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Abstract

We study a representation for the inverse transform of the generalised Fourier–Feynman transform on the
function space Ca,b[0, T ] which is induced by a generalised Brownian motion process. To do this, we
define a transform via the concept of the convolution product of functionals on Ca,b[0, T ]. We establish
that the composition of these transforms acts like an inverse generalised Fourier–Feynman transform and
that the transforms are vector space automorphisms of a vector space E(Ca,b[0, T ]). The vector space
E(Ca,b[0,T ]) consists of exponential-type functionals on Ca,b[0,T ].
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1. Introduction

Let C0[0,T ] denote one-parameter Wiener space. The concept of the analytic Fourier–
Feynman transform (FFT) of functionals on Wiener space C0[0,T ] was introduced by
Brue [1] and developed in [2, 8, 11]. This transform and its properties are similar
in many respects to the ordinary Fourier transform of functions on Euclidean space.
In [8–10], Huffman et al. defined a convolution product (CP) for functionals on
C0[0, T ] and obtained various results involving the analytic FFT and the CP. For an
introduction to the analytic FFT and further results, see [12] and the references therein.

In [5], Chang and Skoug defined a generalised analytic Fourier–Feynman transform
(GFFT) for functionals on the very general function space Ca,b[0, T ]. The function
space Ca,b[0, T ], induced by a generalised Brownian motion process (GBMP), was
introduced by Yeh [13, 14] and used extensively in [3–7].

The representation for an inverse transform of the ‘analytic’ GFFT has been
studied [4, 6, 7], but the inverse transform of the GFFT investigated in [4, 6, 7] is
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not an analytic transform. In this paper, we study other representations for the inverse
transform of the analytic GFFT on the function space Ca,b[0,T ]. To do this, we define a
transform via the concept of the CP of functionals on Ca,b[0,T ]. We next establish that
the composition of the transforms studied in this paper acts like an inverse GFFT and
that these transforms are vector space automorphisms of a vector space E(Ca,b[0, T ]).
The vector space E(Ca,b[0,T ]) consists of exponential-type functionals on Ca,b[0,T ].

The Wiener process used in [1, 2, 8–11] is free of drift and stationary in time, while
the stochastic process used in this paper, as well as in [3–7], is nonstationary in time
and is subject to a drift.

2. Preliminaries

In this section we present a brief background and some well-known results about
the function space Ca,b[0,T ] induced by a GBMP.

Let a(t) be an absolutely continuous real-valued function on [0, T ] with a(0) = 0
and a′(t) ∈ L2[0, T ], and let b(t) be a strictly increasing, continuously differentiable
real-valued function with b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ]. The GBMP
Y determined by a(t) and b(t) is a Gaussian process with mean function a(t) and
covariance function r(s, t) = min{b(s), b(t)}. For more details, see [3, 5, 7, 13, 14].
By [14, Theorem 14.2], the probability measure µ induced by Y , taking a separable
version, is supported by Ca,b[0, T ] (which is equivalent to the Banach space of
continuous functions x on [0, T ] with x(0) = 0 under the sup norm). Hence, the
function space induced by Y is (Ca,b[0, T ],B(Ca,b[0, T ]), µ), where B(Ca,b[0, T ]) is
the Borel σ-algebra of Ca,b[0, T ]. We complete this function space to obtain the
measure space (Ca,b[0, T ],W(Ca,b[0, T ]), µ), where W(Ca,b[0, T ]) is the set of all
Wiener measurable subsets of Ca,b[0,T ].

Remark 2.1. (i) The coordinate process defined by et(x) = x(t) on Ca,b[0, T ] × [0, T ]
is also the GBMP determined by a(t) and b(t).

(ii) The function space Ca,b[0, T ] reduces to the Wiener space C0[0, T ], considered
in [1, 2, 8–11], if and only if a(t) ≡ 0 and b(t) = t for all t ∈ [0,T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided that ρB
is W(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measurable set N is
said to be a scale-invariant null set provided that µ(ρN) = 0 for all ρ > 0. A property
that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.). A functional F is said to be scale-invariant measurable provided
that F is defined on a scale-invariant measurable set and F(ρ · ) is W(Ca,b[0, T ])-
measurable for every ρ > 0. If two functionals F and G defined on Ca,b[0,T ] are equal
s-a.e., we write F ≈ G. Note that the relation ‘≈’ is an equivalence relation.

