DISCRETE SEMI-ORDERED LINEAR SPACES

ISRAEL HALPERIN AND HIDEGORO NAKANO

1. Introduction. Let R be a semi-ordered linear space, that is, a vector lattice in Birkhoff's terminology [2]. An element $a \in R$ is said to be discrete, if for every element $x \in R$ such that $|x| \leq |a|$ there exists a real number a for which x = aa. For every pair of discrete elements $a, b \in R$ we have $|a| \cap |b| = 0$ or there exists a real number a for which b = aa or a = ab. Because, putting

$$c = |a| \cap |b|,$$

we have c = aa, $c = \beta b$ for some real numbers a, β .

A system of elements $a_{\lambda} \in R(\lambda \in \Lambda)$ is said to be *complete*, if $|x| \cap |a_{\lambda}| = 0$ for all $\lambda \in \Lambda$ implies x = 0. R is said to be *universally continuous* if for every system of positive elements $a_{\lambda} \in R(\lambda \in \Lambda)$ there exists $\bigcap_{\lambda \in \Lambda} a_{\lambda}$ (conditionally complete in Birkhoff's terminology [2]).

DEFINITION. A semi-ordered linear space R is said to be *discrete*, if R is universally continuous and has a complete system of discrete elements.

Let R be universally continuous. We shall use the notation $a_{\lambda} \downarrow_{\lambda \in \Lambda} a$ to mean: $a = \bigcap_{\lambda \in \Lambda} a_{\lambda}$ and for all $\lambda_1, \lambda_2 \in \Lambda$ there exists $\lambda \in \Lambda$ with $a_{\lambda} \leq a_{\lambda_1} \cap a_{\lambda_2}$. A linear functional L on R is said to be *universally continuous*, if

$$R
i a_{\lambda} \downarrow_{\lambda \in \Lambda} 0 \quad \text{implies } \inf_{\lambda \in \Lambda} |L(a_{\lambda})| = 0.$$

The totality of universally continuous linear functionals on R is said to be the *conjugate space* of R and denoted [5] by \overline{R} . R is said to be *semi-regular*, if R is universally continuous and $\overline{x}(a) = 0$ for all $\overline{x} \in \overline{R}$ implies a = 0.

Let R be semi-regular. A sequence of elements $a_{\nu} \in R$ ($\nu = 1, 2, ...$) is said to be w-convergent to $a \in R$, if

$$\lim_{\nu \to \infty} \bar{x}(a_{\nu}) = \bar{x}(a) \qquad \qquad \text{for every } \bar{x} \in \overline{R}$$

and then we write w-lim $a_{\nu} = a$.

A sequence $a_{\nu} \in R$ ($\nu = 1, 2, ...$) is said to be |w|-convergent to $a \in R$, if

$$\lim_{\nu\to\infty} \bar{x}(|a_{\nu}-a|) = 0 \qquad \text{for every } \bar{x}\in\overline{R},$$

and then we write |w|-lim $a_{\nu} = a$.

In a semi-ordered linear space R we have order convergence, i.e., we write $\lim_{\nu\to\infty} a_{\nu} = a$, if there exists a sequence of elements $R \ni l_{\nu} \downarrow_{\nu=1}^{\infty} 0$ such that

Received March 31, 1950.

293

$$|a_{\nu}-a| \leq l_{\nu}$$
 $(\nu = 1, 2, \ldots).$

Kantorovitch [3] introduced star convergence, i.e., we write s-lim $a_{\nu} = a$ if every partial sequence from $a_{\nu} \in R$ ($\nu = 1, 2, ...$) contains a partial sequence which is order convergent to a.

We have furthermore *individual convergence* [7] i.e., we write ind-lim $a_r = a$, if

$$\lim_{n\to\infty} (a_n \cap x) \cup y = (a \cap x) \cup y \qquad \text{for all } x, y \in R;$$

and star individual convergence, i.e., we write s-ind-lim $a_r = a$ if every partial sequence from $a_r \in R(r = 1, 2, ...)$ contains a partial sequence which is individually convergent to a.

The purpose of this paper is to prove the

THEOREM. Each of the following is necessary and sufficient in order that R should be discrete.

- (A) R is semi-regular and w-convergence coincides with |w|-convergence.
- (B) R is semi-regular and star individual convergence coincides with individual convergence.
- (C) R is semi-regular and |w|-convergence implies individual convergence.

The letters (A), (B), (C) will be used for reference throughout the paper, and R will denote a semi-ordered linear space.

