DISCRETE SEMI-ORDERED LINEAR SPACES
ISRAEL HALPERIN anp HIDEGORO NAKANO

1. Introduction. Let R be a semi-ordered linear space, that is, a vector lattice
in Birkhoff’s terminology [2]. An element ¢ € R is said to be discrete, if for
every element x € R such that |x|<|a| there exists a real number a for which
x¥ = aa. For every pair of discrete elements @, b € R we have |a|N\|b] = 0 or
there exists a real number o for which & = az¢ or @ = ab. Because, putting

¢ = lalNlo],

we have ¢ = aa, ¢ = Bb for some real numbers a, 3.

A system of elements ay € R(\ € A) is said to be complete, if |x|M|a)\| = 0
for all X € A implies x = 0. R is said to be undversally continuous if for every
system of positive elements ax € R(\ € A) there exists [\aea ar (conditionally
complete in Birkhoff’s terminology [2]).

DEFINITION. A semi-ordered linear space R is said to be discrete, if R is
universally continuous and has a complete system of discrete elements.

Let R be universally continuous. We shall use the notation ax | x¢s @ to
mean: a¢ = s @ and for all A, N2 € A there exists A€EA with a) < ayNay,.
A linear functional L on R is said to be universally continuous, if

R S axlaea0 implies inf |L(ay)| = 0.
AEA

The totality of universally continuous linear functionals on R is said to be the
conjugate space of R and denoted [5] by R. R is said to be semi-regular, if R
is universally continuous and %(a) = 0 for all # € R implies a = 0.

Let R be semi-regular. A sequence of elements ¢, € R (» =1,2,...) is
said to be w-convergent to a € R, if

lim %(a,) = %(a) for every & € R
v—Q0

and then we write w-lim ¢, = a.
v — 00

A sequence @, € R(» = 1, 2,...) is said to be |w|-convergent to a € R, if

lim %(la, — a]) = 0 for every % € R,

y— 00

and then we write |w|-lim ¢, = a.

y—00

In a semi-ordered linear space R we have order convergence, i.e., we write
lim @, = a, if there exists a sequence of elements R 3 [, | 2, 0 such that

y— Q0
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la, —a| <1, v=12...).

Kantorovitch [3] introduced star convergence, i.e., we write s-lim a, = a if
y—Q0

every partial sequence from a, € R(» = 1, 2,...) contains a partial sequence
which is order convergent to a.
We have furthermore tndividual convergence [7] i.e., we write ind-lim ¢, = aq, if

y—Q

lim (e.,Nx)Uy = (aNx)Uy for all x, ¥y € R;

y—0

and star individual convergence, i.e., we write s-ind-lim a,= a if every partial

y—0Q0
sequence from a, € R(r = 1,2,...) contains a partial sequence which is
individually convergent to a.
The purpose of this paper is to prove the

THEOREM. Each of the following s necessary and sufficient in order that R
should be discrete.

(A) R is semi-regular and w-convergence coincides with |w|-convergence.

(B) R is semi-regular and star individual convergence coincides with
individual convergence.

(C) R is semi-regular and |w|-convergence implies individual convergence.

The letters (A), (B), (C) will be used for reference throughout the paper, and
R will denote a semi-ordered linear space.

2. LEmMma 1.1 If R is discrete, then R is semi-regular and w-convergence
cotncides with |w|-convergence, that is,

w-lim x, = 0 implies w-lim |x,| = 0.
v —Q0 y—
Proof. If R is discrete, then R is universally continuous by definition.
Furthermore R is semi-regular, because for every discrete element a # 0 we
obtain a linear functional 3 in R as

[alx = a@(x)a (x € R)

for the projector (cf. [4]) [a] of a.
Let 0 € ax € R (A € A) be a complete system of discrete elements. Then
we have obviously

NA—lon+...4+a)) =0

for all finite numbers of elements Ay, ..., A\, € A. Therefore we have by
definition

Na(l—fan, 4+ ...+ a]) =0
for every positive @ € R.

'From Lemma 1 we conclude immediately that in I, space weak convergence coincides with
norm convergence, as was proved first by J. Schur [9].
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We assume that x, € R(vy = 1,2,...) is w-convergent to zero but not
|w|-convergent to zero and derive a contradiction. We can suppose that for
some positive @ € R the inequality a(|x,]) > 2 holds for an infinite number of
v, hence

a(x,™) > 1 or alx,”) > 1
for an infinite number of ». Replacing x, by —x, if necessary, we can suppose

a(x,T) > 1 for an infinite number of » and hence (using only these x,) for all
%y

Now for each u = 1, 2, ... define x, and a projector
Po=lay+...+a]
(with a finite number of indices wi, ..., mc € A, k = k(u)) by induction on
u so that:
(i) a((Up <uPp)lxil) < %,
(ii) PU,..P, =0,
(iii) a((1 = UpcuPp)lxil) < 3

Set Q, = [Pux,] and Q = UX Q.. Then aQ is in R, yet aQ(x,) > % for all
u, contradicting the assumption lim aQ(x,) = 0.

LEMMA 2. Let R be semi-regular. For a positive p € R, if

w-lim x, = 0, |x,| < p v=12..))

y—Q0

implies w-lim |x,| = 0, then the normal manifold [p]R is discrete.

v —Q0

Proof. If [p]R is not discrete, then there exists an element p, which we
choose to denote also by (0, 1), such that 0 £ [pg] < [p], [#o]R has no discrete
element except 0, and furthermore [po]R is regular, i.e., there exists a positive
@ € Rsuch thatif (0 < x € R)

a(x) = 0 implies [po] x = 0.