Let L2
a,b[0, T ] (see [3] and [5]) be the space of functions on [0, T ] which are

Lebesgue measurable and square integrable with respect to the Lebesgue–Stieltjes
measures on [0,T ] induced by a(·) and b(·); that is,

L2
a,b[0,T ] =

{
v :

∫ T

0
v2(s) db(s) < +∞ and

∫ T

0
v2(s) d|a|(s) < +∞

}
,
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where |a|(·) denotes the total variation function of a(·). Then L2
a,b[0, T ] is a separable

Hilbert space with inner product defined by

(u, v)a,b =

∫ T

0
u(t)v(t) dm|a|,b(t) ≡

∫ T

0
u(t)v(t) d[b(t) + |a|(t)],

where m|a|,b denotes the Lebesgue–Stieltjes measure induced by |a|(·) and b(·). In
particular, note that ‖u‖a,b ≡

√
(u, u)a,b = 0 if and only if u(t) = 0 a.e. on [0,T ].

Let

C′a,b[0,T ] =

{
w ∈ Ca,b[0,T ] : w(t) =

∫ t

0
z(s) db(s) for some z ∈ L2

a,b[0,T ]
}
.

For w ∈ C′a,b[0, T ], with w(t) =
∫ t

0 z(s) db(s) for t ∈ [0, T ], we define the operator
D : C′a,b[0,T ]→ L2

a,b[0,T ] by the formula

Dw(t) = z(t) =
w′(t)
b′(t)

. (2.1)

Then C′a,b ≡ C′a,b[0,T ] with inner product

(w1,w2)C′a,b =

∫ T

0
Dw1(t)Dw2(t) db(t)

is a separable Hilbert space. The two separable Hilbert spaces L2
a,b[0,T ] and C′a,b[0,T ]

are (topologically) homeomorphic under the linear operator given by (2.1). The inverse
operator of D is given by

(D−1z)(t) =

∫ t

0
z(s) db(s), t ∈ [0,T ].

In addition to the conditions put on a(t) above, we now add the condition∫ T

0
|a′(t)|2d|a|(t) < +∞. (2.2)

The function a : [0,T ]→ R satisfies (2.2) if and only if a(·) is an element of C′a,b[0,T ].
Under the condition (2.2), we observe that for each w ∈ C′a,b[0,T ] with Dw = z,

(w, a)C′a,b =

∫ T

0
Dw(t)Da(t) db(t) =

∫ T

0
z(t)

a′(t)
b′(t)

db(t) =

∫ T

0
z(t) da(t).

For more details, see [7].
Let {en}

∞
n=1 be a complete orthonormal set in (C′a,b[0, T ], ‖ · ‖C′a,b ) such that the Den

are of bounded variation on [0,T ]. For w ∈ C′a,b[0,T ] and x ∈ Ca,b[0,T ], we define the
Paley–Wiener–Zygmund (PWZ) stochastic integral (w, x)∼ as follows:

(w, x)∼ = lim
n→∞

∫ T

0

n∑
j=1

(w, e j)C′a,b De j(t) dx(t)

if the limit exists.
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Note that for w1,w2 ∈ C′a,b[0,T ] with Dw j = z j, j = 1, 2,

(w1,w2)C′a,b =

∫ T

0
z1(t)z2(t) db(t) ,

∫ T

0
z1(t)z2(t) d[b(t) + |a|(t)] = (z1, z2)a,b.

This fact tells us that the two Hilbert spaces C′a,b[0,T ] and L2
a,b[0,T ] are not isometric.

Thus, in this sense, our definition of the PWZ stochastic integral is different from the
definition given in [3–6]. But we emphasise the following fundamental facts. For each
w ∈ C′a,b[0, T ], the PWZ stochastic integral (w, x)∼ exists for s-a.e. x ∈ Ca,b[0, T ]. If
Dw = z ∈ L2

a,b[0,T ] is of bounded variation on [0,T ], then the PWZ stochastic integral

(w, x)∼ equals the Riemann–Stieltjes integral
∫ T

0 z(t) dx (t). Furthermore, for each
w ∈ C′a,b[0,T ], (w, x)∼ is a Gaussian random variable with mean (w, a)C′a,b and variance
‖w‖2C′a,b . Also, we note that for w, x ∈ C′a,b[0,T ], (w, x)∼ = (w, x)C′a,b .

