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Abstract

Let K be a CM number field and GK its absolute Galois group. A representation
of GK is said to be polarized if it is isomorphic to the contragredient of its outer
complex conjugate, up to a twist by a power of the cyclotomic character. Absolutely
irreducible polarized representations of GK have a sign ±1, generalizing the fact that a
self-dual absolutely irreducible representation is either symplectic or orthogonal. If Π is
a regular algebraic, polarized, cuspidal automorphic representation of GLn(AK), and if
ρ is a p-adic Galois representation attached to Π, then ρ is polarized and we show that
all of its polarized irreducible constituents have sign +1. In particular, we determine
the orthogonal/symplectic alternative for the Galois representations associated to the
regular algebraic, essentially self-dual, cuspidal automorphic representations of
GLn(AF ) when F is a totally real number field.

1. Introduction

1.1 The sign of a representation
Let L be a field of characteristic 0 or greater than 2. Let G be a group and g 7→ gc an
involution of G. For ρ a representation G→GLn(L), we define ρ⊥ :G→GLn(L), g 7→ tρ(gc)−1.
The equivalence class of the representation ρ⊥ only depends on the equivalence class of ρ.

We fix χ :G→ L∗ a character such that χ(g) = χ(gc) for all g. This property ensures
that ρ 7→ ρ⊥χ−1 is an involution. In the applications, G will be the absolute Galois group
of a CM number field K, c the outer automorphism defined by the non-trivial element in
Gal(K/F ), where F is the maximal totally real subfield of K, and χ a power of the cyclotomic
character.

Let ρ be a semisimple representation G→GLn(L) such that

ρ⊥ ' ρχ. (1)

This property is obviously stable by extension of the field of coefficients L.
We shall now attach to any absolutely irreducible ρ satisfying (1) an invariant, that we call

its sign. The invariant can take the values +1 or −1. By Schur’s lemma, there exists a unique
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(up to a scalar) matrix A ∈GLn(L) such that

ρ⊥ =AρA−1χ. (2)

Applying this relation twice, we see that AtA−1 commutes with ρ⊥; hence, by Schur’s lemma
again, it is a scalar matrix λ. So, tA= λA and λ=±1. This sign is called the sign of ρ (with
respect to χ). Note that it is necessarily 1 if n is odd, since there is no invertible antisymmetric
matrix in odd dimension.

If ρ′ :=Q−1ρQ for some Q ∈GLn(L), then ρ′ satisfies (2) with A′ = tQAQ, so the sign of ρ
only depends on the isomorphism class of ρ. Moreover, it is obvious that it remains unchanged
under arbitrary extensions of the coefficient field L. However, it depends on χ in general: if
ρ' ρ⊗ ε for some non-trivial character ε, then the signs of ρ with respect to χ and χε may
differ.1

1.2 Galois representations attached to unitary groups

Let F be a totally real field, K a totally imaginary quadratic extension and c ∈Gal(K/F ) the
non-trivial automorphism. Let Π be a cuspidal automorphic representation for GLn over K, and
assume that Π is polarized, i.e. the contragredient Π∨ of Π is isomorphic to Π ◦ c, and that Π∞
is algebraic regular (see [CH, General Hypotheses 2.1]).

Under those hypotheses, Shin [Shi11] and the many coauthors of the two-volume
book [GRFAbook] have shown the existence of a compatible system of Galois representations
attached to Π (see [CH, Theorem 3.2.5]).

Theorem 1.1. There are a number field E(Π) and a compatible system ρΠ,λ :GK →
GL(n, E(Π)λ) of semisimple λ-adic representations, where λ runs through finite places of E(Π),
such that for all finite primes v of K of residue characteristic prime to NE(Π)/Q(λ), and such

that Πv is unramified,

(ρΠ,λ|Gv)F−ss ' L(Πv ⊗ | • |(1−n)/2
v ),

where Gv is a decomposition group of K at v and L(•) is the local Langlands corres-

pondence.

The given property suffices to characterize uniquely ρΠ,λ up to isomorphism and implies that
ρΠ,λ satisfies (1); more precisely, let c be a complex conjugation in K, that is, an element of
GF −GK of order two. We set gc = cgc−1 = cgc for g ∈GK : this is an automorphism of order
two. For that automorphism, we have

ρ⊥(g) = tρ(gc)−1 ' ρ(g)ω(g)n−1,

where ω is the cyclotomic character.
The theorem also includes other specifications on ρΠ,λ, including the determination of the

Hodge–Tate weights of ρΠ,λ at places of the same residual characteristic as λ (see also § 1.6 below).
This description implies, since Π∞ is cohomological, that these weights are distinct integers and
hence that ρΠ,λ is a direct sum of non-isomorphic absolutely irreducible representations of GK .

1 For example, let G⊂GL2(L) be the normalizer of the diagonal matrices, ρ the natural inclusion and gc :=
g det(g)−1. Then ρ has sign −1 for the trivial character, as t(gc)−1 = wgw−1 for any g ∈GL2(L) and for w =

(
0 −1
1 0

)
.

But ρ has sign +1 for the order-two character ε which is trivial on the diagonal matrices, as t(gc)−1 = w′gw′−1ε(g)
for g ∈G and w′ =

(
0 1
1 0

)
.
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The sign of Galois representations of unitary type

1.3 The result
The object of this article is to prove the following theorem.

Theorem 1.2. For every finite prime λ of E(Π), every irreducible factor r of ρΠ,λ that satisfies
r⊥ ' r ⊗ ωn−1 has sign +1.

In this statement, it is understood that this sign is computed with respect to the character
χ := ωn−1. It is expected that ρΠ,λ is absolutely irreducible (this is known if n6 3 by [BR92]
and in many cases if n= 4 by an unpublished work of Ramakrishnan). If it is so, ρΠ,λ has only
one factor and satisfies (1), and our theorem simply asserts that its sign is +1: this is obvious
when n is odd, but new when n is even.

The theorem above has an important corollary concerning essentially self-dual Galois
representations of a totally real field F . Precisely, let Π be a cuspidal automorphic representation
of GLn(AF ) such that:

(a) Π∨ 'Π⊗ η, where η is a Hecke character of F such that ηv(−1) does not depend on the
real place v of F ;

(b) Πv is cohomological for each real place v of F .

