STRANGE TRIANGULAR MAPS OF THE SQUARE

g.L. Forti, L. Paganoni and J. Smítal

Abstract

We show that continuous triangular maps of the square $I^{2}, F:(x, y) \mapsto(f(x)$, $g(x, y)$), exhibit phenomena impossible in the one-dimensional case. In particular: (1) A triangular map F with zero topological entropy can have a minimal set containing an interval $\{a\} \times I$, and can have recurrent points that are not uniformly recurrent; this solves two problems by S.F. Kolyada. (2) In the class of mappings satisfying $\operatorname{Per}(F)=F i x(F)$, there are nonchaotic maps with positive sequence topological entropy and chaotic maps with zero sequence topological entropy.

1. Introduction

Let $I=[0,1]$ be the unit interval. By triangular map we always mean a continuous $\operatorname{map} F: I^{2} \rightarrow I^{2}$ of the form $F(x, y)=(f(x), g(x, y))=\left(f(x), g_{x}(y)\right)$. The map f of the corresponding dynamical system is called the base for F; and g_{x} is a map from the layer $I_{x}=\{x\} \times I$ to I. Recall that recent results by Kolyada and Sharkovsky show that the dynamical systems generated by triangular maps are essentially more complex than one-dimensional systems, regardless of the fact that for both the same version of Sharkovsky's theorem [14] on the coexistence of cycles is valid [9]; for other references, see [1] and the survey paper [10].

In the present paper we first give a solution to the following two problems from [10]:
P_{1} : Can a minimal set of a triangular map contain an interval?
P_{2} : Is the condition $h(F)=0$ equivalent to the property that any recurrent point of F is uniformly recurrent, in the class of triangular maps of the square?
(Here $h(F)$ denotes the topological entropy of F.) In Section 2 we provide examples showing that the answer to P_{1} is positive and to P_{2} negative. (See Theorem 1 below.) In Section 3 we exhibit other examples of strange triangular maps showing that some conditions characterising chaos in the sense of Li and Yorke in the one-dimensional

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.
case are not equivalent even in the class of triangular maps satisfying $\operatorname{Per}(F)=\operatorname{Fix}(F)$; it turns out that such maps can have positive sequence topological entropy without being chaotic (Theorem 2).

Throughout our paper we use standard terminology as, for example, in [10] (see also [2] or [15]). Some basic notion and results are stated in the text.

2. Solution of Kolyada's problems

Theorem 1. There are triangular maps $F_{1}, F_{2}: I^{2} \rightarrow I^{2}$ with the following properties:
(i) Both F_{1}, F_{2} have zero topological entropy.
(ii) F_{1} has a minimal set M containing an interval of the form $\{a\} \times I$.
(iii) F_{2} has a recurrent point which is not uniformly recurrent.

Remark 1. Recall that M is a minimal set for F if, for any $z \in M$, the ω-limit set $\omega_{F}(z)$ of z is the whole of M. Note that the projection of any minimal set for a triangular map F onto the x-axis is a minimal set for the base map f, and hence, a Cantor set or a cycle [15]. However, the second case implies $h(F)>0$, as can be easily verified (see also [9]), so our minimal set M is contained in $Q \times I$, where Q is a minimal ω-limit set of the Feigenbaum's type.

Proof: The proof of our theorem has three parts. First we introduce a general construction of triangular maps F with zero topological entropy, and then in the next two parts, by specifying parameters, we prove (ii) and (iii).

Part I. General construction. Let $f: I \rightarrow I$ be a continuous map of type 2^{∞} having a unique infinite ω-limit set Q such that $f \mid Q$ is one-to-one. In this case Q is homeomorphic to the space $\{0,1\}^{N}$ of sequences of two symbols equipped with a metric ρ of pointwise convergence defined, for example, by $\rho(\alpha, \beta)=\max \{1 / i ; \alpha(i) \neq \beta(i)\}$ for any distinct $\alpha=\{\alpha(i)\}$ and $\beta=\{\beta(i)\}$ in $\{0,1\}^{N}$. Moreover, f acts on Q as the adding machine, that is, for $\alpha \in\{0,1\}^{N}, f(\alpha)=\alpha+1000 \cdots$ where the addition is modulo 2 from left to right; for example, $f(101100 \cdots)=011100 \cdots, f(11100 \cdots)=$ $00010 \cdots$, et cetera. For details the reader is referred to [3] where the representation of Q is described; the concept of the adding machine was indicated in [13]. Clearly $\omega_{f}(x)=Q$ for any $x \in Q$; hence Q is a minimal set for f.

Our general map F with free parameters will be monotonic on any layer $I_{\boldsymbol{z}}$. This will imply $h(F)=0$. Indeed, we have (see [9])

$$
\sup \left\{h\left(F, I_{x}\right) ; x \in I\right\}+h(f) \geqslant h(F)
$$

where $h\left(F, I_{x}\right)$ denotes the topological entropy of the map $F: I^{2} \rightarrow I^{2}$ with respect to the compact subset I_{x}, that is, the entropy $h\left(F, I_{x}\right)$ is computed only from trajectories
starting from I_{x}. But since F^{i} is monotonic on I_{x} for any i, we clearly have $h\left(F, I_{x}\right)=$ 0 , and of course, $h(f)=0$ since f is of type 2^{∞}. Thus, $h(F)=0$. To have F monotonic on all layers, it suffices to define its restriction to the set $Q \times I$, monotonic on all layers, and then extend it continuously and monotonically to the whole of $I^{\mathbf{2}}$.

So we shall define F on $Q \times I$. As already mentioned, we may assume without loss of generality that Q is the space $\{0,1\}^{N}$ with the metric ρ as above. For any $k \geqslant 1$ and any $\alpha \in\{0,1\}^{2}$, let $\varphi(k, \alpha)$ be a monotonic continuous map $I \rightarrow I$ with the following properties:

$$
\begin{equation*}
\varphi(k, 10) \circ \varphi(k, 00)=\varphi(k, 11) \circ \varphi(k, 01)=I d \tag{1}
\end{equation*}
$$

where $I d$ is the identity map of I, that is, $\varphi(k, 1 i)$ is a left-inverse (but not necessarily a right-inverse) of $\varphi(k, 0 i), i=0,1$, and

$$
\begin{equation*}
\|\varphi(k, \alpha)-I d\|=\delta_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{2}
\end{equation*}
$$

We shall call any $\varphi(k, \alpha)$ a map of rank k.
Let $x \in Q, x=x(1) x(2) \cdots$; we shall call $x(3 i)$ the i-th control digit of x. Define g_{x} as follows. If all control digits of x are equal to 1 , let g_{x} be the identity map. Otherwise let the first zero control digit of x be the k-th one. Then put

$$
g_{x}=\varphi(k, x(3 k-2) x(3 k-1))
$$

Now let $\rho(u, v)<1 / 3 k$, for some $u, v \in Q$. If there exists $i \leqslant k$ with $u(3 i)=0$ $(=v(3 i))$ then $g_{u}=g_{v}$, otherwise $\left\|g_{u}-I d\right\| \leqslant \delta_{m}$ and $\left\|g_{v}-I d\right\| \leqslant \delta_{m}$ for some $m>k$. Hence, in any case $\left\|g_{u}-g_{v}\right\| \leqslant 2 \delta_{m}$ which by (2) implies $\lim _{u \rightarrow v}\left\|g_{u}-g_{v}\right\|=0$ and hence implies the continuity of $g_{x}(y)$ in $Q \times I$.

Next we prove some identities for F. Let $\underline{0}$ be the zero sequence in Q and let $y_{0} \in I$. Denote by y_{j} the second coordinate of $F^{j}\left(\underline{0}, y_{0}\right)$, for $j \geqslant 0$. Let $m \leqslant 4 \cdot 8^{k}$. Then

$$
\begin{equation*}
y_{m}=\varphi_{m} \circ \varphi_{m-1} \circ \cdots \circ \varphi_{1}\left(y_{0}\right) \tag{3}
\end{equation*}
$$

where every φ_{i} is a map of rank $\leqslant k+1$ since during the first $4 \cdot 8^{k}=2^{3 k+2}$ iterations, the $(k+1)$-th control digit of $f^{i}(\underline{0})$ is zero. If $m \geqslant 2^{2}$ then $\varphi_{4} \circ \varphi_{3} \circ \varphi_{2} \circ \varphi_{1}$ is the block

$$
\beta_{1}=\varphi(1,11) \circ \varphi(1,01) \circ \varphi(1,10) \circ \varphi(1,00)=I d
$$

(see (1)) and this block β_{1} repeats in (3) periodically with period 8 (since $f^{i}(\underline{0})$ begins with three zeros periodically with period 8). Hence, in (3) there are, from the right to left, the block β_{1}, then a block of four maps, then β_{1} again, et cetera.