We make use of the following integration formula:∫
R

exp
{
−αu2 + βu

}
du =

√
π

α
exp

{
β2

4α

}
(2.3)

for complex numbers α and β with Re(α) > 0.

3. Generalised Fourier–Feynman transform and convolution product

Denote the function space integral of aW(Ca,b[0,T ])-measurable functional F by

E[F] ≡ Ex[F(x)] =

∫
Ca,b[0,T ]

F(x) dµ(x)

whenever the integral exists. Throughout this paper, C, C+ and C̃+ denote the set
of complex numbers, complex numbers with positive real part and nonzero complex
numbers with nonnegative real part, respectively. For each λ ∈ C̃, λ1/2 denotes the
principal square root of λ; that is, λ1/2 is always chosen to have nonnegative real part,
so that λ−1/2 = (λ−1)1/2 is in C+ for all λ ∈ C̃+.

We are now ready to state the definitions of the generalised analytic Feynman
integral and the L1 analytic GFFT.

Definition 3.1. Let F : Ca,b[0,T ]→ C be a scale-invariant measurable functional such
that for each λ > 0, the function space integral

J(λ) = Ex[F(λ−1/2x)] =

∫
Ca,b[0,T ]

F(λ−1/2x) dµ(x)

exists and is finite. If there exists a function J∗(λ) analytic in C+ such that J∗(λ) = J(λ)
for all λ > 0, then J∗(λ) is defined to be the analytic function space integral of F over
Ca,b[0,T ] with parameter λ and, for λ ∈ C+, we write

Eanλ[F] ≡ Eanλ
x [F(x)] = J∗(λ).
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Let q be a nonzero real number and let F be a functional such that Eanλ[F] exists for
all λ ∈ C+. If the following limit exists, we call it the generalised analytic Feynman
integral of F with parameter q and we write

Eanfq [F] ≡ Eanfq
x [F(x)] = lim

λ→−iq
λ∈C+

Eanλ
x [F].

Definition 3.2. Let F be a scale-invariant measurable functional on Ca,b[0, T ] and let
q be a nonzero real number. For λ ∈ C+ and y ∈ Ca,b[0,T ], let

Tλ(F)(y) = Eanλ
x [F(y + x)].

We define the L1 analytic GFFT, T (1)
q (F), of F by the formula (if it exists)

T (1)
q (F)(y) = lim

λ→−iq
λ∈C+

Tλ(F)(y)

for s-a.e. y ∈ Ca,b[0,T ].

If T (1)
q (F) exists and if F ≈ G, then T (1)

q (G) exists and T (1)
q (G) ≈ T (1)

q (F). By the
definitions of the generalised analytic Feynman integral and the L1 analytic GFFT, it
is easy to see that for a nonzero real number q,

T (1)
q (F)(y) = Eanfq

x [F(y + x)]

if the integrals exist. In particular, if both integrals exist,

T (1)
q (F)(0) = Eanfq

x [F(x)]. (3.1)

Next we give the definition of the convolution product (CP) of functionals on the
function space Ca,b[0,T ].

Definition 3.3. Let F and G be scale-invariant measurable functionals on Ca,b[0, T ].
For λ ∈ C̃+, we define their CP, (F ∗G)λ (if it exists), by

(F ∗G)λ(y) =

Eanλ
x

[
F
(
(y + x)/

√
2
)
G
(
(y − x)/

√
2
)]
, λ ∈ C+,

Eanfq
x

[
F
(
(y + x)/

√
2
)
G
(
(y − x)/

√
2
)]
, λ = −iq, q ∈ R, q , 0.

When λ = −iq, we denote (F ∗G)λ by (F ∗G)q.