In this case as well, the aforementioned works show that for some coefficient number field E(Π)
there is a compatible system of λ-adic semisimple representations ρΠ,λ :GF →GLn(E(Π)λ) which
are compatible with the Frobenius-semisimplified local Langlands correspondence twisted by
| · |(1−n)/2 at each prime not dividing the residue characteristic of λ and unramified for Π (see
[CH, Theorem 4.2]). In particular, we have

ρ∨Π,λ ' ρΠ,λ ⊗ ωn−1ηλ,

where ηλ is the λ-adic realization of η (note that η is necessarily algebraic by (a) and (b)).
As Π is cuspidal, ρΠ,λ is conjecturally irreducible, but, as before, this is not known in general
(however, each irreducible constituent of ρΠ,λ has multiplicity one and is absolutely irreducible).
The counterpart of the sign in this situation is the standard alternative orthogonal/symplectic:
if r :GF →GLd(L) is absolutely irreducible and satisfies r∨ ' r ⊗ ωn−1ηλ, then the unique GF -
equivariant pairing r ⊗ r→ E(Π)λω1−nη−1

λ is either symplectic or orthogonal.
The sign ηv(−1) in (a) will be denoted by η∞(−1). The signs η∞(−1) and ηλ(c) are related

as follows: there is a unique q ∈ Z such that η| · |−q is an Artin character; thus,

ηλ(c) = (−1)qη∞(−1).

If z denotes the central character of Π, then z is an algebraic Hecke character of F and
z−2 = ηn. In particular, η is the square of an algebraic Hecke character when n is odd; thus,
η∞(−1) = (−1)q = ηλ(c) = 1 in this case.

Corollary 1.3 (Totally real field case). If n is even and ηλ(c) = 1, then any irreducible
constituent r of ρΠ,λ such that r∨ ' r ⊗ ωn−1ηλ is symplectic. Otherwise, any such constituent
is orthogonal.

Proof. Let K be a totally imaginary quadratic extension of F which is ramified above some
finite place v of F whose residue characteristic is prime to the one of λ, and such that Πv is
unramified. Let εK/F be the non-trivial character of Gal(K/F ) or its associated Hecke character
of F . As Π 6'Π⊗ εK/F (at v), Arthur–Clozel’s base change ΠK of Π to GLn(AK) is cuspidal.
Moreover, for each irreducible constituent r of ρΠ,λ, r|GK remains absolutely irreducible, still as
r 6' r ⊗ εK/F (at v).
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J. Belläıche and G. Chenevier

By [CHT08, Lemma 4.1.4], we may find some algebraic Hecke character ψ of K such
that ψ ◦NK/F = η ◦NK/F . In particular, ηλ|GK = ψλ(ψλ⊥)−1, Π′ := ΠK ⊗ ψ is polarized (and
algebraic regular) and ρΠ′,λ = ρΠ,λ|GK ⊗ ψλ. Theorem 1.2 ensures that for each r as in the
statement, r|GK ⊗ ψλ has sign +1 with respect to ωn−1. By Lemma 2.1 below, r|GK has sign
+1 with respect to ψλ(ψ⊥λ )−1ωn−1 = ηλ|GKω

n−1.
Fix a complex conjugation c ∈GF and choose a matrix realization r :GF →GLd(L) such

that r(c) is diagonal, so that r(c) = tr(c) = r(c)−1. For some P ∈GLd(L),
tr(g)−1 = Pr(g)P−1ηλ(g)ω(g)n−1, ∀g ∈GF .

Applying this to c gives
r(c)P = Pr(c)ηλ(c)(−1)n−1. (3)

On the other hand, an immediate computation shows that for all g ∈GK ,
tr(cgc)−1 =Ar(g)A−1ηλ(g)ω(g)n−1

with A= r(c)P . By the preceding paragraph, we have tA=A, so that
tP = (−1)n−1ηλ(c)P

by (3) and the corollary follows as ηλ(c) = 1 for odd n. 2

1.4 Historical remarks
The question of the sign of Galois representations attached to polarized automorphic
representations of GLn on a totally real or CM field is out at least since Clozel, building on the
work of Kottwitz, proved their existence in many cases in the mid 1990s. More recently, this
question has been extensively discussed in [CHT08], where some cases of the above theorem,
concerning Galois representations with some constraining properties ensuring they have a nice
and workable deformation theory, are proved by a very indirect method; indeed, the whole
long and hard paper is written with an unknown sign ε and only near the end, after the
Taylor–Wiles method has been adapted to unitary groups, is it shown that ε=−1 leads to
a contradiction.

Theorem 1.2 appears, without its proof, in the concluding remarks of our book [BC09] (see
[BC09, Theorem 9.5.1]) that was made public on the arXives in January 2007. We knew the
proof that follows then,2 and told it to a few colleagues, but decided to wait for a more advanced
version of the book project [GRFAbook], on which it depends, before writing it.

Meanwhile, one of us, Chenevier, together with Clozel, have found a completely different proof
of a special case of Corollary 1.3, namely when η = 1 and Π is square integrable at some finite
place. In this case, ρΠ,λ is known to be irreducible by works of Harris–Taylor and Taylor–Yoshida,
and they show that it is symplectic for n even. Their proof was actually conditional on the
computation of some archimedean orbital integrals, which has since been done by Chenevier and
Renard in [CR10]. The method of proof used by Chenevier and Clozel in [CC09] is less expensive
in difficult tools than ours, using ‘simply’ the new insight in the trace formula they discovered.
However, it does not seem that it can be extended to the case of a CM field, or even to the case
of an automorphic representation that does not satisfy any local square-integrability hypothesis.

Let us mention also that in a recent preprint [Gro], Gross introduced a general notion of
odd Galois representations and conjectured that the expected Galois representations attached to

2 At least for places λ of residual characteristic p split in K.
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definite reductive groups G are odd in his sense. Our theorem proves his conjecture when G is a
unitary group attached to a CM extension K/F , in which case it has the following meaning.

Let G̃ be the semidirect product of Gal(K/F ) = 〈c〉= Z/2Z by GLn(L)× L∗ with respect to
the order-two automorphism (x, y) 7→ (ytx−1, y) (see [CHT08, ch. I] for similar considerations).
Assume that ρ :GK →GLn(L) satisfies (1) and is absolutely irreducible; fix A a matrix as
in (2) and ε=±1 the sign of ρ. Consider the morphism GK →GLn(L)× L∗ defined by g 7→
(ρ(g), χ(g)−1). A simple computation shows that this map extends to a morphism ρ̃ :GF → G̃ if
we set ρ̃(c) = (tA−1, ε)c. Assume now that ρ= ρΠ,λ. The map ρ̃ is the analogue in our situation of
the map denoted ρ whose existence is conjectured in Gross [Gro, p. 8] and Gross predicts that the
conjugation by ρ̃(c) on Lie(GLn) is a Cartan involution, that is, has the form X 7→ −P tXP−1 with
P a symmetric invertible matrix. In our situation, the conjugation by ρ̃(c) on the Lie algebra
is the map X 7→ −tA−1tXtA. So, we see that Gross’ prediction amounts to ‘A is symmetric’,
which is exactly our theorem.3

1.5 Idea of the proof
The idea of the proof is very simple. Assume that we know that the representation ρΠ,λ is
irreducible. Then there is nothing to prove if n is odd. When n is even, we can reduce to the
odd case, as follows: descend Π to a unitary group in n variables and transfer the result to
an automorphic representation π of a unitary groups in n+ 1 variables which is compact at
infinity, using a special case of endoscopic transfer proved by Clozel, Harris, and Labesse. Use
eigenvarieties to deform π into a family of automorphic forms whose Galois representations are
generically irreducible. For those Galois representations, the sign is +1 since their dimension is
odd. Specialize this result to deduce that the components of the representation attached to π,
including ρΠ,λ, have sign +1.