Similarly, if $m \geqslant 2^{5}$ then $\varphi_{32} \circ \cdots \circ \varphi_{1}$ is the block β_{2} of the form

$$
\beta_{2}=\varphi^{4}(2,11) \circ \beta_{1} \circ \varphi^{4}(2,01) \circ \beta_{1} \circ \varphi^{4}(2,10) \circ \beta_{1} \circ \varphi^{4}(2,00) \circ \beta_{1}
$$

which, by $\beta_{1}=I d$ and (1), again gives $\beta_{2}=I d$. Block β_{2} repeats in (3) periodically with period $2^{6}=64$. By induction we get that the block β_{k} of the first $m_{k}=2^{3 k-1}$ maps in (3) amounts to the identity; so

$$
\begin{equation*}
y_{m_{k}}=y_{0} \quad \text { for } k \geqslant 1 \tag{4}
\end{equation*}
$$

and for large m the structure of (3) is

$$
\begin{equation*}
\cdots \circ \beta_{k} \circ \beta_{k}^{\prime \prime} \circ \beta_{k} \circ \beta_{k}^{\prime} \circ \beta_{k} \tag{5}
\end{equation*}
$$

where $\beta_{k}^{\prime}, \beta_{k}^{\prime \prime}, \cdots$ are blocks of the same length m_{k} as β_{k}. Since the maps of rank less than $k+1$ are organised into blocks $\beta_{i}, i \leqslant k$, that by (4) can be cancelled and since the number of appearances of $\varphi(k+1,00)$ in (3) for $m=2 m_{k}$ is equal to the number of n 's satisfying $0 \leqslant n<2 m_{k}$ for which the first k control digits in $f^{n}(\underline{0})$ are ones, that is $2 m_{k} / 2^{k}=2^{2 k}$, we get

$$
\begin{equation*}
y_{2 m_{k}}=\varphi^{2^{2 k}}(k+1,00)\left(y_{0}\right), \quad k \geqslant 1 \tag{6}
\end{equation*}
$$

and by (5) and (4), $y_{3 m_{k}}=y_{2 m_{k}}$. Similarly, $y_{4 m_{k}}=y_{0}=y_{5 m_{k}}$ and

$$
\begin{equation*}
y_{6 m_{k}}=\varphi^{2^{2 k}}(k+1,01)\left(y_{0}\right), \quad k \geqslant 1 . \tag{7}
\end{equation*}
$$

Thus we have constructed, under conditions (1) and (2) in particular, a triangular map $F: I^{2} \rightarrow I^{2}$ of zero topological entropy satisfying the identities (4)-(7).

Now we specify parameters to get F_{1} and F_{2}.
Part II. Proof of (ii). Let $\left\{r_{k}\right\}_{k=1}^{\infty}$ be a sequence of rational numbers from $(0,1)$, dense in I and such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} r_{k+1}^{1 / 2^{2 k}}=1 \tag{8}
\end{equation*}
$$

It is easy to construct such a sequence. Put $\delta_{k+1}=1-r_{k+1}^{1 / 2^{2 k}}$ and, for any $t \in I$,

$$
\begin{aligned}
& \varphi(k, 00)=\left(1-\delta_{k}\right) t+\delta_{k} \\
& \varphi(k, 10)=\max \left\{0,\left(t-\delta_{k}\right) /\left(1-\delta_{k}\right)\right\} \\
& \varphi(k, 01)=\left(1-\delta_{k}\right) t \\
& \varphi(k, 11)=\min \left\{1, t /\left(1-\delta_{k}\right)\right\}
\end{aligned}
$$

Note that the $\varphi(k, \alpha)$'s satisfy (1) and that $\|\varphi(k, \alpha)-I d\|=\delta_{k}$ which, by (8), implies (2). Let F_{1} be the function F from part I with the specification as above. Now (6) and (7) can be rewritten as

$$
\begin{array}{ll}
y_{2 m_{k}}=r_{k+1}\left(y_{0}-1\right)+1, & k \geqslant 1 \\
y_{6 m_{k}}=r_{k+1} y_{0}, & k \geqslant 1 . \tag{10}
\end{array}
$$

For any $y_{0} \in[0,1]$ the set $\left\{y_{2 m_{k}}, y_{6 m_{k}}\right\}_{k=1}^{\infty}$ is dense in I; indeed, it is dense in $\left[0, y_{0}\right]$ by (10) and in $\left[y_{0}, 1\right]$ by (9). And since both $f^{2 m_{k}}(\underline{0})$ and $f^{6 m_{k}}(\underline{0})$ have zeros at the first $3 k$ places, we have $\lim f^{2 m_{k}}(\underline{0})=\lim f^{6 m_{k}}(\underline{0})=\underline{0}$ for $k \rightarrow \infty$ and consequently

$$
\begin{equation*}
\omega_{F_{1}}(z) \supset\{\underline{0}\} \times I \quad \text { for any } z \in\{\underline{0}\} \times I . \tag{11}
\end{equation*}
$$

Put $M=\omega_{F_{1}}(\underline{0}, 0)$, and let $w=(u, v) \in M$. Since $F_{1}^{i}(w)$ visits any neighbourhood U of $\{\underline{0}\} \times I$ (note that $\left\{f^{i}(u)\right\}$ is dense in Q), $\omega_{F_{1}}(w)$ contains a point from $\{\underline{0}\} \times I$ and consequently, by (11), $\omega_{F_{1}}(w) \supset M$. Thus M is a minimal set for F_{1} containing the interval $\{\underline{0}\} \times I$, which proves (ii).
Part III. Proof of (iii). For any k, let ν_{k} and $r_{k+1}=\nu_{k+1}^{2 \boldsymbol{2 k}}$ be numbers such that

$$
\begin{equation*}
0<\nu_{k}<1, \quad \lim _{k \rightarrow \infty} \nu_{k}=1 \quad \text { and } \quad \lim _{k \rightarrow \infty} r_{k+1}=0 \tag{12}
\end{equation*}
$$

For $t \in I$ put

$$
\begin{equation*}
\varphi(k, 00)=\varphi(k, 11)=t^{\nu_{k}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(k, 01)=\varphi(k, 10)=t^{1 / \nu_{k}} . \tag{14}
\end{equation*}
$$

By (12)-(14), both (1) and (2) are satisfied. Let F_{2} be the function F from part I with the specification as above. Formulas (6) and (7) reduce to

$$
\begin{array}{ll}
y_{2 m_{k}}=y_{0}^{\Gamma_{k+1}}, & k \geqslant 1 \\
y_{6 m_{k}}=y_{0}^{1 / \tau_{k+1}}, & k \geqslant 1 . \tag{16}
\end{array}
$$

Put $y_{0}=1 / 2$, and $w=\left(\underline{0}, y_{0}\right)$. By (4), w is recurrent, that is, $w \in \omega_{F_{2}}(w)$. On the other hand, w is not uniformly recurrent. To see this assume the contrary. Take $U=Q \times[0,3 / 4]$ as a neigbourhood of w in the F_{2}-invariant set $Q \times I$. Let $m=m(U)$ be such that for any $i \geqslant 0$ there is a $j<m$ with $F_{2}^{i+j}(w) \in U$. Let k be such that $m_{k}>m$ and let $s>k$. Take $i=2 m_{s}$. Then $f^{i}(\underline{0})$ has zeros at the first $3 s$ places,
hence by (15), $y_{2 m_{s}+j}=\varphi_{j} \circ \cdots \circ \varphi_{2} \circ \varphi_{1}\left(y_{0}^{r_{s+1}}\right)$ where the maps $\varphi_{1}, \cdots, \varphi_{j}$ have rank $\leqslant k$ (see the definition of F_{2} on $Q \times I$), if $j<m$. Note that all maps $\varphi(k, \alpha)$, for all k and α, commute. Hence, it is easy to see that

$$
y_{2 m_{0}+j} \geqslant \varphi^{2^{2(k-1)}}(k, 10) \circ \cdots \circ \varphi^{2^{2}}(2,10) \circ \varphi(1,10)\left(y_{0}^{r_{4+1}}\right)
$$

since only the maps $\varphi(i, 10)=\varphi(i, 01)$ among the maps of rank i are pushing $y_{0}^{r_{a+1}}$ to the left, and since, after cancellation, the number of $\varphi(i+1, \alpha)$'s among $\varphi_{1}, \cdots, \varphi_{j}$, cannot exceed $2^{2 i}$. By (7) and (16) we get

$$
y_{2 m_{a}+j} \geqslant y_{0}^{r_{t+1} /\left(r_{1} \cdots r_{k}\right)}
$$

But because of (12), $\inf _{s>k} r_{s+1} /\left(r_{1} \cdots r_{k}\right)=0$. This means that for some $s>k$, $y_{2 m,+j}>3 / 4$, hence $y_{2 m_{s}+j} \notin U$ for any $j<m$, a contradiction. Thus, the point $\boldsymbol{w}=(\underline{0}, 1 / 2)$ is recurrent but not uniformly.