4. Exponential-type functionals

Let E be the class of all functionals having the form

Ψw(x) = exp{(w, x)∼} (4.1)

for each w ∈ C′a,b[0, T ] and for µ-a.e. x ∈ Ca,b[0, T ]. Given q ∈ R \ {0}, let Eq,a be the
class of all functionals having the form

Ψw,q,a(x) = Kw,q,aΨw(x) (4.2)
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for µ-a.e. x ∈ Ca,b[0, T ], where Ψw is given by (4.1) and Kw,q,a is the complex number
given by

Kw,q,a ≡ exp
{ i

2q
‖w‖2C′a,b + (−iq)−1/2(w, a)C′a,b

}
. (4.3)

Also, given q ∈ R \ {0}, let Eq,−a be the class of all functionals having the form

Ψw,q,−a(x) = Kw,q,−aΨw(x) (4.4)

for µ-a.e. x ∈ Ca,b[0,T ], where Kw,q,−a is the complex number given by

Kw,q,−a ≡ exp
{ i

2q
‖w‖2C′a,b − (−iq)−1/2(w, a)C′a,b

}
. (4.5)

The functionals given by (4.1) and linear combinations (with complex coefficients)
of the Ψw are called the (partially) exponential-type functionals on Ca,b[0, T ]. The
functionals given by (4.2) and (4.4) are also partially exponential-type functionals.

Remark 4.1. The classes E, Eq,a and Eq,−a are dense in L2(Ca,b[0,T ]).

We denote the set of all partially exponential-type functionals on Ca,b[0, T ] by
E(Ca,b[0,T ]), that is,

E(Ca,b[0,T ]) = SpanE.

For notational convenience, let Ψw,0,a(x) = Ψw,0,−a(x) = Ψw(x) and E0,a = E0,−a = E.
Then we see that ⋃

q∈R

(Eq,a ∪ Eq,−a) ⊂ E(Ca,b[0,T ]).

We also observe that E(Ca,b[0,T ]) = SpanEq,a = SpanEq,−a for every q ∈ R. The class
E(Ca,b[0,T ]) of exponential-type functionals is a complex linear space and is dense in
L2(Ca,b[0,T ]).

Remark 4.2. The class E(Ca,b[0, T ]) is a commutative (complex) algebra under the
pointwise multiplication and with identity Ψ0 ≡ 1.

Note that every exponential-type functional is scale-invariant measurable. Since
we shall identify functionals which coincide s-a.e. on Ca,b[0, T ], E(Ca,b[0, T ]) can be
regarded as the space of all s-equivalence classes of partially exponential-type
functionals. Throughout this paper, we assume that (4.1) holds for s-a.e. x ∈ Ca,b[0,T ].
More precisely, the quotient space E(Ca,b[0, T ])/≈ is again denoted by the same
symbol E(Ca,b[0,T ]) in the rest of this paper.

Theorem 4.3. Let Ψw ∈ E(Ca,b[0, T ]) be an exponential-type functional of the form
(4.1). Then, for all real q , 0, the L1 analytic GFFT of Ψw, T (1)

q (Ψw), exists and is
given by the formula

T (1)
q (Ψw)(y) = Ψw,q,a(y) (4.6)

for s-a.e. y ∈ Ca,b[0, T ], where Ψw,q,a is given by (4.2) above. Thus, T (1)
q (Ψw) is an

element of E(Ca,b[0,T ]).
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Proof. By the change of variable theorem and (2.3), for every ρ > 0,

Ex[exp{ρ(w, x)∼}] = exp
{
ρ2

2
‖w‖2C′a,b + ρ(w, a)C′a,b

}
.

Thus we obtain, for all λ > 0 and s-a.e. y ∈ Ca,b[0,T ],

Tλ(Ψw)(y) = exp{(w, y)∼}Ex[exp{λ−1/2(w, x)∼}]

= exp
{
(w, y)∼ +

1
2λ
‖w‖2C′a,b + λ−1/2(w, a)C′a,b

}
.

The last expression is an analytic function of λ throughout C+ for all y ∈ Ca,b[0,T ]. In
view of Definition 3.2, T (1)

q (Ψw) exists and is given by (4.6) for all q ∈ R \ {0}. �

Remark 4.4. Let F be an element of E(Ca,b[0,T ]). Then F can be written as

F ≈
n∑

j=1

c jΨw j (4.7)

for a finite sequence {w1, . . . ,wn} of functions in C′a,b[0,T ] and a sequence {c1, . . . , cn}

in C. Since the analytic GFFT T (1)
q is linear, from (4.6), (4.2) and (4.3), it follows that

T (1)
q : E(Ca,b[0,T ])→ E(Ca,b[0,T ]) is a vector space epimorphism.