There are several technical difficulties that make the proof a little bit more indirect: in
the current state of science, we do not know that ρΠ,λ is (absolutely) irreducible, and we cannot
descend Π to U(n) or transfer it to U(n+ 1) without supplementary assumptions on K/F and Π.
Moreover, we cannot always deform a representation π into a family whose Galois representation
is generically irreducible. But this is not a big issue, since, as was already observed in [BC09, § 7.7],
we can actually do so in two steps, deforming π into a family whose generic members can them-
selves be deformed irreducibly. Similarly, the obstacle posed by the conditions on descent and
endoscopic transfer can be solved by base-change techniques inspired by the ones used in [CH].

1.6 Notation and conventions
Our general convention will be that the local Langlands correspondence is normalized so that
geometric Frobeniuses correspond to uniformizers (and as in [HT01]). If π is an unramified
complex representation of GLn(E) with E a p-adic local field, or more generally an irreducible
smooth representation with a non-trivial vector fixed by an Iwahori subgroup, we shall often
denote by L(π) the semisimple conjugacy class in GLn(C) of the geometric Frobenius in the
L-parameter of π.

If K is a field, we shall denote by GK its absolute Galois group Gal(K/K); when K is a
number field and v a place of K, we also write Gv for GKv .

We shall use the following notions of p-adic Hodge theory. Let us fix E a finite extension
of Qp, Qp an algebraic closure of Qp and let V be a p-adic representation of GE of dimension n

3 When ρ is not assumed to be irreducible any more, note that Theorem 1.2 still implies that we may find some
symmetric A such that (2) holds; hence, a ρ̃ as above satisfying Gross’ conjecture.
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over Qp. To such a representation, Sen attached a monic polynomial Psen(T ) ∈ (Qp ⊗Qp E)[T ]
of degree n, whose roots will be called the Hodge–Tate weights of V (even when they are not
natural integers). Our normalization of the Sen polynomial is the one such that the Hodge–Tate
weight of the cyclotomic character Qp(1) is −1 ∈Qp ⊗Qp E. Under the natural identification
Qp ⊗Qp E = Qp

Hom(E,Qp), we shall often write them as a collection {ki,σ} for all i ∈ {1, . . . , n}
and all σ ∈Hom(E,Qp), ordered so that for each embedding σ, we have

k1,σ 6 k2,σ 6 · · ·6 kn,σ.

We shall need to consider various partial sums of those weights, for which the following
definitions will be useful. For I a subset of {1, . . . , n} ×Hom(E,Qp), we denote by kI the sum∑

(i,σ)∈I ki,σ. When I = {i} ×Hom(Kw,Qp), we write ki instead of kI . Thus, ki =
∑

σ ki,σ.
Assume now that V is crystalline in the sense of Fontaine. Let E0 ⊂ E be the maximal

unramified extension of Qp inside E and let v : Q∗p→Q be the valuation normalized so that
v(p) = e, where e is the absolute ramification index of E. Fontaine attached to V an E0-vector
space Dcrys(V ) with a semilinear action of the crystalline Frobenius ϕ (commuting with Qp), and
which is free of rank n over E0 ⊗Qp Qp. If f = [E0 : Qp], then ϕf is Qp ⊗Qp E0-linear
and commutes with ϕ, so its characteristic polynomial Pϕ(T ) actually belongs to Qp[T ]. This
polynomial will be referred to as the characteristic polynomial of ϕ, its roots are the eigenvalues of
the crystalline Frobenius and their valuations (with respect to v) its slopes.4 With this notation,
if the ki,σ are the Hodge–Tate weights of V , then the weak admissibility property of Dcrys(V )
implies in particular that

v(Pϕ(0)) =
∑
i,σ

ki,σ.

We can now explain a bit more precisely the p-adic part of Theorem 1.1. Assume that w is a
finite place of K with the same residual characteristic as λ, and assume that Πw is unramified.
Let Pw(T ) ∈ E(Π)[T ] be the characteristic polynomial of L(Πw| · |(1−n)/2). Then a refinement
of Theorem 1.1 asserts that ρΠ,λ|Gw is a crystalline representation and that the characteristic
polynomial Pϕ ∈ E(Π)λ[T ] of its crystalline Frobenius coincides with the image of Pw(T ) in
E(Π)λ[T ]; see [CH, Theorem 3.2.5(c)].5

2. Sorites on the sign

2.1 The notion of a good representation
For a representation ρ :GK →GLn(L) that is a direct sum of absolutely irreducible and pairwise
non-isomorphic representations, and that satisfies (1) for some fixed character χ, we say that ρ
is good (with respect to χ) if every irreducible factor of ρ satisfying (1) has sign +1.

In this language, the theorem amounts to prove that ρΠ,λ is good, which is good.

2.2 Some trivial lemmas
In this paragraph, ρ :GK →GLn(L) is a direct sum of absolutely irreducible and pairwise non-
isomorphic representations, and satisfies (1).

4 This definition is slightly different from the usual definition of the slopes of an isocrystal (which are ours divided
by [E : Qp]), but it will be convenient to us.
5 We will actually use this identity Pϕ = Pw only under the following extra assumptions, for which it holds by
construction: assumptions (H1) and (H2) stated in § 3.1 below on K/F and Π are satisfied.
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Lemma 2.1. If ρ :GK →GLn(L) is good with respect to χ, and if ψ :GK → L∗ is a character,
then ρψ is good with respect to χψ−1ψ⊥.

In particular, if m is an integer and if ψ⊥ = ψωm−n, then ρ is good with respect to ωn−1 if
and only if ρψ is good with respect to ωm−1.

