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Abstract. It was proved by Ginzburg, Mirkovic and Vilonen that the G(O)-equivariant perverse
sheaves on the affine Grassmannian of a connected reductive group G form a tensor category
equivalent to the tensor category of finite dimensional representations of the dual group G".
In this paper we construct explicitly the action of GV on the global cohomology of a perverse
sheaf.
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0. Introduction

It was proved by Ginzburg, Mirkovic and Vilonen that the G(O)-equivariant
perverse sheaves on the affine Grassmannian of a connected reductive group G form
a tensor category equivalent to the tensor category of finite-dimensional repre-
sentations of the Langlands dual group GV (see [G] and [MV]). The proof uses
the Tannakian formalism. The purpose of this paper is to explicitly construct
the action of G¥ on the global cohomology of a perverse sheaf. More precisely,
we define the action of the Chevalley generators of the Lie algebra of the group
GY and prove that they satisfy the Serre relations. In order to do so, we first prove
that the Chevalley generators are primitive with respect to the coproduct in Lemma
2.3. Then we check the relations in the minuscule and quasi-minuscule cases.
The formula for the action of the generators is not new in the sense that it is forced
by the compatibility of the above-mentioned equivalence of categories with
restrictions to Levi subgroups.

It would be interesting to find a g-analogue of this construction. It would give the
global counterpart to [BG].
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1. Notations and Reminder on Affine Grassmanians

1.1. Let G be a connected reductive complex algebraic group. Let B, T, be a Borel
and a Cartan subgroup of G. Let U C B be the unipotent radical of B. Let B~ a
Borel subgroup such that BNB~  =T7. Set Xy =Hom(7,G,) and X} =
Hom (G,,, T) be the weight an the coweight lattice of G. For simplicity, we write
X =Xr and XV = Xj. Let (, ):X x XV — 7Z be the natural pairing. Let R be
the set of roots, R" the set of coroots. Let R. C R, R} C R be the subsets of positive
and negative roots and coroots. Let X, C X, X/ C X" be the subsets of dominant
weights and coweights. Let p; € X be half the sum of all positive roots. If there
is no ambiguity we simply write p instead of p,;. Let G¥ and Z(G) be the dual group
and the center of G. Let oy, o, i € I, be the simple roots and the simple coroots,
and let w;, w; be the fundamental weights and coweights. For any root o € R,
let U, C G be the corresponding root subgroup. If o =o;, i € I, we simply set
U =U, and U7 = U_,,. Let W be the Weyl group of G. For any i € I let s; be
the simple reflexion corresponding to the simple root «;.

1.2. Let K = C((¢)) be the field of Laurent formal series, and let O = C[[7]] be the
subring of integers. Recall that G(O) is a group scheme and that G(K) is a group
ind-scheme. The quotient set Gr% = G(K)/G(0) is endowed with the structure of
an ind-scheme. We may write Gr instead of Gr%, hoping that it does not cause con-
fusion. For any coweight /¥ € XV, let t*" € T(K) be the image of ¢ from the group
homomorphism 1¥: G,,(K) — T(K). If /¥ is dominant, set ¢;» = r* G(0)/G(0) €
Gr. The G(O)-orbit Gr;v = G(O)-e;v is connected and simply connected. Let
Gr,v be its Zariski closure. Let Pg be the category of G(O)-equivariant perverse
sheaves on Gr. For any 1", let ZC,» be the intersection cohomology complex on
Gr,;v with coefficients in C. Consider the fiber product G(K) x () Gr. It is the
quotient of G(K) x Gr by G(O), where ue G(O) acts on G(K)x Gr by
(g, x)— (gu~', ux). The map

D1 G(K) xg0) Gr — Gr, (g, x)1— gey

is the locally trivial fibration with fiber Gr associated to the G(O)-bundle
p: G(K) — Gr. Thus G(K) xg(o) Gr is an ind-scheme: it is the inductive limit of
the subschemes p~'(Gr;v) x (o) Gr,y. Consider also the map

m: G(K) xg) Gr — Gr, (g, x)1— gx.

For any 2{,/; € X}/ let IC,v »IC;y be the direct image by m of the intersection
cohomology complex of the subvariety

P_](§A,V) X G(0) ag; C G(K) xgo) Gr.