The following corollary follows from (3.1), (4.6), (4.2) and (4.3).

Corollary 4.5. Let Ψw be as in Theorem 4.3. Then, for all real q , 0, the generalised
analytic Feynman integral Eanfq [Ψw] of Ψw exists and is given by the right-hand side
of (4.3). Thus, in view of (4.7), every exponential-type functional F is generalised
analytic Feynman integrable.

In our next theorem, we obtain the CP of functionals in E(Ca,b[0,T ]).

Theorem 4.6. Let Ψw1 and Ψw2 be exponential-type functionals of the form (4.1). Then
the CP of Ψw1 and Ψw2 , (Ψw1 ∗ Ψw2 )q, exists for all real q , 0 and is given by

(Ψw1 ∗ Ψw2 )q(y) = K(w1−w2)/
√

2,q,aΨ(w1+w2)/
√

2(y) (4.8)

for s-a.e. y ∈ Ca,b[0,T ], where K(w1−w2)/
√

2,q,a is the complex number given by (4.3) with

w replaced by (w1 −w2)/
√

2. Furthermore, (Ψw1 ∗Ψw2 )q is an element of E(Ca,b[0,T ]).

Proof. Proceeding as in the proof of Theorem 4.3, for all λ > 0 and for s-a.e.
y ∈ Ca,b[0,T ],

(Ψw1 ∗ Ψw2 )λ(y) = Ex

[
Ψw1

(y + λ−1/2x
√

2

)
Ψw2

(y − λ−1/2x
√

2

)]
= exp

{ (w1 + w2, y)∼
√

2

}
Ex

[
exp

{ 1
√
λ

(w1 − w2
√

2
, x

)∼}]
= exp

{(w1 + w2
√

2
, y

)∼}
exp

{ 1
2λ

∥∥∥∥∥w1 − w2
√

2

∥∥∥∥∥2

C′a,b

+ λ−1/2
(w1 − w2
√

2
, a

)
C′a,b

}
.
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But the last expression is an analytic function of λ throughout C+ for all y ∈ Ca,b[0,T ].
Hence, in view of Definition 3.3, (Ψw1 ∗ Ψw2 )q exists and is given by

(Ψw1 ∗ Ψw2 )q(y)

= exp
{(w1 + w2

√
2

, y
)∼

+
i

2q

∥∥∥∥∥w1 − w2
√

2

∥∥∥∥∥2

C′a,b

+ (−iq)−1/2
(w1 − w2
√

2
, a

)
C′a,b

}
= K(w1−w2)/

√
2,q,aΨ(w1+w2)/

√
2(y)

(4.9)

for all q ∈ R \ {0} and s-a.e. y ∈ Ca,b[0,T ]. Since E(Ca,b[0,T ]) is a complex algebra,

(Ψw1 ∗ Ψw2 )q ≈ K(w1−w2)/
√

2,q,aΨ(w1+w2)/
√

2

≈ K(w1−w2)/
√

2,q,aΨw1/
√

2(y)Ψw2/
√

2

(4.10)

is an element of E(Ca,b[0,T ]). �

Remark 4.7. The class E(Ca,b[0, T ]) of exponential-type functionals is a non-
commutative algebra with the operation ∗.

The following corollary follows immediately from (4.10).

Corollary 4.8. Let Ψw ∈ E(Ca,b[0, T ]) be given by (4.1). Then, for all real q , 0,
(Ψw ∗ Ψ0)q and (Ψ0 ∗ Ψw)q are elements of E(Ca,b[0,T ]). Also, it follows that

(Ψw ∗ Ψ0)q(y) = Kw/
√

2,q,aΨw/
√

2(y)

for s-a.e. y ∈ Ca,b[0, T ], where Kw/
√

2,q,a is the complex number given by (4.3) with w

replaced by w/
√

2, and

(Ψ0 ∗ Ψw)q(y) = Kw/
√

2,q,−aΨw/
√

2(y)

for s-a.e. y ∈ Ca,b[0, T ], where Kw/
√

2,q,−a is the complex number given by (4.5) with w

replaced by w/
√

2.