Proof. Note first that since ρ satisfies (1) for χ, then ρψ still satisfies (1) for the character
χ′ = χψ−1ψ⊥ (which still satisfies χ′(gc) = χ′(g)) and is a sum of absolutely irreducible pairwise
non-isomorphic factors, namely the ρiψ where the ρi are the factors of ρ. Now if ρi is an irreducible
factor that satisfies (1) for χ′, a matrix A that satisfies (2) for ρi and χ satisfies also (2) for ρiψ
and χ′; hence, the signs of ρi and ρiψ are the same, which proves the first assertion. The last
part of the lemma follows at once. 2

Lemma 2.2. If ρ :GK →GLn(L) is good, and ρ′ is a subrepresentation of ρ that satisfies (1),
then ρ′ is good, too (with respect to the same character).

Proof. The proof of this is really trivial. 2

Lemma 2.3. Let F ′ be a totally real extension of F , and K ′ =KF ′. If ρ|GK′ has the same
number of irreducible components as ρ, and if those components are absolutely irreducible and
pairwise non-isomorphic, then ρ|GK′ is good with respect to χ|GK′ if and only if ρ is good with
respect to χ.

Proof. If ρi is an (absolutely) irreducible factor of ρ that satisfies (1), then ρi|GK′ is still
absolutely irreducible by hypothesis, still satisfies (1) and has obviously the same sign as ρi.
The lemma follows. 2

2.3 A specialization result
In this paragraph, O is a henselian discrete valuation domain with fraction field L and residue
field k, such that 2 ∈ O∗. We set alsoG=GK and assume that the character χ :GK → L∗ actually
falls into O∗; thus, it makes sense to talk about condition (1) for k or L-valued representations
of G (by a slight abuse of language, we shall also denote by χ the residual character GK → k∗).
A simple but crucial observation for our proof is the following proposition.

Proposition 2.4. Assume that ρ :G→GLn(O) is such that ρ⊗ L and ρ̄ss are a sum of
absolutely irreducible pairwise non-isomorphic representations and satisfy (1). If ρ⊗ L is good
with respect to χ, then so is ρ̄ss.

Moreover, the converse holds if ρ̄ss has the same number of irreducible factors as ρ⊗ L.

Of course, in this statement ρ̄ss denotes the semisimplification of the reduction ρ̄ := ρ⊗O k
of ρ.

Proof. Let ρ̄1 be a factor of ρ̄ss that satisfies (1). Let τ1, . . . , τk be the irreducible factors of
ρ⊗ L. For each of them, we can choose a stable O-lattice, and see them as representations
of G over O. We have ρ̄ss =

⊕k
i=1 τi

ss, so ρ̄1 appears in exactly one of the τi ss, say τ1
ss. Moreover,

τ1
⊥ is isomorphic to τiχ for some i ∈ {1, . . . , k}. But, it follows that τi ss contains ρ̄1 (since ρ̄1

satisfies (1)), so the only possibility is that i= 1. In other words, τ1 satisfies (1) and, replacing
ρ by τ1, we are reduced to prove the lemma with the supplementary assumption that ρ⊗ L is
absolutely irreducible. In that case, the proposition is [BC09, Lemma 1.8.8].
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Since this proposition is really one of the main tools used in our proof, and since the proof
of [BC09, Lemma 1.8.8] is a little bit difficult to separate from the other concerns of [BC09, § 1.8],
let us sketch it here for the convenience of the reader, trying to be as pedagogical as possible.

Note first that the basic point that makes the result not obvious is that there is no reason that
we can find a matrix A for ρ⊗ L as in (2) with A ∈GLn(O). A priori, we just have A ∈GLn(L),
and it is therefore not possible to reduce (2) mod m.

There is one case, however, where a simple proof is possible: assume that ρ̄ss is absolutely
irreducible. In this case, the representations ρ⊥ and ρχ over O, being isomorphic over L and
residually absolutely irreducible, are isomorphic over O by a theorem of Serre and Carayol
(cf. [Car94]). In other words, we can find a matrix A ∈GLn(O) such that (2) holds and, reducing
this modulo m, we get that ρ⊗ L and ρ̄ have the same sign in this case. Note that this proves
also the last assertion of the theorem (in all cases!).

The proof of the general case consists in reducing to the residually irreducible case. This is
not possible, however, if we keep working with representations of groups only. We have to work
in the larger world of representations of algebras instead. As we saw, we may assume that ρ⊗ L
is absolutely irreducible, and we set ρ̄ss =

⊕
i ρ̄i.

Let R be the algebra O[G] and S = ρ(R)⊂Mn(O). We have S ⊗O L=Mn(L). The algebra
S is provided with a natural O-algebra anti-automorphism τ , induced by the one on R defined
on g ∈G by g 7→ χ(g)−1(gc)−1. Explicitly, by (2), we have, for M ∈ S,

τ(M) = tA−1tM tA, (4)

and by our sign assumption tA=A: the involution τ is a symmetric involution of the matrix
algebra S ⊗O L=Mn(L).

On the other hand, let S denote the image of k[G] in the k-endomorphisms of the
representation ρ̄ss =

⊕
i ρ̄i. Then S '

∏
iMni(k) (ni = dim ρ̄i,

∑
i ni = n) and S is also provided

with a natural k-algebra anti-automorphism τ as above. Moreover, there is a natural surjective
O-algebra map S→ S which is τ -equivariant.

Let us denote by εi ∈ S the central idempotent corresponding to ρ̄i. It is well known that εi
can be lifted as an idempotent ei of S as O is henselian and S finite over O. However, we need
a more precise lifting result. Let us fix an i such that ρ̄i satisfies (1); then we have τ(εi) = εi.
What we need is an idempotent ei in S lifting εi, such that τ(ei) = ei. The existence of such
an idempotent is easy to prove: first choose any lift x ∈ S of εi and let S0 be the sub-O-algebra
generated by 1

2(x+ τ(x)). Obviously, τ fixes any element of S0. The restriction of the natural
surjection S→ S to S0 is onto a k-subalgebra of S that contains the image of 1

2(x+ τ(x)), that
is, εi. Thus, defining ei as a lift of εi in S0 does the job. (This result is the trivial case of [BC09,
Lemma 1.8.2].) As ρ̄i is absolutely irreducible and has multiplicity one in ρ̄ss, it actually turns
out that the rank of ei is ni = dim ρ̄i, and that eiSei 'Mni(O). Replacing ρ by a conjugate if
necessary, we may then assume that ei is a diagonal idempotent of rank ni in Mn(L).