Remark 2. Our construction of maps F_{1}, F_{2} above was inspired by Kolyada's example of a triangular map F of type 2^{∞} with positive topological entropy [10]. Of course, in the latter case not every g_{x} is monotonic. However, it seems that the use of the binary representation of Q as in our theorem would simplify Kolyada's construction.

3. Chaotic and nonchaotic triangular maps

We shall say that a map $F: I^{2} \rightarrow I^{2}$ is chaotic (in the sense of Li and Yorke) if there are points $u, v \in I^{2}$ such that

$$
\begin{equation*}
0=\liminf _{n \rightarrow \infty}\left|F^{n}(u)-F^{n}(v)\right|<\underset{n \rightarrow \infty}{\limsup }\left|F^{n}(u)-F^{n}(v)\right| \tag{17}
\end{equation*}
$$

where $|u-v|$ denotes the distance in I^{2}.
A set $S \subset I^{2}$ is a scrambled set for F if (17) is satisfied for any distinct u and v in S. If, however, there exists $\varepsilon>0$ such that, for any distinct u and v in S,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|F^{n}(u)-F^{n}(v)\right| \geqslant \varepsilon, \tag{18}
\end{equation*}
$$

S is called an ε-scrambled set for F.
The next theorem gives a survey of some main conditions characterising chaos for continuous maps of the interval.

Theorem A. For a continuous map $f: I \rightarrow I$ the following conditions are equivalent:
(i) fis chaotic.
(ii) f has an uncountable scrambled set.
(iii) f has a non-empty perfect ε-scrambled set for some $\varepsilon>0$.
(iv) f has an infinite ω-limit set with two points non-separable by periodic neighbourhoods.
(v) f has a trajectory that cannot be asymptotically approximated by periodic trajectories.
(vi) f has a positive sequence topological entropy $h_{A}(f)$ with respect to a sequence A.
(vii) $\omega(f) \neq\left\{x \in I: \lim _{n \rightarrow \infty} f^{2^{n}}(x)=x\right\}$.
(viii) $\quad I s R(f) \neq \omega(f)$.
(ix) $f \mid \omega(f)$ is not stable in the sense of Ljapunov.
(x) $f \mid \Omega(f)$ is not stable in the sense of Ljapunov.

In the above theorem $h_{A}(f)$ denotes the sequence topological entropy with respect to an increasing sequence $A=\{n(i)\}_{i=1}^{\infty}$ of positive integers, defined for a continuous map f of a compact metric space X as follows [7]: For $m>0$ and $\varepsilon>0$, a set $E \subset X$ is an (A, m, f, ε)-span, if for any $x \in X$ there is some $y \in E$ such that $\left|f^{n(j)}(x)-f^{n(j)}(y)\right|<\varepsilon$ for $1 \leqslant j \leqslant m$. Let $S(A, m, f, \varepsilon)$ be an (A, m, f, ε)-span with the minimal possible number of points. Then

$$
\begin{equation*}
h_{A}(f)=\lim _{\varepsilon \rightarrow 0} \limsup _{m \rightarrow \infty} \frac{1}{m} \log \# S(A, m, f, \varepsilon) . \tag{19}
\end{equation*}
$$

(In particular, $h_{\mathbf{N}}(f)=h(f)$ if \mathbf{N} is the set of positive integers). In Theorem \mathbf{A}, $\Omega(f)$ is the set of non-wandering points, and $I s R(f)(=A P(f))$ is the set of isochronically recurrent (or almost periodic) points, that is of the points y such that for any neighbourhood U of y there is an $n>0$ such that $f^{i n}(y) \in U$ for any i.

Historical remarks to Theorem A. Condition (ii) is essentially the original notion of chaos by Li and Yorke [12] from 1975. Equivalence of (ii),(iii),(iv) and (v) was proved in 1986 in [16] for maps with zero topological entropy and in [8] for other maps. Keeping chronological order, (i) \Leftrightarrow (ii) was proved in [11], (vii) \Leftrightarrow (viii) \Leftrightarrow (ix) in [15] (however, parts of these equivalences are contained in Sharkovsky's papers from 1965-1968), (i) \Leftrightarrow (ix) in [4], (ix) $\Leftrightarrow(x)$ in [5], and (i) \Leftrightarrow (vi) in [6]. Note that [8] contains other conditions not displayed here.

In this section we exhibit examples indicating that for triangular maps, conditions from Theorem A are not equivalent. We shall consider only triangular maps $F: I^{2} \rightarrow I^{2}$ with linear base and with fixed layer I_{0}, that is, maps such that $(x, y) \mapsto\left(\lambda x, g_{x}(y)\right)$ and $g_{0}=I d$, where $\lambda \in(0,1)$ is fixed. Denote the class of such maps by \mathcal{T}_{λ}. Our main result in this section is the following

Theorem 2. There is $F \in \mathcal{I}_{\lambda}$ with positive sequence topological entropy, but satisfying no other condition from Theorem A. Moreover any ω-limit set of F is a one-point set.

Remark 3. It is easy to see that none of the conditions (vii), (viii), (ix), (x) can be satisfied for $F \in \mathcal{T}_{\lambda}$. Clearly, any F in \mathcal{T}_{λ} has zero topological entropy (see also [9]).

Remark 4. Surprisingly, the map F_{1} from Theorem 1 satisfies all conditions from Theorem A. To see this it suffices to use (4) and (9) to construct a perfect 1 -scrambled set $S \subset Q \times\{0\}$ supporting positive sequence entropy. To prove (v), (vii) and (viii) consider the point $u=(\underline{0}, 0)$, for (iv) points u and $v=(\underline{0}, 1)$. We omit the details.

We have also
Theorem 3. There is $F \in \mathcal{T}_{\lambda}$ such that
(i) F has a two-point scrambled set,
(ii) F has no scrambled set with more than two points,
(iii) F has an infinite ω-limit set with no two points separable by periodic neighbourhoods,
(iv) F has a trajectory not approximable by periodic trajectories,
(v) $h_{A}(F)=0$ for any sequence A.

From Theorems 2 and 3, the function constructed in Remark 6, and $F(x, y)=$ ($\lambda x, y$) we deduce immediately the following.

Corollary. In the class \mathcal{T}_{λ}, condition (vi) of Theorem A is independent of conditions (i), (iv) and (v) of the same theorem.

We conjecture that in \mathcal{T}_{λ} also conditions (ii) and (iii) are independent of (vi). (See also the examples at the end of our paper.)

Note that by Remark 3, in $\mathcal{T}_{\boldsymbol{\lambda}}$ we cannot prove more.
It is known that any scrambled set for a continuous map of the interval must have empty interior. Contrary to this, we provide examples indicating that in $\mathcal{T}_{\boldsymbol{\lambda}}$ there is a wide scale of possible scrambled sets between a two-point scrambled set and a non-empty open 1-scrambled set. (See Examples 1-4 below.)

The next two lemmas will be used later to construct some other examples; moreover Lemma 1 is used for the proof of Theorem 2.

Lemma 1. Let $\delta \in(0,1 / 2), \sigma \in(0,1)$ and let K, L, M be disjoint compact sets such that $K, L \subset(\lambda, 1)$ and $M \subset(\lambda, 1]$. Then there is a positive integer $s=s(\delta, \sigma)$ and a portion $\tau=\tau(K, L, M, \delta, \sigma)$ of a map $F \in \mathcal{T}_{\lambda}$, defined on $\left[\lambda^{2 \theta}, 1\right] \times I$, such that:
(i) $\|\tau-\psi\| \leqslant \delta$, where ψ is the corresponding portion of the map $(x, y) \mapsto$ $(\lambda x, y)$.
(ii) For any $(x, y) \in[\lambda, 1] \times I$

$$
\tau^{2 A}(x, y)=\left(\lambda^{2 x} x, y\right)=\psi^{2 x}(x, y)
$$

(iii) For any $(x, y) \in M \times I$ and any $i \leqslant 2 s$,

$$
\begin{gather*}
\tau^{i}(x, y)=\left(\lambda^{i} x, y\right)=\psi^{i}(x, y) \\
\tau^{d}(K \times I) \subset f^{s}(K) \times[0, \sigma] \tag{iv}\\
\tau^{s}(L \times I) \subset f^{s}(L) \times[1-\sigma, 1]
\end{gather*}
$$

Proof: Let $\varphi(k, \alpha), \alpha \in\{0,1\}^{2}$, be the same functions as in Part II of the proof of Theorem 1, with $\delta_{k}=\delta$. We recall the identity (1). Denote $\varphi(k, \alpha)$ by φ_{α}.