Applying simple modifications of the proofs of Theorems 4.3 and 4.6, and using
the parallelogram equality

‖w1 + w2‖
2
C′a,b

+ ‖w1 − w2‖
2
C′a,b

= 2
(
‖w1‖

2
C′a,b

+ ‖w2‖
2
C′a,b

)
,

we can obtain the following corollary.

Corollary 4.9. Let Ψw1 and Ψw2 be as in Theorem 4.6. Then, for all real q , 0,
T (1)

q ((Ψw1 ∗ Ψw2 )q), T (1)
q ((Ψw1 ∗ Ψ0)q) and T (1)

q ((Ψ0 ∗ Ψw2 )q) all exist and are elements
of E(Ca,b[0,T ]). Furthermore, for all real q , 0,

T (1)
q

(
(Ψw1 ∗ Ψw2 )q

)
(y) = T (1)

q
(
(Ψw1 ∗ Ψ0)q

)
(y)T (1)

q
(
(Ψ0 ∗ Ψw2 )q

)
(y)

for s-a.e. y ∈ Ca,b[0,T ].
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Remark 4.10. Any functionals F and G in E(Ca,b[0, T ]) can be represented as linear
combinations of exponential-type functionals. Thus, for all real q , 0, (F ∗ G)q,
(F ∗ Ψ0)q, (Ψ0 ∗G)q, T (1)

q ((F ∗G)q), T (1)
q ((F ∗ Ψ0)q) and T (1)

q ((Ψ0 ∗G)q) all exist and
are elements of E(Ca,b[0,T ]). Furthermore, for all real q , 0,

T (1)
q

(
(F ∗G)q

)
(y) = T (1)

q
(
(F ∗ Ψ0)q

)
(y)T (1)

q
(
(Ψ0 ∗G)q

)
(y) (4.11)

for s-a.e. y ∈ Ca,b[0,T ].

5. A representation for the inverse GFFT

In [1, 2, 8–11], the authors established the existence of the analytic FFT Tq(F) for
F in several large classes of functionals on the Wiener space C0[0, T ]. Specifically,
they demonstrated that for all real q , 0,

T−q(Tq(F)) ≈ F,

where Tq denotes the analytic FFT on C0[0, T ]. That is, the analytic FFT ‘Tq’ acting
on various classes of functionals on C0[0, T ] has the inverse transform ‘T−q’. On the
other hand, for almost every functional F on Ca,b[0, T ], T (1)

−q (T (1)
q (F)) , F. This raises

the question of how to construct an inverse transform of the analytic GFFT.
There have been several recent attempts to represent the inverse GFFT [4, 6, 7]. In

this section, we define another function space transform via the CP of functionals on
Ca,b[0, T ]. We then investigate fundamental relationships among the analytic GFFT,
the new function space transform and the CP. We also construct an inverse transform
of the analytic GFFT for the functionals in the algebra E(Ca,b[0, T ]). The following
observations will be very useful in the development of our inverse GFFT.

In view of Definitions 3.2 and 3.3,

T (1)
q (F)(y) = Eanfq

x [F(y + x)] = Eanfq
x

[
F
(√

2
(y + x
√

2

))]
=

(
F(
√

2 ·) ∗ Ψ0
)
q(y).

However, by the effect of the drift function a(t) of the GBMP introduced in Section 2,

Eanλ
x [F(x)] , Eanλ

x [F(−x)]

for almost every functional F on Ca,b[0,T ]. This yields

T (1)
q (F)(y) , Eanfq [F(y − x)]

and so the CP of functionals on Ca,b[0,T ] is not commutative.
The above discussion leads us to the following definition for the inverse GFFT on

the function space Ca,b[0,T ]. Given a functional F on Ca,b[0,T ], let

T +
q (F)(y) ≡

(
F(
√

2 ·) ∗ Ψ0
)
q(y) (5.1)

and

T−q (F)(y) ≡
(
Ψ0 ∗ F(

√
2 ·)

)
q(y). (5.2)
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We have the identities

T +
q (F)(y) = Eanfq

x [F(y + x)] = T (1)
q (F)(y), (5.3)

T−q (F)(y) = Eanfq
x [F(y − x)],

(F ∗ Ψ0)q(y) = T +
q (F( · /

√
2))(y), (5.4)

(Ψ0 ∗ F)q(y) = T−q (F( · /
√

2))(y) (5.5)

for s-a.e. y ∈ Ca,b[0,T ] if the transforms exist.