Applying (4) to M = ei, we get Aei = tei
tA, that is, Aei is symmetric. In other words,

τ induces a symmetric involution on eiSei 'Mni(O). As a consequence, τ also induces a
symmetric involution on εiSεi = Endk(ρ̄i), which exactly means that the sign of ρ̄i is +1. 2

Remark 2.5. The above proposition, or rather its crucial case [BC09, Lemma 1.8.8], is a theorem
of Thompson in the case where G is a finite group, χ= 1 and the involution g 7→ gc is the identity:
see [Tho84, last theorem].
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3. Proof of the main theorem

3.1 Proof of Theorem 1.2 under special hypotheses
We shall first prove the theorem under a set of additional hypotheses on the CM extension K/F ,
the automorphic representation Π and the place λ.

Let us call p the residual characteristic of λ. Recall that the automorphic representation Π
defines an embedding ι : E(Π)→ C. We fix once and for all algebraic closures Q and Qp of Q
and Qp, as well as some embeddings ι∞ : Q→ C and ιp : Qp→ C such that the induced map
ιpι
−1
∞ ι : E(Π)→Qp factors through E(Π)λ.

3.1.1 Some special hypotheses. (H1) Special Hypotheses 2.2 of [CH], that is:

(H1a) K/F is unramified at all finite places;

(H1b) Πv is spherical at all non-split non-archimedean places v of K;

(H1c) the degree [F : Q] is even.

(H2) Hypothesis 1.3 of [CHL], that is, for all real places σ of K, the infinitesimal character of
Πσ is sufficiently far from the walls.6

(H3) There7 is a place v above p in F that splits in K and, for w a place of K above v, Πw is
unramified. Denote by {ϕ1, . . . , ϕn} the eigenvalues of L(Πw| · |(1−n)/2). Then the Hodge–Tate
weights {ki,σ} of ρΠ,λ|Gw and the slopes v(ϕj) are in sufficiently general position in the following
sense: if

c= max
i∈{1,...,n}

min
j∈{1,...,n}

|v(ϕi)− kj |,

then, for all distinct subsets I and J of {1, . . . , n} ×Hom(Kw,Qp) with |I|= |J |< n[Kw : Qp],
we have

|kI − kJ |> (n+ 1) · c.

In (H3) above, v : Q∗p→Q is the valuation such that v(p) is the ramification index of p in Kw.

3.1.2 The theorem. We want to prove the following theorem.

Theorem 3.1. With the supplementary hypotheses (H1), (H2) and (H3), Theorem 1.2 holds.

The rest of this subsection is entirely devoted to the proof of this theorem.

3.1.3 Descent and transfer. Let m= n if n is odd, and m= n+ 1 if n is even, so that m
is always odd. Let us call U(m) the unitary group over F attached to K in m variables that is
quasi-split at every finite place of F and compact at every infinite place. Since m is odd, such
a group always exists (uniquely up to isomorphism). Actually, U(m) is simply the standard
unitary group attached to the hermitian form

∑m
i=1 NK/F (zi) on Km (see [BC09, § 6.2.2]).

If n is odd, that is if n=m, by hypothesis (H1) and Labesse’s base-change theorem [Lab,
Theorem 5.4], we can descend Π to a representation π of U(m) with πv 'Πw for every place w
of K split over v in F (with the natural identification U(n)(Fv)'GLn(Kw)), and such that for

6 Precisely, this means that the extremal weight of the associated algebraic representation of GLn(K ⊗ R) does
not belong to a wall.
7 See § 1.6 for the notation used in this assumption.
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each complex place w of K above a real place v of F , πv has the same infinitesimal character as
Πw (under the natural identification U(n)(Kw)'GLn(C)).

If n is even, we use a result of endoscopic transfer due to Clozel et al. [CHL]. Note first that
using ι∞ι−1

p , if v = wwc is as in (H3) we may identify Hom(Kw,Qp) = Hom(Fv,Qp) with subsets
Σv and Σw of Hom(F, R) and Hom(K, C). Let us first fix

µ :K∗\A∗K → C∗

a Hecke character such that µ(c(x))−1 = µ(x), and such that for each s ∈ Σv, µs(z) =
(σs(z)/σs(z))

1
2 , where σs ∈ Σw is associated to s as above. This last assumption implies that

µ|A∗F coincides with the sign of K/F , and that µ does not come by base change from a Hecke
character of U(1) (see e.g. [BC09, § 6.9.2]). Such a Hecke character always exists and, as K/F
is unramified at all finite places, we can even assume (and we will) that it is unramified at the
finite places of K which are either above p or not split above F . Let us choose another Hecke
character

χ :K∗\A∗K → C∗

such that χ(c(z))−1 = χ(z) but assume now that χ descends to U(1), i.e. that for each real place
s ∈ Σv, χs(z) = σs(z/c(z))−as for some as ∈ Z. Assume also that χ is unramified at the finite
places of K which do not split over F . Under hypotheses (H1) and (H2), and if all the as are big
enough, by [CHL, Theorem 4.7] we can transfer Π to an automorphic representation π of U(m)
in such a way that at every place w of K split over a place v in F , we have

L(πv) = L(Πwµw)⊕ L(χw). (5)

Moreover, for each real place v of F and each complex place w of K above v, the infinitesimal
character of πv is obtained from the one of Πwµw in the obvious way: in terms of the associated
Harish-Chandra’s cocharacter, it is the direct sum of the one of Πwµw and the one of χw.

In both cases (n even or odd), Clozel et al. actually constructed a π which is moreover
unramified at all the finite places of K which are not split over F (we do not really need this,
but this fixes ideas).

3.1.4 Consequences of (H3). When n=m is odd, we set ρπ := ρΠ,λ. When n is even, the
GK representation of dimension m attached to π is by definition

ρπ := ρΠ,λ(µ| · |−
1
2 )⊕ χ| · |(1−m)/2.

Note that µ| · |−
1
2 and χ| · |(1−m)/2 are both algebraic Hecke characters of K. We shall identify

them here with their p-adic realizations given by ι∞ and ιp and we focus on the place w as in
(H3). By assumption, µ| · |−

1
2 is actually unramified at the place w, and χ| · |(1−m)/2 is crystalline,

and we shall denote by ϕµ and ϕχ ∈Qp
∗ their associated Frobenius eigenvalues.

If n is even, so m= n+ 1, we set for each σ ∈Hom(Kw,Qp),

km,σ :=
m− 1

2
+ aσ

(where σ is viewed as an element of Hom(F, R) as above). Thus, in any case, the ki,σ for
i= 1, . . . , m and σ ∈Hom(Kw,Qp) are the Hodge–Tate weights of ρπ|Gw. We shall use
for this extended collection {ki,σ} with all i ∈ {1, . . . , m} and, for a subset I of {1, . . . , m} ×
Hom(Kw,Qp), the notation kI analogous to the one in § 1.6.