The complex ZC;v xZC;y is perverse (see [MV], and [NP, Corollaire 9.7] for more
details). It is known that the cohomology sheaves of the complex ZC,v are pure
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through an argument similar to [KT] (see also KL]). It is also known that any object
in Pg is a direct sum of complexes ZC;v (see [BD, Proposition 5.3.3 (i)] for a proof).
Thus we get a convolution product x : Pg x Pg — Pg. It is the convolution product
defined by Mirkovic and Vilonen.

1.3. Let P C G be a parabolic subgroup of G, N C P be the unipotent radical,
M = P/N be the Levi factor. Let M’ = [M, M] be the semisimple part of M. Con-
sider the diagram Gr¢ < Gr” 5 GrM ,where the maps y and 7 are induced by
the embedding P C G and the projection P — M. The fibers of © are N(K)-orbits.
Observe that Gr" is not connected. The connected components of Gr are labelled
by characters of the center of the dual group M. Let G c Gr™ be the
component associated to 6" € Xzusv). By definition, e;v € G if and only if
the restriction of 1" to Z(M"V) coincides with 0. The element p — p,, belongs to
X7y Put

Grtr= || G
2(0,p—pa)=n

The following facts are proved in [BD, Section 5.3].

PROPOSITION. (a) The functor nyy* gives a map res “M: Pg — Py = B, Pu.nl—nl,
where Py, is the subcategory of M(O)-equivariant perverse sheaves on Gr™™".

(b) For any £, F € Pg we have res “M (& » F) = (res "M &) x (res "M F).

(c) For any & € Pg we have H*(Gr, £) = H*(Gr, res ™M),

(d) If Py C Pis a parabolic subgroup and M, is its Levi factor then res ™M maps
Pur to Py, and res M = res MM1 o res M, ]

1.4. Let g be the affine Kac-Moody Lie algebra associated to G. Let @¢ be the fun-
damental weight of g which is trivial on Lie(7"). Let W} be the irreducible integrable
highest-weight module of g with higest weight @¢. Let 7 be the corresponding group
homomorphism G(K) — PGL(W)) (see [Ku, Appendix C], for instance). The central
extension G(K ) of G(K) is the pull-back n*GL(W}), where GL(W;) must be viewed as
a C*-principal bundle on PGL(W},). The restriction of the central extension to G(0),
denoted by (~?(0), splits, i.e. G(O) = G(0) x C*. Fix a highest-weight vector
wo € Wy. Let L be the pull-back of Op(l) by the embedding of ind-schemes
1: Gr% < P(W)) induced by the map

G(K) — P(Wy), g— [C - gw].

The sheaf Lg is obviously algebraic.

1.5. For any i € I let P; be the corresponding subminimal parabolic subgroup of G.
Let N; C P; be the unipotent radical and put M; = P;/N;. Hereafter we set

ires =res™i| 7=, vi=7v, Zi=ZM;) and L;=Ly,.
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The product by the first Chern class of £; gives a map
I H*(Gr™i &) — H*(Gr™i | §),
for any £ € Pyy,.

1.6. For any u¥ € XV set Syv = U(K) - e,. It was proved by Mirkovic and Vilonen
that if £ € Pg, then

HYGr,&) = @ H"" (S, E), (a)

uwexv

(see [MV], and [NP] for more details). For any i € I and any p* € XV set also
S %" = Ui(K) - e,» € Gr™'. The Grassmanian Gr"’ may be viewed as the set of points

of Gr which are fixed by the action of the group Z; by left translations. This fixpoints

subset is denoted by %Gr. In particular, Sﬁf" may be viewed as a subset of Gr.

2. Construction of the Operators e;, f;, h;

2.1. To avoid useless complications, hereafter we assume that G is semi-simple. The
generalization to the reductive case is immediate. For any i € I and &£ € Pg, let
e; be the composition of the chain of maps

H*(Gr, §) = H*(Gr™', ires £) 2> H***(Gr™!, ires ) = H*(Gr, &).
Moreover, set

b = @D (. ) idis,. e H*(Gr, €) — H'(Gr, ).
2Yexv

By the hard Lefschetz theorem there is a unique linear operator f;: H*(Gr, £) —
H*7%(Gr, &) such that (e;, h;, f,) is a s[(2)-triple.