Lemma 5.1. Let Ψw ∈ E(Ca,b[0,T ]) be as in Theorem 4.3. Then:

(i) for all real q , 0 and s-a.e. y ∈ Ca,b[0,T ],

T +
q (Ψw)(y) = T (1)

q (Ψw)(y) = Ψw,q,a(y), (5.6)

where Ψw,q,a is given by (4.2); and
(ii) for all real q , 0 and s-a.e. y ∈ Ca,b[0,T ],

T−q (Ψw)(y) = Ψw,q,−a(y), (5.7)

where Ψw,q,−a is given by (4.4).

Proof. Equation (5.6) follows from (5.1) and (5.3) with F replaced by Ψw and (4.6);
(5.7) follows from (5.2) with F replaced by Ψw. �

Remark 5.2. (i) Using (4.7), the fact that T−q is linear and (5.7), one can see that
T−q : E(Ca,b[0,T ])→ E(Ca,b[0,T ]) is a vector space epimorphism.

(ii) By a close examination, for each exponential-type functional F ∈ E(Ca,b[0,T ]),

T +
q (T−q (F)) ≈ T−q (T +

q (F)),

that is,
T (1)

q (T−q (F)) ≈ T−q (T (1)
q (F)).

Our next result now follows easily from (4.7), (4.11), (5.4), (5.5), (5.6) and (5.7).

Proposition 5.3. Let F and G be elements of E(Ca,b[0,T ]). Then, for all real q , 0,

T (1)
q ((F ∗G)q)(y) = T (1)

q

(
T (1)

q

(
F
(
·
√

2

)))
(y)T (1)

q

(
T−q

(
G
(
·
√

2

)))
(y)

and
T−q ((F ∗G)q)(y) = T−q

(
T (1)

q

(
F
(
·
√

2

)))
(y)T−q

(
T−q

(
G
(
·
√

2

)))
(y)

for s-a.e. y ∈ Ca,b[0,T ], respectively.

Theorem 5.4 below follows easily from (5.6) and (5.7) and the fact that E(Ca,b[0,T ])
is the linear span of the exponential-type functionals.
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Theorem 5.4. Let F be an element of E(Ca,b[0,T ]). Then, for all real q , 0,

T−−q(T (1)
−q (T−q (T (1)

q (F)))) ≈ F.

That is, in view of (4.7), (5.6) and (5.7), the L1 analytic GFFT, T (1)
q : E(Ca,b[0, T ])→

E(Ca,b[0, T ]), is a vector space automorphism and the GFFT T (1)
q has the inverse

transform {
T (1)

q
}−1

= T−−q ◦ T (1)
−q ◦ T−q .

Remark 5.5. We finally emphasise that the inverse transform of the L1 analytic GFFT
T (1)

q cannot be represented as a single analytic GFFT. However, we have the following
diagram:

E(Ca,b[0,T ])
T (1)

q ≡T +
q //

jj

{T (1)
q }
−1≡T−−q◦T

(1)
−q ◦T

−
q

E(Ca,b[0,T ])

T−q

��
E(Ca,b[0,T ])

T−−q

OO

E(Ca,b[0,T ])
T (1)
−q≡T +

−q

oo

In Theorem 5.4, we see that the composition of transforms T−−q ◦ T (1)
−q ◦ T−q on

E(Ca,b[0, T ]) is an inverse transform of T (1)
q . Moreover, we have the six possibilities

for the inverse transform of T (1)
q .

T−−q ◦ T (1)
−q ◦ T−q = T−−q ◦ T−q ◦ T (1)

−q = T (1)
−q ◦ T−−q ◦ T−q

= T (1)
−q ◦ T−q ◦ T−−q = T−q ◦ T−−q ◦ T (1)

−q = T−q ◦ T (1)
−q ◦ T−−q.

In a similar way to the discussion of the inverse transform of T (1)
q , it also follows that{

T−q
}−1

= T (1)
−q ◦ T−−q ◦ T (1)

q .
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