1346

https://doi.org/10.1112/S0010437X11005264 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005264


The sign of Galois representations of unitary type

If n is even, we set ϕ′i := ϕiϕµ for i < m and ϕ′m := ϕχ. We have v(ϕ′i) = v(ϕi) for i < m and
v(ϕ′m) = km. When n=m is odd, we shall simply set ϕ′i := ϕi. Thus, in both cases, ϕ′1, . . . , ϕ

′
m

are the Frobenius eigenvalues of L(πw| · |(1−m)/2).
If n is even, we make precise now our choice of χ. We assume that the km,σ = aσ + (m− 1)/2

are all big with respect to the ki and v(ϕ′i) for i= 1, . . . , n, and also that they are set sufficiently
far apart so that any non-trivial sum of the form

∑
σ∈S ±km,σ, where S ⊂Hom(Kw,Qp), is big

in the same sense as above. This is of course always possible. With those assumptions we have
the following lemma.

Lemma 3.2. (i) The representation πv is a fully induced unramified principal series, and the
eigenvalues of L(πw| · |(1−m)/2) are ϕ′1, . . . , ϕ

′
m.

(ii) We have c= maxi∈{1,...,m} minj∈{1,...,m} |v(ϕ′i)− kj | and, for all distinct subsets I and J

of {1, . . . , m} ×Hom(Kw,Qp) and with |I|= |J |<m[Kw : Qp], we have |kI − kJ |>m · c.

Proof. By (H3) and, if n is even, by (5), πv is unramified. Moreover, the eigenvalues of
L(πw| · |(1−m)/2) are ϕ′1, . . . , ϕ

′
m, and no quotient of those eigenvalues is equal to q, the

cardinal of the residue field of Kw. Indeed, a well-known result of Jacquet–Shalika asserts
that for i= 1, . . . , n, the complex numbers q(1−m)/2ι∞ι

−1
p (ϕ′i) are <q1/2 in absolute value, and

q(1−m)/2ι∞ι
−1
p (ϕ′m) has norm 1 by construction. Hence, πv is a full unramified principal series

by Zelevinski’s theorem, which is (i).
For (ii), there is nothing to prove if n=m is odd. Assume that n is even, so that m= n+ 1.

Let us note that for i=m, we have minj∈{1,...,m} |v(ϕ′i)− kj |= 0 since v(ϕ′m) = km. For i6 n,
the minimum minj∈{1,...,m} |v(ϕ′i)− kj |= 0 is not realized for j =m because km is much too big.

Hence,

max
i∈{1,...,m}

min
j∈{1,...,m}

|v(ϕ′i)− kj | = max
i∈{1,...,n}

min
j∈{1,...,n}

|v(ϕ′i)− kj |

= c.

It remains to prove that |kI − kJ |>mc= (n+ 1)c. Let I0 (respectively J0) be the subset
of I (respectively of J) of pairs (i, σ) with i=m. If I0 = J0, then kI − kJ = kI−I0 − kJ−J0 and,
since I − I0, J − J0 are distinct subsets of the same cardinality of {1, . . . , n} ×Hom(Kw,Qp),
the desired inequality comes directly from (H3). If I0 6= J0, kI − kJ contains, in addition to
a bounded number of terms ±ki,σ for i6 n, a non-trivial sum of the form

∑
S ±kσ,m, where

S ⊂Hom(Kw,Qp); hence, |kI − kJ | is again greater than mc. 2

3.1.5 Eigenvarieties and their families of Galois representations. We are ready now to start
the deformation argument. Let U =

∏
v Uv ⊂U(m)(AF,f ) be a compact open subgroup such

that πU 6= 0, and assume that Uv is an Iwahori subgroup for the place v of (H3) and that Uv is
hyperspecial for all places v of F that are not split in K.

From now on, we shall reserve the notation v for the place of F of hypothesis (H3), and w for
one of the places of K above v. We shall denote by d the degree of the field Fv =Kw over Qp. To
U , the place v and (ιp, ι∞), we can attach by [Che, Theorem 1.6] (see also [Che04] and [Eme06])
an eigenvariety X =XU,v,(ι∞,ιp) for the group U(m)/F , which is a reduced rigid analytic space
over Qp of equidimension8 md.

8 It is not necessary here to let the weights corresponding to the other possible places of F above p move, but we
could have, and the eigenvariety would then have dimension m[K : Q].
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By Labesse’s base-change theorem [Lab, Corollary 5.3], if π′ is any automorphic
representation of U(m) which is unramified outside the split finite places of K/F , then π′

admits a base change to GLm/K (which is strong at each finite place and cohomological at each
archimedean place with the expected infinitesimal character); hence, a Galois representation by
Theorem 1.1. As explained in [BC09, ch. 7.5] (or in [Che04]), this is enough to equip X with
a continuous m-dimensional pseudocharacter T :GK →O(X) of dimension m. The eigenvariety
X and this T satisfy a number of properties and we will only list below the ones we shall need.
If x ∈X(Q̄p), we denote by Tx the evaluation of T at x and ρx the semisimple representation
GK →GLm(Q̄p) of trace Tx. There are:

(i) Zariski-dense and accumulation subsets Zreg ⊂ Z ⊂X(Qp) of classical points;

(ii) a set of dm analytic functions9 κ1,σ, . . . , κm,σ, where σ runs over the embeddings Kw→Qp;
(iii) a set of locally constant functions s1, . . . , sm :X(Q̄p)→Q
satisfying the following conditions:

(a) if z ∈ Z, ρz|Gw is crystalline;
(b) if z ∈ Z, the ordered Hodge–Tate weights of ρz|Gw are {κi,σ};
(c) let C be any real number and ZC := {z ∈ Zreg, |κI(z)− κJ(z)|>C for all distinct subsets

I, J of {1, . . . , m} ×Hom(Kw,Qp) such that |I|= |J |<md}. Then ZC is Zariski-dense and
accumulation in X.

Moreover, the classical points z in Z correspond to pairs (π(z),R(z)), where π(z) is
an automorphic representation of U(m) such that π(z)U 6= 0 and R(z) = (ϕ1, . . . , ϕm) is an
accessible refinement10 of π(z)w| · |(1−m)/2, in the following sense: ρz is the Galois representation
attached to the base change of π(z) to GLm/K by Theorem 1.1 and, for each i= 1, . . . , m,
v(ϕi) = si(z) + κi(z).