2. LEMMA 1.¹ If R is discrete, then R is semi-regular and w-convergence coincides with |w|-convergence, that is,

w-lim
$$x_{\nu} = 0$$
 implies w-lim $|x_{\nu}| = 0$.

Proof. If R is discrete, then R is universally continuous by definition. Furthermore R is semi-regular, because for every discrete element $a \neq 0$ we obtain a linear functional \bar{a} in \bar{R} as

$$[a]x = \bar{a}(x)a \qquad (x \in R)$$

for the projector (cf. [4]) [a] of a.

Let $0 \leq a_{\lambda} \in R$ ($\lambda \in \Lambda$) be a complete system of discrete elements. Then we have obviously

$$\bigcap(1-[a_{\lambda_1}+\ldots+a_{\lambda_k}])=0$$

for all finite numbers of elements $\lambda_1,\ldots,\lambda_\kappa\in\Lambda.$ Therefore we have by definition

$$\bigcap \bar{a}(1-[a_{\lambda_1}+\ldots+a_{\lambda_k}])=0$$

for every positive $\bar{a} \in \overline{R}$.

¹From Lemma 1 we conclude immediately that in I_1 space weak convergence coincides with norm convergence, as was proved first by J. Schur [9].

We assume that $x_{\nu} \in R$ ($\nu = 1, 2, ...$) is w-convergent to zero but not |w|-convergent to zero and derive a contradiction. We can suppose that for some positive $\bar{a} \in \bar{R}$ the inequality $\bar{a}(|x_{\nu}|) > 2$ holds for an infinite number of ν , hence

$$\bar{a}(x_{,}^{+}) > 1$$
 or $\bar{a}(x_{,}^{-}) > 1$

for an infinite number of ν . Replacing x_{ν} by $-x_{\nu}$ if necessary, we can suppose $\bar{a}(x_{\nu}^{+}) > 1$ for an infinite number of ν and hence (using only these x_{ν}) for all x_{ν} .

Now for each $\mu = 1, 2, ...$ define x_{μ} and a projector

$$P_{\mu} = [a_{\mu_1} + \ldots + a_{\mu_n}]$$

(with a finite number of indices $\mu_1, \ldots, \mu_{\kappa} \in \Lambda$, $\kappa = \kappa(\mu)$) by induction on μ so that:

(i)
$$\bar{a}((\mathbf{U}_{\rho < \mu}P_{\rho})|x_{\mu}|) < \frac{1}{5},$$

(ii)
$$P_{\mu} \mathbf{U}_{\rho < \mu} P_{\rho} = 0,$$

(iii)
$$\tilde{a}((1 - \bigcup_{\rho \leq \mu} P_{\rho})|x_{\mu}|) < \frac{1}{5}.$$

Set $Q_{\mu} = [P_{\mu}x_{\mu}^{+}]$ and $Q = \bigcup_{\mu=1}^{\infty} Q_{\mu}$. Then $\bar{a}Q$ is in \overline{R} , yet $\bar{a}Q(x_{\mu}) > \frac{1}{5}$ for all μ , contradicting the assumption $\lim_{\mu \to \infty} \bar{a}Q(x_{\mu}) = 0$.

LEMMA 2. Let R be semi-regular. For a positive $p \in R$, if

w-lim
$$x_{\nu} = 0, |x_{\nu}| \leq p$$
 $(\nu = 1, 2, ...)$

implies w-lim $|x_{\nu}| = 0$, then the normal manifold [p]R is discrete.

Proof. If [p]R is not discrete, then there exists an element p_0 which we choose to denote also by p(0, 1), such that $0 \neq [p_0] \leq [p], [p_0]R$ has no discrete element except 0, and furthermore $[p_0]R$ is regular, i.e., there exists a positive $\bar{a} \in \overline{R}$ such that if $(0 \leq x \in R)$

$$\bar{a}(x) = 0$$
 implies $[p_0] x = 0$.