Define $s=s(\delta, \sigma)$ as the first integer such that

$$
\begin{equation*}
\varphi_{00}^{s}(0)=1-(1-\delta)^{s} \geqslant 1-\sigma ; \tag{20}
\end{equation*}
$$

note that we have also

$$
\begin{equation*}
\varphi_{01}^{s}(1)=(1-\delta)^{d} \leqslant \sigma . \tag{21}
\end{equation*}
$$

For $0 \leqslant i \leqslant s-1$, define g_{x} on the interval $\left[\lambda^{i+1}, \lambda^{i}\right]$ by $g_{x}=\varphi_{01}$ if $x \in f^{i}(K)$, $g_{x}=\varphi_{00}$ if $x \in f^{i}(L)$, and $g_{x}=I d$ if $x \in f^{i}(M) \cup\left\{\lambda^{i}, \lambda^{i+1}\right\}$. If (a, b) is a component of $\left(\lambda^{s}, 1\right] \backslash \bigcup_{i=0}^{a-1}\left(f^{i}(K \cup L \cup M) \cup\left\{\lambda^{i}\right\}\right)$, for $x \in(a, b)$ let $\left\{g_{x}\right\}$ be a family of leftinvertible continuous functions $I \rightarrow I$ depending continuously and monotonically on x and such that

$$
\lim _{x \rightarrow a^{+}} g_{x}=g_{a}, \quad \lim _{x \rightarrow b^{-}} g_{x}=g_{b}
$$

In the following we call such a family a connecting family (between g_{a} and g_{b} in the above case). Thus we have defined g_{x} for $x \in\left[\lambda^{4}, 1\right]$. Define now g_{x} on $\left[\lambda^{2 s}, \lambda^{d}\right)$ in the following way: if $x \in\left[\lambda^{d+i}, \lambda^{s+i-1}\right]$ and $\bar{x}=\lambda^{-2 i+1} x, 1 \leqslant i \leqslant s, g_{x}$ is the inverse to $g_{\bar{x}}$ when $g_{\bar{x}}$ belongs to a connecting family, while $g_{x}=\varphi_{10}$ or φ_{11} if $g_{\bar{x}}=\varphi_{00}$ or φ_{01} respectively. Define τ on $\left[\lambda^{2 s}, 1\right] \times I$ by $\tau(x, y)=\left(\lambda x, g_{x}(y)\right)$. Since $\left\|\varphi_{\alpha}-I d\right\|=\delta$ for any $\alpha \in\{0,1\}^{2}$ we have $\left\|g_{x}-I d\right\| \leqslant \delta$ for any g_{x} in a connecting family. This implies (i). Properties (ii) and (iii) are immediate and (iv) follows by (20) and (21).

Remark 5. With little changes it is possible to prove a more general version of Lemma 1 including also the case when K, L, M are subsets of $[\lambda, 1]$ and both λ and 1 belong to one of the sets K, L, M.

Lemma 2. Let $\sigma \in(0,1 / 2)$ and let $K, L \subset I$ be disjoint non-empty compact intervals with $\max K<\min L$. Then there is a positive integer $p=p(\sigma)$ and a portion $\pi=\pi(K, L, \sigma)$ of a map $F \in \mathcal{I}_{\lambda}$, defined on $\left[\lambda^{2 p+2}, 1\right] \times I$, such that:
(i) $\|\pi-\psi\|<\sigma$ where ψ is the corresponding portion of the map $(x, y) \mapsto$ $(\lambda x, y)$.
(ii) For any $(x, y) \in[\lambda, 1] \times I$
(iii)

$$
\begin{aligned}
& \pi^{2 p+2}(x, y)=\left(\lambda^{2 p+2} x, y\right)=\psi^{2 p+2}(x, y) \\
& \pi^{P}([\lambda, 1] \times K) \subset\left[\lambda^{p+1}, \lambda^{p}\right] \times[0, \sigma] \\
& \pi^{p}([\lambda, 1] \times L) \subset\left[\lambda^{p+1}, \lambda^{p}\right] \times[1-\sigma, 1]
\end{aligned}
$$

Proof: Let $p=p(\sigma) \geqslant 2$ be an integer such that $(1-\sigma)^{p} \leqslant \sigma$. Denote $a=$ $\max K, b=\min L$. Let $\theta=\theta(\sigma, K, L): I \rightarrow I$ be the continuous function such that $\theta(0)=0, \theta(a)=(1-\sigma) a, \theta(b)=(1-\sigma) b+\sigma$ and $\theta(1)=1$, and linear on the intermediate intervals. Note that θ is strictly increasing, hence a bijection, and that

$$
\begin{equation*}
\theta^{p}(a) \leqslant \sigma, \quad \theta^{p}(b) \geqslant 1-\sigma \tag{22}
\end{equation*}
$$

Now define $\left\{g_{x}: x \in\left[\lambda^{2 p+2}, 1\right]\right\}$ as a family of bijective mappings $I \rightarrow I$ such that

$$
\begin{equation*}
g_{1}=I d \quad \text { and } \quad g_{\lambda}=\theta \tag{23}
\end{equation*}
$$

$\left\{g_{x}: x \in(\lambda, 1)\right\}$ is a connecting family (as in the proof of Lemma 1)

$$
\begin{equation*}
g_{x}=\theta \quad \text { for } x \in\left[\lambda^{p}, \lambda\right] \tag{24}
\end{equation*}
$$

and let g_{x} be the unique map satisfying

$$
\begin{equation*}
g_{x} \circ \theta^{p-1} \circ g_{\left(\lambda-p_{x}\right)}=\theta^{p} \quad \text { for } x \in\left[\lambda^{p+1}, \lambda^{p}\right] \tag{26}
\end{equation*}
$$

in particular $g_{x}=I d$ for $x=\lambda^{p+1}$. On the intervals $\left[\lambda^{p+2}, \lambda^{p+1}\right],\left[\lambda^{2 p+1}, \lambda^{p+2}\right]$ and $\left[\lambda^{2 p+2}, \lambda^{2 p+1}\right] g_{x}$ is defined with the same procedure as in (23)-(26), but applied in the reverse order and with the corresponding inverse functions (see Lemma 1). Then (i) and (ii) immediately follow from the definition of $\left\{g_{x}\right\}$; (iii) follows from (22).

In the next proofs of Theorems 2,3 and subsequent examples the following notation will be useful. Let F_{1}, F_{2} be two portions of triangular maps defined on $\left[\lambda^{n_{1}}, 1\right] \times I$ and $\left[\lambda^{n_{2}}, 1\right] \times I$, respectively, and such that

$$
F_{1}(1, y)=F_{2}(1, y)=(\lambda, y) \quad \text { and } \quad F_{i}\left(\lambda^{n_{i}}, y\right)=\left(\lambda^{n_{i}+1}, y\right), i=1,2
$$

With the symbol $\left[F_{1}, F_{2}\right.$] we denote the portion of a triangular map defined on [$\left.\lambda^{n_{1}+n_{2}}, 1\right] \times I$ such that its restriction on $\left[\lambda^{n_{1}}, 1\right] \times I$ is $F_{1}(x, y)$ and its restriction on [$\left.\lambda^{n_{1}+n_{2}}, \lambda^{n_{1}}\right] \times I$ is obtained from $F_{2}\left(\lambda^{-n_{1}} x, y\right)$ by multiplying the base function by $\lambda^{n_{1}}$; in a similar way we define $\left[F_{1}, F_{2}, \cdots, F_{k}\right]$. Finally, if F^{∞} is the identity map on I_{0}, we denote by $\left[F_{1}, F_{2}, \cdots\right]$ the map $F: I^{2} \rightarrow I^{2}$ given by $\left(\lim _{k \rightarrow \infty}\left[F_{1}, F_{2}, \cdots, F_{k}\right]\right) \cup F^{\infty}$.