For such a positive @ € R, we see easily that there exist two elements p(0, 271),
»(271, 1) such that

[po] = [p(0, )] = [p(0, 279)] + [p(274, 1)],
a([p(0, 27N)]p) = a([p(271, D]p).

Thus we obtain by induction elements
(27, (u + 1)27) (k=0,1,2,...,2—-1;v=1,2,...)

such that
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[p(u2™, (u + 1)27)]

=[p(2u277Y, (2u + 1)277Y)] + [p((2u + 1)27774, 2(p + 1)277Y)],
a([p(2u2™7Y, (2u + 1)277Y)]p)

=a([p((2u + 12771, 2(u + 1)27779)]p).

2¥—1

Putting %, = ;0 (=1)*p(u277, (p + 1)27)]p, we have

lac,| = [polp »=1,2...)
and hence naturally
(2.1) lim a(|x,|) = a([polp) # 0.
On the other hand we can prove
lim b(x,) = 0 for every b € R.

This can be done as follows: For a positive & € R, define a function of a real
variable 5(f), 0 <t < 1, by

b(t) = 5( U [p((p — 127, u27)]p).
u2—r=<t
Then it is not difficult to see that b(¢) is absolutely continuous:
t
50 = [ eis <<
0

for some summable function g(s). Now
(ut1)2~ " . (pt+1)2™7 1
lim{ X J‘ g(s)ds) = lim ( > J g(s)ds) = % J g(s)ds.
y—00 \odd u Jw2~7” y—o0 \even pJ #2777 0
This is easily proved for continuous g(s) and easily extended to all summable
g(s) (cf. [1}). Now the above shows that

lim b(x,*) = lim b(x,7)

y—0 »—00

and hence lim &(x,) = 0 for every positive b € R. Therefore we have w-lim x,

y— © y— Q0

= 0 but not |w|-lim x, = 0 (by (2.1) contradicting the assumption.
In this proof, lye_’éo;y (y =1, 2,...) be the sequence consisting of all elements
(2™, (u+1)27)]p (u=0,1,2,...,2—1;»=1,2,...).
Then every partial sequence from y,(y = 1, 2, .. .) contains a partial sequence
¥y, (v = 1,2,...) such that

g,ld(y.,,) < 4 .
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Since 0 < 3y, L [pdp (» = 1,2,...), putling yo= lim sup y,, we conclude
y—00

that @(y,) = 0, and hence y, = 0. Therefore we have s-limy, = 0, while
y—00

lim sup y, = [po]p % 0. Thus we obtain further:

y — 00

LeMMA 3. If R is semi-regular and for a positive p € R if
s-limx, =0, |x,] < ¢ r=12...)

y—00

implies lim x, = 0, then the normal manifold [p]R is discrete.

y—Q0
Conversely we have
LeEmMA 4. If R is discrete, then

s-ind-lim x, = 0 ¢mplies ind-lim x, = 0.

y— Q0 y—00

Proof. Let ax(N € A) be a complete system of discrete elements. If

s-limx, = 0, |x,] < 2 v=12...,
then we have obviously
lim [a\]|x,] = 0 for every \ € A.

Putting x¢ = lim sup |x,|, we have

y—00

[aa]xo = lim sup [aa] |x,| = O for every \ € A.
y— 00
Since ax(N € A) is a complete system in R, we obtain then x, = 0. Therefore

we have lim x, = 0.
y—Q0

By virtue of Lemmas 1 and 2 we have: the condition (A) is necessary and
sufficient in order that R be discrete. And furthermore, as an immediate con-
sequence from Lemmas 3 and 4 we have: the condition (B) is necessary and
sufficient in order that R be discrete.

Since s-lim x, = 0 implies |w|-lim x, = 0, as can be seen from the definitions,

»—00 y—C0

we obtain by Lemma 3:
LeEmMA 5. Let R be semi-regular. For a positive p € R if
|w|-lim %, = 0, |x,| < p r»=12...)

y— 00

implies lim x, = 0, then the normal manifold [p]R is discrete.

y—C0
LemMA 6. If R s discrete, then

|w|-lim x, = 0 smplies ind-lim x, = 0.
y— 00 y—00
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Proof. It is sufficient to prove this for the case x,2 0 (» = 1,2,...).

Now for fixed p 2> 0, let
x,* = lim sup (x,MN\p).
y—00

We need only prove that x,* = 0 for each p> 0. But for every discrete
element ¢ € R and any a@ € R, it is easy to prove that a([alx,*) = 0. Hence
[alx,* = O for every discrete a € R, implying that x,* = 0 as required.

By virtue of Lemmas 5 and 6 we obtain: the condition (C) is necessary and
sufficient in order that R be discrete.

Remark 1. We can also prove the theorem algebraically without the use of
classical integration theory (see [6]), if we apply some results obtained in an
earlier paper [8].

Remark 2. The theorem is also valid with the following definition: R is
discrete, if R is continuous and has a complete system of discrete elements,
replacing the condition that R is semi-regular by the conditions that R is
continuous and to every element p # 0 there exists ¢ # 0 such that [¢g] < [p]
and [¢]R is regular.
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