THEOREM. For any £ € Pg, the operators e;, £;, h;, with i € I, give an action of the
dual group G” on the cohomology H*(Gr, &). O

2.2. The rest of the paper is devoted to the proof of the theorem.

LEMMA. For all ¥ € XV we have

ei(H(S;v, ) C HY(S;v 150, E) and  Ti(HI(S;v, ) C HY(S;v_yy, E).
Proof. Tt is sufficient to check the first claim. Since

Sy = N(K)U(K) - e, = ;' (S},
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we get, for any £ € Pg,
H (S, &) = HX(S), ires €). (a)
Now, if £ € Py, then
LCHE(SM, ) = L(H*(SM £)) ¢ HP (G, €).
Moreover, for all ¢ € XV >~ X7v we have
S NGrM? £ = 1z =07
Thus, if £ € Py, then

LHZ(S), €) = @) HE (S, ©),
uv

where the sum is over all u¥ € XY >~ Xpv such that
1z = 2 zary  and (o, 1Y) = (0, 27 + o).

The only possibility is u¥ = 4" + o). ]

The lemma implies that [h;, e;] = (a;, ocjv) e; for all i,j € I. Since e, f;, are locally
nilpotent and since [e;, f;] =h; by construction, if [e;, f;] =0 for any i +#j, then
the operators e;, f;, h;, give a representation of the Lie algebra g” of G on the
cohomology group H*(Gr, ) for any & € Pg (see [Ka, Section 3.3]). The action
of the operators h; lifts to an action of the torus of G". Thus, the representation
of the Lie algebra g" lifts to a representation of the group G. By (1.3.d), in order
to check the relation [e;, f;] = 0 for i # j we can assume that the group G has rank 2.

2.3. Recall that any complex ZC;v is a direct factor of a product ZC; *
ICjy % ---xIC;v such that the coweights /; are either minuscule or quasi-minuscule
(see [NP, Proposition 9.6]). Observe that [NP, Lemmes 10.2, 10.3] imply indeed that
if the set of minuscule coweights is nonempty, then we can find such a product with
all the 2.”’s beeing minuscule. Recall also that for any £, F € Pg there is a canonical
isomorphism of graded vector spaces

HX S ExF)~ @ HI(Suw.&) @ HI(Sw. F), (a)

Hv+‘,v:;'\/

(see [MV], and [NP, Proof of Theorem 3.1] for more details). Let A(e;), A(f;), A(h;), be
the composition

H*(Gr, £) ® H*(Gr, F) = H*(Gr, £+ F) 13 H*(Gr, £  F)
— H*(Gr, &) ® H*(Gr, F),

where the equalities are given by (1.6.a) and (a).
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LEMMA. If x = e;, f;,h;, then A(x)=xQ1+1Q x.

Proof. If x = h; the equation is obvious. If x = f; it is a direct consequence of the
two others since a sl(2)-triple (e;, h;, f;) is completely determined by e; and h;. Thus,
from (2.3a), (1.3b) and (1.3c), it suffices to check the equality when G = SL(2)
and x = e;. Then, the operator e; is the product by the first Chern class of the line
bundle Lsi2) on Gri"@. More generally, for any simply connected group G, the
G(0)-equivariant line bundle £; on the Grassmannian Gr lifts uniquely to a
G(K)-equivariant line bundle on the ind-scheme G(K) xg) Gr. Let denote it by
L>. The group G(O) acts on the pull-back of Ls by the projection G(K)x
Gr — Gr. The quotient is the bundle £;. The vector bundle £, is algebraic, i.e.
its restriction to the subscheme p~!(Gr ;) xG(o) Gr;y is an algebraic vector bundle
for any 4, 2;. Indeed, there is a normal pro-unipotent closed subgroup H of
G(0) such that G(O)/H is finite-dimensional and H acts trivialy on ﬁxr’ﬁa-
Since H is pro-unipotent, the restriction of Lg to Gr;y is G(O)/H-equivariant. Thus
the restriction of £y to p~'(Gr;v) Xg(0) Gr,y is identified with the algebraic sheaf
on

(p~'(Gry)/H) X0y Gry

induced by the restriction of Lg to G;@v. Consider also the pull-back L of the line
bundle L by the Ist projection p: G(K) X gy Gr — Gr. We claim that

m*L‘G =L QL. (b)