For such a positive $\bar{a} \in \overline{R}$, we see easily that there exist two elements $p(0, 2^{-1})$, $p(2^{-1}, 1)$ such that

$$\begin{split} [p_0] &= [p(0,1)] = [p(0,2^{-1})] + [p(2^{-1},1)], \\ \bar{a}([p(0,2^{-1})]p) &= \bar{a}([p(2^{-1},1)]p). \end{split}$$

Thus we obtain by induction elements

$$p(\mu 2^{-\nu}, (\mu + 1)2^{-\nu}) \qquad (\mu = 0, 1, 2, \dots, 2^{\nu} - 1; \nu = 1, 2, \dots)$$

such that

$$\begin{split} [p(\mu 2^{-\nu}, (\mu + 1)2^{-\nu})] &= [p(2\mu 2^{-\nu-1}, (2\mu + 1)2^{-\nu-1})] + [p((2\mu + 1)2^{-\nu-1}, 2(\mu + 1)2^{-\nu-1})], \\ \bar{a}([p(2\mu 2^{-\nu-1}, (2\mu + 1)2^{-\nu-1})]p) &= \bar{a}([p((2\mu + 1)2^{-\nu-1}, 2(\mu + 1)2^{-\nu-1})]p). \\ \end{split}$$
Putting $x_{\nu} = \sum_{\mu=0}^{2^{\nu}-1} (-1)^{\mu} [p(\mu 2^{-\nu}, (\mu + 1)2^{-\nu})]p$, we have $|x_{\nu}| = [p_{0}]p \qquad (\nu = 1, 2, ...)$

and hence naturally

(2.1)
$$\lim_{\nu\to\infty} \bar{a}(|x_{\nu}|) = \bar{a}([p_0]p) \neq 0.$$

On the other hand we can prove

$$\lim_{\nu\to\infty} \bar{b}(x_{\nu}) = 0 \qquad \qquad \text{for every } \bar{b} \in \overline{R}.$$

This can be done as follows: For a positive $\overline{b} \in \overline{R}$, define a function of a real variable $\overline{b}(t)$, $0 \leq t \leq 1$, by

$$\bar{b}(t) = \bar{b}(\bigcup_{\mu^{2-\nu} \leq t} [p((\mu - 1)2^{-\nu}, \mu^{2-\nu})]p).$$

Then it is not difficult to see that $\bar{b}(t)$ is absolutely continuous:

$$\bar{b}(t) = \int_0^t g(s)ds \qquad (0 \le t \le 1)$$

for some summable function g(s). Now

$$\lim_{\nu \to \infty} \left(\sum_{\text{odd } \mu} \int_{\mu^{2-\nu}}^{(\mu+1)2^{-\nu}} g(s) ds \right) = \lim_{\nu \to \infty} \left(\sum_{\text{even } \mu} \int_{\mu^{2-\nu}}^{(\mu+1)2^{-\nu}} g(s) ds \right) = \frac{1}{2} \int_{0}^{1} g(s) ds.$$

This is easily proved for continuous g(s) and easily extended to all summable g(s) (cf. [1]). Now the above shows that

$$\lim_{\nu\to\infty}\bar{b}(x_{\nu}^{+}) = \lim_{\nu\to\infty}\bar{b}(x_{\nu}^{-})$$

and hence $\lim_{\nu \to \infty} \bar{b}(x_{\nu}) = 0$ for every positive $\bar{b} \in R$. Therefore we have w- $\lim_{\nu \to \infty} x_{\nu} = 0$ but not |w|-lim $x_{\nu} = 0$ (by (2.1) contradicting the assumption.

In this proof, let y_{γ} ($\gamma = 1, 2, ...$) be the sequence consisting of all elements

$$[p(\mu 2^{-\nu}, (\mu+1)2^{-\nu})]p \quad (\mu=0, 1, 2, \ldots, 2^{\nu}-1; \nu=1, 2, \ldots).$$

Then every partial sequence from $y_{\gamma}(\gamma = 1, 2, ...)$ contains a partial sequence $y_{\gamma_{\nu}}(\nu = 1, 2, ...)$ such that

$$\sum_{\nu=1}^{\infty} \bar{a}(y_{\gamma_{\nu}}) < + \infty.$$

https://doi.org/10.4153/CJM-1951-034-4 Published online by Cambridge University Press

296

Since $0 \leq y_{\gamma_{\nu}} \leq [p_0]p$ ($\nu = 1, 2, ...$), putting $y_0 = \limsup_{\nu \to \infty} y_{\gamma_{\nu}}$ we conclude that $\bar{a}(y_0) = 0$, and hence $y_0 = 0$. Therefore we have s-lim $y_{\gamma} = 0$, while $\limsup_{\gamma \to \infty} y_{\gamma} = [p_0]p \neq 0$. Thus we obtain further:

LEMMA 3. If R is semi-regular and for a positive $p \in R$ if

$$s-\lim_{\nu\to\infty} x_{\nu} = 0, |x_{\nu}| \leq p \qquad (\nu = 1, 2, \ldots)$$

implies $\lim_{v\to\infty} x_v = 0$, then the normal manifold [p]R is discrete.