(d) If z ∈ Z parameterizes (π(z),R(z) = (ϕ1, . . . , ϕm)), then for all i we have v(ϕi) = si(z) +
κi(z).

The subset Zreg ⊂ Z parameterizes refined automorphic representations (π,R) satisfying
some additional properties, and for our concerns here we shall simply assume that they are
those (π,R) such that πv is unramified and such that for each real place s inducing v via ιp and
ι∞, the infinitesimal character of πs is sufficiently far from the walls. Under this latter condition,
and by [Lab, Corollary 5.3] again, the base change of an automorphic representation of U(m)
is not necessarily cuspidal, but always associated to a decomposition m1 + · · ·+mr =m and
an r-tuple (π1, . . . , πr) of cuspidal (polarized, cohomological) automorphic representations πi of
GLmi(AK); moreover, each πi satisfies property (H2) in dimension mi and is unramified at v.
In particular, for a z ∈ Zreg, the characteristic polynomial of the crystalline Frobenius of ρz|Gw
coincides with the polynomial Pw(T ) associated to πw| · |(1−m)/2 by the refinement of Theorem 1.1
recalled in § 1.6, and we also have the following.

(d′) If z ∈ Zreg, then the m slopes of the crystalline Frobenius of ρz|Gw are the si(z) + κi(z) for
i= 1, . . . , m.

9 Again, we shall use for this collection {κi,σ} and, for a subset I of {1, . . . , m} ×Hom(Kw,Qp) (respectively an
i ∈ {1, . . . , m}), the notation κI (respectively κi) analogous to the one in § 1.6.
10 Recall that a refinement of an irreducible smooth representation ρ of GLm(Kw) such that ρI 6= 0 for I an Iwahori
subgroup is an ordering (ϕ1, . . . , ϕm) of the eigenvalues of L(ρ)(Frobw). It is said to be accessible if ρ appears as a

subrepresentation of the induced representation Ind
GLm(Kw)
B χδ

1/2
B , where B is (say) the upper Borel subgroup, δB

the modulus character and χ the (unramified) character of the diagonal torus sending (x1, . . . , xm) to
∏m
i=1 ϕ

v(xi)
i

(see [BC09, § 6.4.4]).
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3.1.6 Choice of a refinement. Going back to the representation π introduced above, if we
choose an accessible refinement R of πv, there is a point z0 ∈ Z corresponding to (π,R).

Lemma 3.3. There exists a refinement R of πv such that the pseudocharacter T is generically
irreducible in a neighbourhood of the corresponding point z0.

(This means that there exists an affinoid neighbourhood Ω of z0 such that for any x in some
Zariski-dense subset of Ω, the representation ρx is irreducible.)

Proof. We shall eventually show that the conclusion holds for T |Gw. Note that, by construction,
for all σ ∈Hom(Kw,Qp) and i ∈ {1, . . . , m}, κi,σ(z0) = ki,σ. Let us first renumber the ϕ′i ∈Qp

∗

so that |v(ϕ′i)− ki|= minj |v(ϕ′i)− kj |. By Lemma 3.2(ii), there is one and only one way to do
so, and this being done we have v(ϕ′1)< v(ϕ′2)< · · ·< v(ϕ′m) (strict inequalities). Then consider
a transitive permutation σ of {1, . . . , m}. We choose the refinement

R= (ϕ′σ(1), . . . , ϕ
′
σ(m)).

Since πv is a full unramified principal series by Lemma 3.2(i), all the refinements of πv are
accessible, so π together with R defines a point z0.

Before proving the irreducibility property of the lemma, let us observe a combinatorial
property of this refinement. We have by definition κi(z0) = ki and si(z0) = v(ϕ′σ(i))− ki. We
claim that for any non-empty proper subset I ⊂ {1, . . . , m},∑

i∈I
si(z0) 6= 0. (6)

Indeed, we compute ∣∣∣∣∑
i∈I

si(z0)
∣∣∣∣ =

∣∣∣∣∑
j∈J

v(ϕ′j)−
∑
i∈I

ki

∣∣∣∣ where J = σ(I)

=
∣∣∣∣(∑

j∈J
kj −

∑
i∈I

ki

)
+
∑
j∈J

(v(ϕ′j)− kj)
∣∣∣∣

>

∣∣∣∣(∑
j∈J

kj −
∑
i∈I

ki

)∣∣∣∣−∑
j∈J
|v(ϕ′j)− kj |

> mc−mc by Lemma 3.2(ii) as I 6= J

= 0.

Let us choose now some affinoid neighbourhood Ω of z0 ∈X on which the si are constant and
in which ZC is Zariski-dense for C =

∑m
i=1 |si(z0)|. We claim that for every point z of ZC ∩ Ω,

ρz|Gw is irreducible. Indeed, if it was not, it would have a subrepresentation of dimension 0<
r <m and, by the weak admissibility of Dcrys(ρz|Gw), there would exist a subset I ⊂ {1, . . . , m}
of cardinal r, and a subset J ⊂ {1, . . . , m} ×Hom(Kw,Qp) with |J |= rd, such that∑

i∈I
(κi(z) + si(z)) = κJ(z)

(here we use that z ∈ Zreg and property (d′) of eigenvarieties). Since z ∈ ZC , we see at once that
I ×Hom(Kw,Qp) = J . But, this implies that

0 =
∑
i∈I

si(z),

a contradiction with (6) as si(z) = si(z0) for all i. 2
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3.1.7 End of the proof. Let Ω⊂X be the neighbourhood defined above of the point z0, and
let A be a complete discrete valuation ring, with a map of SpecA to the spectrum of the rigid
local ring Oz0 of X at z0 which sends the special point of SpecA to z0 and the generic point
to the generic point of any irreducible component of Ω containing z0. Let us call L the fraction
field of A and m its maximal ideal. By pulling back the pseudocharacter T over A, we get a
representation ρ :GK →GLm(A) such that ρ⊗ L is absolutely irreducible and satisfies (1) (for
χ= Qp(m− 1)) and

ρ̄ss =
{
ρΠ,λ if m= n,

ρΠ,λ(µ| · |−1/2)⊕ (χ| · |(1−m)/2) if m= n+ 1.

Since ρ⊗ L is absolutely irreducible and satisfies (1), it has a sign that can only be +1. Hence, it
is good, and so is ρ̄ss by Proposition 2.4, with respect to ωm−1. Hence, ρΠ,λ is good with respect
to ωn−1 by Lemmas 2.2 and 2.1, as ψ := µ| · |−1/2 satisfies ψ⊥ = ψω. 2

3.2 Weakening of the hypothesis (H3), removal of (H2)

We consider the following variant of (H3):

(H4) each place of F above p splits in K and, if w is a place of K above p, then Πw has a
non-zero vector invariant by an Iwahori subgroup of GLn(Kw).