Let w: G(K) x G(K) — G(K) be the multiplication map. The product in the group
G(K) gives an isomorphism of bundles

WpLe =~ p*Le®Rp*Le

on G(K) x G(K). This isomorphism descends to the fiber product G(K) x (o) Gr and
implies (b). Observe now that (a) is induced by the canonical isomorphism

(p_l(ﬁlr) X G(0) GA;) ﬂm_](S/lv) o~ I_l (SHV ﬁazr) X (Syv ﬁ@g)
‘uv+vv:/1v

resulting from the local triviality of p (see [NP, Lemme 9.1]). By (b) this isomorphism
identifies the restrictions of the line bundles m*L; and L5 X L. Let I¢ be the operator
of product by the first Chern class of L on the global cohomology of the perverse
sheaf £ € Pg. Then (a) gives le,r = e ® 1 + 1 Q@ I. O

2.4. From Section 2.3 and (1.3.d) we are reduced to check the relation [e;, f;] = 0,
i #j, on the cohomology group H*(Gr, ) when G is adjoint, has rank 2, and
& =1C,v, with ¥ minuscule or quasi-minuscule. For any dominant coroot A"
let Q(2") C XV be the set of weights of the simple G¥-module with highest weight
4" . Recall that
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(a) thecoweight 2¥ € XY — {0} is minuscule ifand only if Q(4") = W - 1", ifand only
if (@, 1Y) = 0, %1, for all o € R,

(b) the coweight 1" € XY —{0} is quasi-minuscule if and only if Q(1")=
W .2 U {0}, if and only if A" is a maximal short coroot. Moreover if 1" is
quasi-minuscule then (o, 1Y) =0, £1, for all & € R — {£1).

For any coweight 1" we consider the isotropy subgroup G,v of ¢;v in G. Thus

Gy=T [] U

(@) <0

In particular B~ C G,v if A¥ is dominant, and we can consider the line bundle £(1) on
G/G, associated to the weight 4. The structure of Gr,v for 4” minuscule or quasi-
minuscule is described as follows in [NP].

PROPOSITION. (c) If Sy N Gryv # @, then u¥ € Q(LY).
(d) If,llv e Ww. /1\/, then SHV m@;h\/ = Suv N GI‘;'V.
(e) If 2 € XY is minuscule, then

@;LV = GI';VV = G/G;LV and Sw-)vv NGr,v ~ UWG;VV/G;LV Ywe W.

(f) Assume that 2" € X} is quasi-minuscule. Then Gry ~ L(2) and Gr,v ~
L(A) U ey} as a G-varieties. Moreover,

UIVGAV/G)LVv ’Lf w-AeR_,
S,y NGrv ~ =
LlowG,yjGs o w4 € Ry

3. Proof of the Relation [e;, f;] =0

3.1. Assume that G is adjoint, has rank two, and set I ={1,2}. The Bruhat
decomposition for M; implies that M;e;w = Use ;v U U;U_,e; . Thus,

(@) if (a;, 47) > 0 then Me;w = Mie ;v = Uie;v U feg v},
(b) if (o;, AY) =0 then M;e;v = {e;v}.

3.2. Assume that 4" is a minuscule dominant coweight. Fix u¥ = w- 1" withw € W,
and fix i € 1. One of the following three cases holds
(a) we have (a;, u¥) =1, and

M; M;
S‘u\/ N GI';Lv = U,’(fHV, S,uvfac[v N Griv = {euv_xl_v},

M:
GI‘Mv' = U,‘é"uv U {euv,ay},
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(b) we have (a;, u¥) = —1, and

SMi

M.
oy D Grv = Uieyv 1y, SN Gr,v = {ey},

Gr%i — Uie,llv"r%,-v U {euv},
(¢) we have (a;, u¥) =0, and S::’v[" N Gryy = Grﬁ{" = {e}.
Obviously, the sheaf iresZC,v is supported on Gr;v N Gr™. Thus, by (2.2.a) and
Lemma 2.2, if fye;(H}(S,,ZC;v)) # {0} then

S nGry, S

M, M,
,UVJFOCY mGr;'V, S/lerO(;/ ﬂGrzv, SH ; ﬂGriv

vty —o
are non empty. In particular, we get
@) =—1. (o’ +a) =1
Since 1" is minuscule, p¥ € W - 1Y, and (a2, a)) < 0, we get
(o, u)=1, (ar,n)=—-1, (o2,0/)=0.
Similarly,
eify(H (S, IC;) # {0} = (. ) =1, (. p)=—1, (a1,25) =0.