Proof of Theorem 2: We apply Lemma 1. Let $F=\left[F_{1}, F_{2}, \cdots\right]$ where $F_{i}=\tau\left(K_{i}, L_{i}, M_{i}, \delta_{i}, 1 / 4\right)$ is defined on the rectangle $\left[\lambda^{2 s\left(\delta_{i}, 1 / 4\right)}, 1\right] \times I, \lim \delta_{i}=0$ and K_{i}, L_{i}, M_{i} are suitable compact sets. Then by (i) of Lemma $1, F$ is in \mathcal{T}_{λ}. Denote $k(0)=0$ and $k(i)=2 s\left(\delta_{1}, 1 / 4\right)+\cdots+2 s\left(\delta_{i}, 1 / 4\right)$.

Next let $\left\{a_{j}\right\}$ be a decreasing sequence of points with $a_{1}=1$ and $\lim a_{j}=\lambda$. For all $i>0$ with $2^{j-1} \leqslant i<2^{j}$ define $M_{i}=\left[a_{j}, 1\right]$ and $\delta_{i}=1 / 2^{j}$. Since $\lim M_{i}=$ ($\lambda, 1$], by (iii) of Lemma 1 , the trajectory of any point $(x, y) \in I^{2}$ eventually is in $\bigcup_{k=0}^{\infty}\left(F^{k}\left(M_{i} \times I\right)\right)$ for some i. Hence this trajectory is eventually constant in the second variable and consequently, F is nonchaotic.

Let $S_{j} \subset\left[a_{j+1}, a_{j}\right)$ be a set of $2^{2^{j-1}}$ points, namely

$$
S_{j}=\left\{b_{l}: l=1, \cdots, 2^{2^{j-1}}\right\}
$$

We write the indexes l in base 2: they are all strings of length 2^{j-1} of digits 0 and 1 . For all i with $2^{j-1} \leqslant i<2^{j}$, define K_{i} as the set of points of S_{j} having zero at the $\left(i+1-2^{j-1}\right)$-th place and define $L_{i}=S_{j} \backslash K_{i}$.

We now show that $h_{A}(F)>0$ for a suitable sequence A. By Lemma 1 for any distinct $a, b \in S_{j}$ there exists $i=i(a, b)$ satisfying $2^{j-1} \leqslant i<2^{j}$ and

$$
\left|F^{k(i-1)+s(i)}\left(a, y_{1}\right)-F^{k(i-1)+s(i)}\left(b, y_{2}\right)\right|>1 / 2
$$

independently of y_{1}, y_{2}, where $s(i)=s\left(\delta_{i}, 1 / 4\right)$ (see Lemma 1). Define

$$
A=\{t(i)\}_{i=1}^{\infty}=\{k(i-1)+s(i)\}_{i=1}^{\infty}
$$

Then, if $S(A, m, F, \varepsilon)$ is an (A, m, F, ε)-span with the minimal possible number of points, for $\varepsilon=1 / 4$ and $m=2^{j}-1$ we have

$$
\begin{gathered}
\# S(A, m, F, \varepsilon) \geqslant \# S_{j}=2^{2^{j-1}} \\
\lim _{\varepsilon \rightarrow 0} \limsup _{m \rightarrow+\infty} \frac{1}{m} \log \# S(A, m, F, \varepsilon) \geqslant \limsup _{j \rightarrow+\infty} \frac{1}{2^{j}-1} \log 2^{2^{j-1}} \\
=\lim _{j \rightarrow+\infty} \frac{2^{j-1}}{2^{j}-1} \log 2=\frac{1}{2} \log 2>0
\end{gathered}
$$

and so

Remark 6. It is possible to modify the function F of Theorem 2 in order to get a function $F^{\prime} \in \mathcal{I}_{\lambda}$ which still has positive sequence topological entropy but satisfies conditions (i), (iv) and (v) of Theorem A. To do this, we take a new decreasing sequence $\left\{a_{j}\right\}$ with $\lim a_{j}=\mu>\lambda$ and we construct the sets K_{i}, L_{i} as in the proof of Theorem 2. Then we define $F^{\prime}=\left[F_{1}^{\prime}, F_{2}^{\prime}, \cdots\right] \in \mathcal{I}_{\lambda}$ where $F_{i}^{\prime}=\tau\left(K_{i}^{\prime}, L_{i}^{\prime}, \emptyset, \delta_{i}, 1 / 4\right), K_{i}^{\prime}=$ $K_{i} \cup[(3 \mu+\lambda) / 4, \mu]$ and $L_{i}^{\prime}=L_{i} \cup[(\mu+\lambda) / 4,(2 \mu+\lambda) / 4]$.

Obviously if we don't look for a function in T_{λ} but only for a triangular map, a much simplier example is

$$
G(x, y)=(\lambda x, g(y)) \quad \text { where } \quad g(y) \quad \text { is the tent map. }
$$

Proof of Theorem 3: Instead of a map from \mathcal{T}_{λ} we shall construct a topologically conjugated map F defined on $[0, \infty] \times I$ (where ∞ stands for $+\infty$) by $F(x, y)=$ $\left(x+1, g_{x}(y)\right)$ if $x<\infty$, and $F(\infty, y)=(\infty, y)$. Moreover we may assume that $[0, \infty] \times I$ is equipped with the metric $\left|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right|=\max \left\{\left|\lambda^{x_{1}}-\lambda^{x_{2}}\right|,\left|y_{1}-y_{2}\right|\right\}$, which makes $[0, \infty] \times I$ homeomorphic to I^{2} with the usual metric. This will simplify our notation and, on the other hand, will not change the properties considered, including the sequence topological entropy, since they are invariant with respect to homeomorphic transformations, see [7].

For any integer $k>1$ define continuous maps $\mu_{k}, \nu_{k}: I \rightarrow I$ by

$$
\mu_{k}(t)=\max \{0, t-1 / k\}, \quad \nu_{k}(t)=\min \{2 t, t+1 / k, 1\}, \quad t \in I
$$

Then

$$
\mu_{k}^{i}(I)=[0,1-i / k] \text { for } 0 \leqslant i \leqslant k, \quad \nu_{k}^{i} \circ \mu_{k}^{i}(I)=I \text { for } 0 \leqslant i \leqslant k-1
$$

For any positive integer k define a map F_{k} on $[0,2 k] \times I$ by $F_{k}(x, y)=$ $\left(x+1, g_{k, x}(y)\right)$ where

$$
g_{k, x}(y)=\left\{\begin{array}{lll}
\max \left\{0, y+h_{k}(x)\right\} & \text { if } & x \in[0, k] \\
\min \left\{y+h_{k}(x) \min \{k y, 1\}, 1\right\} & \text { if } & x \in[k, 2 k]
\end{array}\right.
$$

and the function $h_{k}(x)$ is piecewise linear and connecting the points $(0,0),(1,-1 / k)$, $(k-1,-1 / k),(k+1,1 / k),(2 k-1,1 / k)$ and $(2 k, 0)$. (Note that $g_{k, x}=I d$ for $x=$ $0, k, 2 k, g_{k, x}(y)=\mu_{k}(y)$ for $x \in[1, k-1], g_{k, x}(y)=\nu_{k}(y)$ for $x \in[k+1,2 k-1]$.)

The map F_{k} has the following phase diagram (with $k=7$) in which we depicted the trajectories going through the points of the segments $([0,1] \cup[k, k+1]) \times\{i / k\}, 0 \leqslant i \leqslant$ k and $[k, k+1] \times\left\{1 /\left(k 2^{i}\right)\right\}, 1 \leqslant i \leqslant k-1$. All trajectories are piecewise linear, except for the trajectory of the segment $[k, k+1] \times\left\{1 /\left(k 2^{k-1}\right)\right\}$ in the interval $[2 k, 2 k+1]$ (see Figure 1).

Figure 1
Finally, let

$$
\begin{equation*}
k(1)<k(2)<\cdots \tag{27}
\end{equation*}
$$

be a sequence of integers greater than 1 (we shall specify it later) and let $F=$ $\left[F_{k(1)}, F_{k(2)}, \cdots\right]$. Clearly F is continuous and topologically conjugate to a map of \mathcal{T}_{λ}.