Theorem 3.4. With the supplementary hypotheses (H1) and (H4), Theorem 1.2 holds.

We shall argue by induction on n> 1. There is nothing to show if n= 1.
Let U(n) be the n-variable unitary group over F attached to K/F that is quasi-split at every

finite place and compact at every infinite place. Hasse’s principle shows that this group exists,
even if n is even, by condition (H1c) (see e.g. [CH, Lemma 3.1]). Moreover, condition (H1) and
Labesse’s base-change theorem also ensure that Π descends to an automorphic representation π
for U(n). Again, π is unramified at non-split finite places of K/F and, for each complex place w
of K above a real place v of F , πv has the same infinitesimal character as Πw (under the natural
identification U(n)(Kw)'GLn(C)).

Let U =
∏
v Uv ⊂U(n)(AF,f ) be a compact open subgroup such that πU 6= 0, and assume that

Uv = Iv for each place v above p and that Uv is hyperspecial for each place v of K that is not
split over F . Let X be the eigenvariety attached to U , to all the finite places of F above p (in the
setting of [Che, § 1.1], Sp is the set of all the places above p) and ι∞, ιp. Now X has equidimension
n[F : Q] but all that we said for the eigenvarieties of U(m) in § 3.1.5 also applies to this X with
minor changes, the only difference being that there is no preferred place v above p. Precisely,
let us fix once and for all a place v of F above p, as well as a place w of K above v. Then (i),
(ii), (iii), (a), (b) and (c) hold (with m replaced by n). To be perfectly correct for (i) and (a),
we have to make precise that Z (respectively Zreg) parameterizes now the refined automorphic
representations (π, R) of U(n) such that πU 6= 0 (respectively such that πv is unramified and
such that the infinitesimal character of πs is sufficiently regular for all the real places s of F ).

Let z0 ∈ Z be the point corresponding to π together with some accessible refinement of πx
for each place x of F above p. As a general fact (see [BC09, § 6.4.4]), there is always such a
refinement (for each x) and we choose them anyhow here.

Let c be the maximum of the |si(z0)| and choose C ∈ R such that C > nc. Let Ω⊂X be
an open affinoid of X containing z0, in which ZC is Zariski-dense, and on which the si are
constant. We claim that for z ∈ ZC , ρz is good. Indeed, let Π(z) be Labesse’s base change
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of π(z) to GLn(AK). As z ∈ Zreg, and as explained in § 3.1.5, there exist a decomposition
n= n1 + · · ·+ nr and cuspidal automorphic representations Πi of GLni(AK), satisfying (H1b),
(H2) and unramified at v, such that

ρz =
r⊕
i=1

ρΠi,λ ⊗ χi

for some characters χi :GK →Q∗p such that χ⊥i = χiω
n−ni . If r > 1, then ρz is good by induction

and Lemma 2.1. If r = 1, then Π(z) is cuspidal and it satisfies (H2) and (H3) by construction, so
ρz is good by Theorem 3.1. (To check (H3), remark that for such a z, and for each i ∈ {1, . . . , n},
we have Minj(si(z) + ki(z)− kj(z)) = si(z) = si(z0).)

Let W be any irreducible component of Ω containing z0, and Frac(W ) its associated function
field. As ZC is Zariski-dense in Ω, we may find a z ∈ ZC ∩W such that the pseudocharacters Tz
and T ⊗O(Ω) Frac(W ) have the same number of irreducible factors. Such factors are necessarily
absolutely irreducible here, by [BC09, Theorem 1.4.4(iii)]. Arguing as in the preceding section,
let A be a complete discrete valuation ring with a map from SpecA to SpecOz which sends the
special point of SpecA to z and its generic point to Frac(W ), and let ρ :GK →GLn(A) be a
representation with trace T such that ρ⊗A L is a direct sum of absolutely irreducible, distinct
representations (use e.g. [BC09, Proposition 1.6.1]). As we saw, ρ̄ss = ρz is good and hence so is
ρ⊗A L by Proposition 2.4, as well as ρ⊗A Frac(W ) for any irreducible component W containing
z0. But, arguing back now at the point z0 as in the preceding section, we obtain that ρz0 = ρΠ,λ

itself is good as a specialization of a good representation, and we are done.

3.3 Removal of Hypotheses (H1) and (H4)
We now prove Theorem 1.2.

Lemma 3.5. Let L be a finite extension of Qp and ρ :GK −→GLn(L) a continuous
representation which is a direct sum of absolutely irreducible representations. There is a finite
Galois extension M/K such that for every finite extension K ′/K linearly disjoint from M , ρ
and ρ|GK′ have the same number of irreducible factors, and the irreducible factors of ρ|GK′ are
absolutely irreducible.

Proof. We can assume without loss of generality that ρ is absolutely irreducible. In particular,
there exist n2 elements g1, . . . , gn2 such that the ρ(gi) generate Mn(L) as an L-vector space.
Since GK has a basis of neighbourhoods of 1 that are open normal subgroups, and since ρ and
the determinant are continuous, there is an open normal subgroup U of GK such that if for all
i= 1, . . . , n2, g′i ∈ giU , then the ρ(g′i) still generate Mn(L). Set M = K̄U , so M is a finite Galois
extension of K.

If K ′ is a finite extension of K which is linearly disjoint from M , so is its Galois closure.
Hence, we may assume that K ′ is Galois over K. Thus, Gal(K ′M/K ′) is naturally isomorphic
to Gal(K/M). For every i, choose g′i in GK′ whose image in Gal(K ′M/K ′) is sent to gi by the
above isomorphism. This implies that g′ig

−1
i ∈ U and hence the ρ|GK′(g′i) generate Mn(L), and

ρ|GK′ is absolutely irreducible. 2

By [CH, Proposition 4.1.1 and Theorem 4.2.2], for any finite extension M/K there exists
a totally real solvable Galois extension F ′/F such that K ′ =KF ′ is linearly disjoint to M
and such that Arthur–Clozel’s base change ΠK′ and K ′/F ′ satisfy hypotheses (H1) and (H4).
We apply this to an M as in the lemma above. Thus, (ρΠ,λ)|GK′ has the same number of
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irreducible components as ρΠ,λ, and those components are absolutely irreducible. Moreover,
those components are pairwise non-isomorphic since ρΠ,λ has distinct weights. By Theorem 3.4,
we know that (ρΠ,λ)|GK′ is good. Hence, by Lemma 2.3, ρΠ,λ is good.
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