Conversely we have

LEMMA 4. If R is discrete, then

s-ind-lim
$$x_r = 0$$
 implies ind-lim $x_r = 0$.

Proof. Let $a_{\lambda}(\lambda \in \Lambda)$ be a complete system of discrete elements. If

s-
$$\lim_{\nu\to\infty} x_{\nu} = 0, |x_{\nu}| \leq p$$
 $(\nu = 1, 2, \ldots),$

then we have obviously

$$\lim_{\nu\to\infty} [a_{\lambda}]|x_{\nu}| = 0 \qquad \qquad \text{for every } \lambda \in \Lambda.$$

Putting $x_0 = \lim \sup_{\nu \to \infty} |x_{\nu}|$, we have

$$[a_{\lambda}]x_0 = \lim \sup_{\nu \to \infty} [a_{\lambda}] |x_{\nu}| = 0$$
 for every $\lambda \in \Lambda$.

Since $a_{\lambda}(\lambda \in \Lambda)$ is a complete system in R, we obtain then $x_0 = 0$. Therefore we have $\lim_{r \to \infty} x_r = 0$.

By virtue of Lemmas 1 and 2 we have: the condition (A) is necessary and sufficient in order that R be discrete. And furthermore, as an immediate consequence from Lemmas 3 and 4 we have: the condition (B) is necessary and sufficient in order that R be discrete.

Since s-lim $x_{\nu} = 0$ implies $|w| - \lim_{\nu \to \infty} x_{\nu} = 0$, as can be seen from the definitions, we obtain by Lemma 3:

LEMMA 5. Let R be semi-regular. For a positive $p \in R$ if

$$w|-\lim_{\nu\to\infty} x_{\nu} = 0, |x_{\nu}| \leq p$$
 $(\nu = 1, 2, ...)$

implies $\lim_{\nu\to\infty} x_{\nu} = 0$, then the normal manifold [p]R is discrete.

LEMMA 6. If R is discrete, then

$$|w|$$
-lim $x_{\nu} = 0$ implies ind-lim $x_{\nu} = 0$.

Proof. It is sufficient to prove this for the case $x_{\nu} \ge 0$ ($\nu = 1, 2, ...$). Now for fixed $p \ge 0$, let

$$x_p^* = \lim \sup_{\nu \to \infty} (x_\nu \cap p).$$

We need only prove that $x_p^* = 0$ for each $p \ge 0$. But for every discrete element $a \in R$ and any $\bar{a} \in \bar{R}$, it is easy to prove that $\bar{a}([a]x_p^*) = 0$. Hence $[a]x_p^* = 0$ for every discrete $a \in R$, implying that $x_p^* = 0$ as required.

By virtue of Lemmas 5 and 6 we obtain: the condition (C) is necessary and sufficient in order that R be discrete.

Remark 1. We can also prove the theorem algebraically without the use of classical integration theory (see [6]), if we apply some results obtained in an earlier paper [8].

Remark 2. The theorem is also valid with the following definition: R is discrete, if R is continuous and has a complete system of discrete elements, replacing the condition that R is semi-regular by the conditions that R is continuous and to every element $p \neq 0$ there exists $q \neq 0$ such that $[q] \leq [p]$ and [q]R is regular.

References

- C. R. Adams and A. P. Morse, Random sampling in the evaluation of a Lebesgue integral, Bull. Amer. Math. Soc., vol. 45 (1939), 442-447.
- [2] G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Pub. 25 (1940).
- [3] L. Kantorovitch, Lineare halbgeordnete Räume, Math. Sbornik, vol. 2 (44) (1937), 121-168.
- [4] H. Nakano, Teilweise geordnete Algebra, Jap. J. Math., vol. 17 (1941), 425-511.
- [5] ——, Stetige lineare Funktionale auf dem teilweisegeordneten Modul, J. Fac. Sci. Imp. Univ. Tokyo, vol. 4 (1942), 201-382.
- [6] —, Discrete semi-ordered linear spaces (in Japanese), Functional Analysis, vol. 1 (1947-9), 204-207.
- [7] ——, Ergodic theorems in semi-ordered linear spaces, Ann. Math., vol. 49 (1948), 538-556.
- [8] ———, Modulared semi-ordered linear spaces, Tokyo Math. Book Series, vol. 1 (Tokyo, 1950), §26, §27.
- [9] J. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen, J. f. reine u. angew. Math., vol. 151 (1921), 79-111.

Queen's University and Tokyo University

298