For any set $B \subset[0, \infty] \times I$ denote by $\operatorname{Orb}_{F}(B)$ the set $\bigcup_{-\infty}^{\infty} F^{n}(B)$; thus, in our diagram the curves are just the sets $\operatorname{Orb}_{F}([i k, i k+1] \times\{j / k\})$ for $i=0,1,1 \leqslant j \leqslant k$, and $\operatorname{Orb}_{F}\left([k, k+1] \times\left\{1 /\left(k 2^{i}\right)\right\}\right), 1 \leqslant i \leqslant k-1$. Put

$$
K=[0, \infty) \times\{0\} \quad, \quad L=\operatorname{Orb}_{F}([0,1] \times\{1\})
$$

and

$$
\begin{equation*}
X=\operatorname{Orb}_{F}(K), \quad Y=\operatorname{Orb}_{F}(L) \tag{28}
\end{equation*}
$$

It is easy to see that K and L are disjoint continuous curves such that

$$
\begin{equation*}
F(K) \subset K, \quad F(L) \subset L \tag{29}
\end{equation*}
$$

Moreover, X is the set of points in $[0, \infty) \times I$ lying below the curve L and

$$
\begin{equation*}
X \cup Y \quad \text { is a decomposition of }[0, \infty) \times I \tag{30}
\end{equation*}
$$

Now the proof of (i)-(iv) of Theorem 3 is easy. Clearly any set $S=\{u, v\}$ with $u \in K$ and $v \in L$ is a 1 -scrambled set, which implies (i). Since $\omega_{F}(z)=I_{\infty}$ for any $z \in L$ and $I_{\infty}=\operatorname{Fix}(F)=\operatorname{Per}(F)$, we get iv) and since there are no F-invariant nonempty open sets in $[0, \infty] \times I$ we have (iii). To prove (ii) let S be a scrambled set. Since $\omega_{F}(K)=\{(\infty, 0)\}$ and $I_{\infty}=\operatorname{Fix}(F)$, we have $\#\left(S \cap\left(K \cup I_{\infty}\right)\right) \leqslant 1$. By (28)-(30), any $z \in[0, \infty] \times I$ is eventually in $K \cup L \cup I_{\infty}$, hence to finish the proof if suffices to show that $\#(S \cap L) \leqslant 1$. But this is easy: let $u, v \in S \cap L, u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right)$ and let m be the greatest integer with $m \leqslant\left|v_{1}-u_{1}\right|$. (In the sequel we call this m the iterative distance between u and v.) Then, for every n there is $k(i)$ such that

$$
\left|F^{n}(u)-F^{n}(v)\right|<\lambda^{n}+\frac{m+1}{k(i)}
$$

and so, by (27), $\left|F^{n}(u)-F^{n}(v)\right| \rightarrow 0$ as $n \rightarrow \infty$.
All that remains to prove is (v). Put $n(0)=0, n(i)=2(k(1)+k(2)+\cdots+k(i))$ for $i>0$, and choose the sequence $\{k(i)\}_{i>0}$ of (27) so that

$$
\begin{equation*}
k(i) \text { divides } k(i+1) \text { and } \frac{n(i)}{k(i+1)} \longrightarrow 0 \text { monotonically. } \tag{31}
\end{equation*}
$$

Let $A=\{t(i)\}_{i=1}^{\infty}$ be an increasing sequence of positive integers. Fix $m \geqslant 1$ and consider the elements $t_{i}, 1 \leqslant i \leqslant m$. For each i there exists a unique r such that $n(r) \leqslant t_{i}<n(r+1)$. Denote by

$$
r_{1}<r_{2}<\cdots<r_{q}, \quad q \leqslant m
$$

all such integers r. Fix $\varepsilon>0$ and choose $i=i_{\varepsilon}$ such that $10 / k(i+1)<\varepsilon$. Put $p:=k(i+1)$. Since in the definition (19), $h_{A}(F)$ doesn't change by removing a finite number of elements from A, we may assume without loss of generality that

$$
\begin{equation*}
\frac{n\left(r_{1}\right)}{k\left(r_{1}+1\right)}<\frac{1}{p}\left(<\frac{\varepsilon}{10}\right) \tag{32}
\end{equation*}
$$

and $\lambda^{t_{1}}<\varepsilon$. To prove (v) we need an (A, m, F, ε)-span T with sufficiently small cardinality. Since $\lambda^{t_{1}}<\varepsilon$, for any $u, v \in[0, \infty] \times I$ and $s \geqslant t_{1}$ we have

$$
\begin{equation*}
\left|F^{s}(u)-F^{s}(v)\right|<\varepsilon \quad \text { if and only if } \quad\left|F^{s}(u)-F^{s}(v)\right|_{y}<\varepsilon \tag{33}
\end{equation*}
$$

where $|u-v|_{y}$ denotes (the Euclidean) distance between the second coordinates of u and v respectively. Thus, in the sequel when proving that a set is an (A, m, F, ε)-span we may, by (33), without loss of generality consider the metric $|\cdot|_{y}$ instead of $|\cdot|$.

By the definition of F and (27) we easily get

$$
\begin{equation*}
\left|F^{s}(u)-u\right|_{y} \leqslant \frac{s}{k(i+1)} \quad \text { whenever } u \in[n(i), \infty] \times I, \text { for anys } \geqslant 0 \tag{34}
\end{equation*}
$$

Consequently, by (31), (32) and (34),

$$
\begin{equation*}
\left|F^{t_{s}}(u)-F^{t_{s}}(v)\right|_{y}<\frac{3}{p}<\varepsilon \quad \text { if } u, v \in[n(i), \infty] \times I,|u-v|_{y}<\frac{1}{p} \text { and } t_{s}<n(i) \tag{35}
\end{equation*}
$$

For simplicity, denote by U_{j} the intervals

$$
U_{j}=\left[n\left(r_{j}\right), n\left(r_{j}+1\right)\right], \quad j=1, \cdots, q
$$

and by V_{j} the corresponding complementary intervals, that is,

$$
V_{0}=\left[0, n\left(r_{1}\right)\right), \quad V_{j}=\left(n\left(r_{j}+1\right), n\left(r_{j+1}\right)\right), 1 \leqslant j \leqslant q-1, \quad V_{q}=\left(n\left(r_{q}+1\right), \infty\right]
$$

and let

$$
\begin{gathered}
J_{0}=\{0\}, \quad J_{1}=\left(0, \frac{1}{p}\right), \quad J_{j}=\left[\frac{j-1}{p}, \frac{j}{p}\right) \quad \text { if } 2 \leqslant j \leqslant p, \quad J_{p+1}=\{1\}, \\
I_{i}=[n(i), n(i)+1] \quad \text { and } \quad K_{i}=[n(i)+k(i+1), n(i)+k(i+1)+1] .
\end{gathered}
$$

We shall construct a covering of the rectangle $\left[0, n\left(r_{q}+1\right)\right] \times I$ by a finite family of invariant subsets G (that is, $F(G) \subset G$) which have small intersections with layers $I_{x}=\{x\} \times I$, for suitable points x. Let

$$
\begin{aligned}
\mathcal{G}_{i}=\left\{\operatorname{Orb}_{F}\left(I_{r_{i}} \times J_{j}\right): 0 \leqslant j \leqslant p-1\right\} & \cup\left\{\operatorname{Orb}_{F}\left(I_{r_{i}+1} \times J_{j}\right): 1 \leqslant j \leqslant p-1\right\} \\
& \cup\left\{\operatorname{Orb}_{F}\left(I_{r_{i}} \times\left[1-\frac{1}{p}, 1-\frac{1}{k\left(r_{i}+1\right)}\right]\right)\right\} \\
& \cup\left\{\operatorname{Orb}_{F}\left(\left(K_{r_{i}} \times J_{j}\right): 2 \leqslant j \leqslant p+1\right\}\right. \\
& \cup\left\{\operatorname{Orb}_{F}\left(\left(K_{r_{i}} \times J_{1}\right) \cap Y\right)\right\}
\end{aligned}
$$

for $1 \leqslant i \leqslant q$,

$$
\mathcal{G}_{q+1}=\left\{\operatorname{Orb}_{F}\left(I_{r_{q}+1} \times J_{p}\right)\right\},
$$

and let \mathcal{G} be the union of $\mathcal{G}_{i}, 1 \leqslant i \leqslant q+1$. It is easy to see that \mathcal{G} is a cover of $\left[0, n\left(r_{q}+1\right)\right] \times I$ consisting of invariant sets. Moreover, $G \cap I_{x}$ is connected for every $x \in\left[0, n\left(r_{q}+1\right)\right]$ and
(36) $\operatorname{diam}\left(G \cap I_{x}\right) \leqslant 1 / p$ if G is a minimal element of \mathcal{G} and $x \in U_{i}$ for some i.