Thus we are reduced to the case where G = PGL(2) x PGL(2), M| >~ PGL(2) x {1},
M, = {1} x PGL(2), 2" = o] + 0y, u¥ = —») + wy, and ZC,v is the constant sheaf
on Gr,v. Then,

Grp ~P'x P!, G NGrp ~ P! x {0, 00}, Gr*>nNGry ~ {0, 00} x P

Recall that, with the notations of Section 1.4, the fiber of £51 at e,v is identified with
Ct*"wy. Recall also that the extended affine Weyl group Wix X" acts on the lattice
Hom (T x G,,, G,,) in such a way that 1" - @y = 4+ @ for all ¥ € XV (see [PS,
Proposition 4.9.5], for instance). Thus, for any dominant coweight 4" the restriction
of L to the G-orbit G- e;v is the line bundle £(1) on G/G,v. In particular the
restriction of the line bundle £; to Gr}y' is Opi(l). Thus e =/®id and
e; = id ® /, where / is the product by the first Chern class of Opi(1). The relation
is obviously satisfied.

3.3. Assume that A" is a quasi-minuscule dominant coweight. Observe that if G is of
type A; x A;, Ay or By, then the set of minuscule coweights is nonempty. Thus, from
Section 2.3 we can assume that G is of type G». Let oy be the long simple coroot, and
let o be the short one. Then

2= o + 205, (o2, 0) = =3, (1, 05) = —1.
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Set £ = £(4) and £ = £ U {ey}. Then Gr,» N Gr is the fixpoints set of Z; on L, i.e.

Gr;v NG = {eg} U U Gr)l' where Gr)l = ZiL e,
wew.i”

Assume that p¥ =w- 4" with we W.

(@) If (o7, V) = 0 then Grz’f" = Z"£|(,uv. The torus T acts on the fiber [Ileﬂv by the
character u. Since u¥ # 0 and (o;, u¥) = 0, necessarily u(Z;) is nontrivial. Thus,
Gl‘%i =é€yv.

(b) If (o, u¥) = 2 then p¥ = o/ and Gr%" = Ll ,e,, - Moreover, since 4" is short and
o) is long we have i = 2. '

(¢) If (o, ) =1 then Grﬁ{” = Mie,» because

(WZ)=1and p’ € RY) = p* € Zoy = (o7, 1*) # 1.
In Case (b) we get (i =2)

M, M; —
Sx_vl N GI'/LV = ‘C|U,-€7v’ S_;_v N GI'AV = e,llv,
i i i

M; ~ o . ——M; -
Sy NGry =L"], ,, and Gra‘v = Llpe,
1 1

where the upperscript x means than the zero section has been removed. In Case (¢)
we get

Sﬁ{i ﬂa/lv = Ul‘E#V, SMi

V_gyV
b=y

— —M;
N Griv = E'uv_a’_v, and Gl‘ﬂv = Uie‘u\/ U Eﬂv_a!v.

Thus, for any p¥ € XV, Claim (2.2.a) and Lemma 2.2 imply that
@) if e)(H (S, IC;)) # {0} then (e, 1) = 1, or u¥ =0, or u¥ = —a1,
(e) if f2(HI(S,v,ZC;v)) # {0} then (o, u¥) =1, or ¥ =0, or u” = ay.

Observe that in Case (d) the identity (2.4.c) and Lemma 2.2 imply indeed that
w' #0, —ay, because

H(S,.ICpv) = HX (S IC;) = {0).

Thus, if fre(HX(S,v, ZC;v)) # {0} then (ar, 1Y) = —1 and (o2, ¥ + o) = 1. We get
(o2, u¥) = 4. This is not possible since p¥ € Q(1Y) and A" is quasi-minuscule.
Similarly, if e f2(H (S, ZC;v)) # 0 then (o, u) = —2. This is not possible either.
Thus, the relation [e, f5] = 0 is obviously satisfied. The relation [e,, f;] = 0 is proved
in the same way.
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