up the individual intensities into these three portions we
should then attempt to determine the relative intensity of sector and global
events.

3. Bearing in mind that the conditional default probabilities can have a pro-
found impact on the loss distribution we now fix the absolute intensity of
sector and global shocks as well as these conditional default probabilities;
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for conservatism we err on the side of underestimating shock intensities
and overestimating conditional default probabilities.
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