Note that all elements of \mathcal{G} are minimal, except for

$$
Y_{i}=\operatorname{Orb}_{F}\left(\left(K_{r_{i}} \times J_{1}\right) \cap Y\right) \subset Y \quad \text { and } \quad X_{i}=\operatorname{Orb}_{F}\left(I_{r_{i}} \times J_{0}\right) \subset X, \quad 2 \leqslant i \leqslant q
$$

By (34) and (36) we easily get

$$
\begin{equation*}
\operatorname{diam}\left(G \cap\left(\left[\alpha, \alpha+\frac{k\left(r_{i}+1\right)}{p}\right] \times I\right)\right)<\frac{3}{p} \quad \text { if } G \in \mathcal{G} \text { is minimal, } \alpha \in U_{i}, 1 \leqslant i \leqslant q \tag{37}
\end{equation*}
$$

Now we shall define an (A, m, F, ε)-span T as the union of sets $T_{G}, G \in \mathcal{G}$, where any T_{G} is a subset of G and approximates properly the points from G. More precisely, let T_{G} be a set of minimal cardinality with the following properties:
for any $u \in G \cap\left(V_{j} \times I\right)$ there is a $v \in T_{G} \cap G \cap\left(V_{j} \times I\right)$ such that

$$
\begin{equation*}
|u-v|_{y}<\frac{1}{p} \tag{38}
\end{equation*}
$$

and for any $u \in G \cap\left(U_{j} \times I\right)$ there is a $v \in T_{G} \cap G \cap\left(U_{j} \times I\right)$ satisfying (38) and

$$
\begin{equation*}
\text { the iterative distance between } u \text { and } v \text { is less than } \frac{k\left(r_{j}+1\right)}{p} \text {. } \tag{39}
\end{equation*}
$$

A simple estimation shows that $\# T_{G} \leqslant(q+1) p+2 q p^{2} \leqslant 4 m p^{2}$ and since $\# \mathcal{G}=$ $q\left(\# \mathcal{G}_{1}\right)+1=q(3 p+1)+1 \leqslant 4 m p$, we have $\# T \leqslant 16 m^{2} p^{3}$. Now to complete the proof we have to show that actually T is an (A, m, F, ε)-span, since then the sequence entropy is zero:

$$
h_{A}(F) \leqslant \lim _{\varepsilon \rightarrow 0} \limsup _{m \rightarrow \infty} \frac{1}{m} \log \left(16 m^{2} p^{3}\right)=\lim _{\varepsilon \rightarrow 0} 0=0 .
$$

Assume first that $u \in V_{q} \times I$. Let v be any point in $T \cap\left(V_{q} \times I\right)$ satisfying (38). Then by (35) we easily get

$$
\begin{equation*}
\left|F^{t_{s}}(u)-F^{t_{s}}(v)\right|_{y}<\varepsilon \tag{40}
\end{equation*}
$$

for $1 \leqslant s \leqslant m$.
Next let $u \in V_{i} \times I$ with $i<q$. Since \mathcal{G} covers $\left[0, n\left(r_{q}+1\right)\right] \times I$, there is a $G \in \mathcal{G}$ containing u such that either G is minimal or $G=\operatorname{Orb}_{F}\left(\left(K_{r_{i+1}} \times J_{1}\right) \cap Y\right)$ or $G=\operatorname{Orb}_{F}\left(I_{r_{i+1}} \times J_{0}\right)$. Take as v any point in $T_{G} \cap\left(V_{i} \times I\right)$ satisfying (38). By (35), to prove that v approximates u at times $t_{s}, 1 \leqslant s \leqslant m$, it is enough to show that (40) is satisfied when $t_{s} \geqslant n\left(r_{i+1}\right)$. So fix such an s and find l such that $t_{s} \in U_{l}$. By (31) and (32), the iterative distance α between u and v is less than $k\left(r_{l}+1\right) / p$. Assume
$F^{t_{s}}(u), F^{t_{s}}(v) \in U_{l} \times I$: if u, v belong to a minimal G, then (40) is true by (37) while in the other cases (40) follows immediately since both points belong to the same curve K or L. In all other situations, take the maximal integer t such that $F^{t}(u), F^{t}(v) \in U_{l} \times I$. Now we have $\left|F^{t}(u)-F^{t}(v)\right|_{y}<3 / p$ by (37), $\left|F^{t}(u)-F^{t}(u)\right|_{y}<1 / p$ by (31), (32) and (34) (since $0<t_{s}-t<n\left(r_{l}\right)$), and a similar inequality for v, which in view of (32) imply (40).

Finally, let $u \in U_{i} \times I$ with $i \leqslant q$. In this case there is a $G \in \mathcal{G}$ containing u such that either G is minimal or $G=\operatorname{Orb}_{F}\left(\left(K_{r_{i}} \times J_{1}\right) \cap Y\right)$ or $G=\operatorname{Orb}_{F}\left(I_{r_{i}} \times J_{0}\right)$. Take as v any point in $T_{G} \cap\left(U_{i} \times I\right)$ satisfying (38) and (39). If u belongs to one of the last two sets G, the conclusion is obvious. In the other cases the argument is almost the same as for the sets $V_{i} \times I$. Fix an s and find l such that $t_{s} \in U_{l}$. It is enough to consider only the case $l=i$; in the other cases we proceed as above.

If $F^{t_{s}}(u) \in U_{i} \times I$ and $F^{t_{s}}(v) \notin U_{i} \times I$ then (40) is true by (37), (31) and (32), since the iterative distance between u and v is less than $k\left(r_{i}+1\right) / p$. Similarly, if $F^{t_{s}}(v)$ is and $F^{t_{s}}(u)$ is not in $U_{i} \times I$. Finally, if neither $F^{t_{s}}(u)$ nor $F^{t_{s}}(v)$ is in $U_{i} \times I$, let $t(u)$ and $t(v)$ be the maximal integers such that $F^{t(u)}(u), F^{t(v)}(v) \in U_{i} \times I$. Then by (37), (34), (31) and (32) we have

$$
\left|F^{t_{0}}(u)-F^{t(u)+1}(u)\right|_{y}+\left|F^{t(u)+1}(u)-F^{t(u)}(u)\right|_{y}<\frac{4}{p}
$$

and similarly for u replaced by v. Since G is a minimal element of \mathcal{G}, by (36) we obtain $\left|F^{t(u)}(u)-F^{t(v)}(v)\right|_{y}<2 / p$ and consequently,

$$
\left|F^{t_{s}}(u)-F^{t_{s}}(v)\right|_{y}<\frac{4}{p}+\frac{4}{p}+\frac{2}{p}<\varepsilon
$$

which completes the proof of (v), and hence of Theorem 3.
We conclude this paper with the following four examples.
Example 1. There is $F \in \mathcal{T}_{\lambda}$ having a non-empty open 1 -scrambled set S.
Let $\left\{K_{i}, L_{i}\right\}_{i=1}^{\infty}$ be an ordering in a sequence of all non-degenerate compact intervals with rational end-points, contained in ($\lambda, 1$), and such that $K_{i} \cap L_{i}=0$. Let $\left\{H_{i}, N_{i}\right\}_{i=1}^{\infty}$ be an analogous sequence in $[0,1]$, with the further condition that $\max H_{i}<\min N_{i}$. Define, by Lemma 1,

$$
\tau_{i}:=\tau\left(K_{i}, L_{i}, \emptyset, 1 / i, 1 / i\right)
$$

and, by Lemma 2,

$$
\pi_{i}:=\pi\left(H_{i}, N_{i}, 1 / i\right)
$$

We take $F=\left[\tau_{1}, \pi_{1}, \tau_{2}, \pi_{2}, \cdots\right]$. For this function F the strip $S=(\lambda, 1) \times(0,1)$ is a 1 -scrambled set. Indeed, let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be distinct points in S. If $x_{1} \neq x_{2}$ then $x_{1} \in K_{i}, x_{2} \in L_{i}$ and $x_{1}, x_{2} \in K_{j}$ for infinitely many i and for infinitely many j. By (iv) of Lemma 1 we get

$$
\begin{equation*}
0=\liminf _{n \rightarrow \infty}\left|F^{n}\left(x_{1}, y_{1}\right)-F^{n}\left(x_{2}, y_{2}\right)\right|<\underset{n \rightarrow \infty}{\lim \sup }\left|F^{n}\left(x_{1}, y_{1}\right)-F^{n}\left(x_{2}, y_{2}\right)\right|=1 \tag{41}
\end{equation*}
$$

If $y_{1} \neq y_{2}$, then we may assume that $y_{1}<y_{2}$ and so $y_{1} \in H_{i}, y_{2} \in N_{i}$ and $y_{1}, y_{2} \in H_{j}$ for infinitely many i and j and, by (iii) of Lemma 2, again (41) is satisfied.

Example 2. There is $F \in \mathcal{T}_{\lambda}$ having a scrambled set S with $\operatorname{Int}(S) \neq \emptyset$ and such that any ε-scrambled set $S_{0} \subset S$ with $\varepsilon>0$ is finite.

Fix a and b such that $\lambda<a<b<1$ and let $\left\{K_{i}, L_{i}\right\}_{i=1}^{\infty}$ be an ordering in a sequence of all non-degenerate compact intervals $K_{i}=\left[a, \alpha_{i}\right], L_{i}=\left[\beta_{i}, b\right]$ with $\alpha_{i}<\beta_{i}$ and $\alpha_{i}, \beta_{i} \in \mathbf{Q}$. We denote $\sigma_{i}=\beta_{i}-\alpha_{i}$ and define

$$
\tau_{i}=\tau\left(K_{i}, L_{i}, \emptyset, 1 / i, 1-\sigma_{i}\right)
$$

as in Lemma 1 with the further requirement that the connecting families between φ_{01} and φ_{00} are of affine functions with the same slope as φ_{01} (and φ_{00}) and varying linearly with x. Furthermore let

$$
\tau_{i}^{*}=\tau(K, \emptyset, \emptyset, 1 / i, 1 / i)
$$

where $K=[a, b]$. Finally define $F=\left[\tau_{1}, \tau_{1}^{*}, \tau_{2}, \tau_{2}^{*}, \cdots\right]$. We prove that the strip $S=[a, b] \times I$ has the desired properties. Let $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right)$ be distinct points in S. By (iv) of Lemma 1 applied to τ_{i}^{*} we have the equality in (17). To prove the inequality in (17), consider the following two cases:

CASE A. If $y_{1} \neq y_{2}$ then by (ii) of Lemma 1 applied to τ_{i}^{*} we get

$$
\limsup _{n \rightarrow \infty}\left|F^{n}(u)-F^{n}(v)\right| \geqslant\left|y_{1}-y_{2}\right| .
$$

CASE B. If $y_{1}=y_{2}$ and $x_{1}<x_{2}$, there are infinitely many i such that $x_{1} \in K_{i}, x_{2} \in$ L_{i} and $\left|x_{1}-x_{2}\right| / 2<\sigma_{i}<\left|x_{1}-x_{2}\right|$; then by (iv) of Lemma 1 applied to τ_{i} we have

$$
\limsup _{n \rightarrow \infty}\left|F^{n}(u)-F^{n}(v)\right| \geqslant \sigma_{i}>\frac{\left|x_{1}-x_{2}\right|}{2}
$$

Thus S is a scrambled set. Obviously during the application of the portions τ_{i}^{*} the y-distance of the two points $u, v \in S$ cannot increase. The same happens during the application of τ_{i} when $x_{1}=x_{2}$ or when both points belong either to K_{i} or to
L_{i}. A simple computation shows that in all other cases, if $y_{1}=y_{2}$, the choice of the connecting families assures that their y-distance remains less or equal to $2 \sigma_{i}<$ $2\left|x_{1}-x_{2}\right|$. Summarising we obtain

$$
\begin{aligned}
\left|F^{n}(u)-F^{n}(v)\right| & \leqslant\left|F^{n}\left(x_{1}, y_{1}\right)-F^{n}\left(x_{1}, y_{2}\right)\right|+\left|F^{n}\left(x_{1}, y_{2}\right)-F^{n}\left(x_{2}, y_{2}\right)\right| \\
& \leqslant\left|y_{1}-y_{2}\right|+3\left|x_{1}-x_{2}\right|
\end{aligned}
$$

and so

$$
\limsup _{n \rightarrow \infty}\left|F^{n}(u)-F^{n}(v)\right| \leqslant\left|y_{1}-y_{2}\right|+3\left|x_{1}-x_{2}\right|
$$

Assume there exists an ε-scrambled set $S_{0} \subset S, \varepsilon>0$ containing infinitely many points. Then there is a Cauchy sequence $\left\{\left(x_{k}, y_{k}\right)\right\} \subset S_{0}$ and so for n, m great enough $\left|y_{n}-y_{m}\right|+3\left|x_{n}-x_{m}\right|<\varepsilon$, contrary to the definition of an ε-scrambled set.

Example 3. There is $F \in \mathcal{T}_{\lambda}$ having a perfect 1 -scrambled set, but no scrambled set S with $\operatorname{int}(S) \neq \emptyset$.

To see this we modify F from Example 1 as follows. Let $Q \subset(\lambda, 1)$ be a Cantor set and let $\left\{M_{i}\right\}_{i=1}^{\infty}$ be an increasing sequence of compact sets with $\lim _{i \rightarrow \infty} M_{i}=[\lambda, 1] \backslash Q$. Take $F=\left[\tau_{1}, \tau_{2}, \cdots\right]$ where $\tau_{i}=\tau\left(K_{i} \cap Q, L_{i} \cap Q, M_{i}, 1 / i, 1 / i\right]$, and K_{i}, L_{i} are as in Example 1. Clearly, $Q \times\{0\}$ is, by (iv) of Lemma 1, a 1 -scrambled set. On the other hand, no scrambled set contains more that one point from $\bigcup_{i, n=1}^{\infty} F^{n}\left(M_{i} \times I\right)$, by (iii) of Lemma 1.

Example 4. There is $F \in \mathcal{T}_{\lambda}$ having an infinite scrambled set and such that any scrambled set is at most countable.

As a first step we construct a function $F \in \mathcal{T}_{\lambda}$ having a two-point 1 -scrambled set, but no three-point scrambled set, simplier than that used in Theorem 3. Let $\varphi(k, \alpha)$, $\alpha=\{0,0\}$ and $\alpha=\{1,0\}$ be the same functions as in Part II of the proof of Theorem 1 , with $\delta_{k} \rightarrow 0$ for $k \rightarrow \infty$. Let $F=\left[F_{1}, F_{2}, \cdots\right]$ where the portions F_{k} are iteratively defined as follows.

For $x \in(\lambda, 1]$ let $\left\{g_{x}\right\}$ be a connecting family between $g_{1}=I d$ and $g_{\lambda}=\varphi(1,10)$. Then choose $g_{x}=\varphi(1,10)$ for all $x \in\left(\lambda^{(1)}, \lambda\right]$, where $s(1)=\left[\log \left(\rho_{1}\right) / \log \left(1-\delta_{1}\right)\right]+2$ and $\rho_{1}=1 / 2$. For $x \in\left(\lambda^{s(1)+1}, \lambda^{s(1)}\right]$ let $\left\{g_{x}\right\}$ be a connecting family between $\varphi(1,10)$ and $\varphi(1,00)$. For $x \in\left(\lambda^{2(1)+1}, \lambda^{2(1)+1}\right]$ choose $g_{x}=\varphi(1,00)$ and finally, for $x \in\left(\lambda^{2 s(1)+2}, \lambda^{2 s(1)+1}\right]$, let $\left\{g_{x}\right\}$ be a connecting family between $\varphi(1,00)$ and Id. The portion so constructed is F_{1}. We may now define $\rho_{2}=\max \{h(x), x \in[\lambda, 1]\}$ where $h(x)$ is the y-component of the point $F_{1}^{2 x(1)+2}\left(x, \rho_{1}\right)$.

Suppose we have defined the portion $F_{k}, k \geqslant 1$, and we have calculated ρ_{k+1}. We may now define the portion F_{k+1} and the number ρ_{k+1} as for F_{k} and ρ_{k}, simply by
substituting functions $\varphi(k, \alpha)$ and parameters δ_{k}, ρ_{k} with the corresponding functions $\varphi(k+1, \alpha)$ and parameters δ_{k+1}, ρ_{k+1} respectively.

With this function F, for any pair $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$ with $x_{1}, x_{2} \in(0,1], y_{1}, y_{2} \in$ $[0,1)$ we have

$$
\lim _{n \rightarrow \infty}\left|F^{n}\left(x_{1}, y_{1}\right)-F^{n}\left(x_{2}, y_{2}\right)\right|=0
$$

It follows that any scrambled set cannot contain more than two points; more precisely, S is a scrambled set if and only if

$$
S=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \text { with } x_{1} \in(0,1], y_{1} \in[0,1), x_{2} \in I, y_{2}=1
$$

For this two-point set we have

$$
\liminf \left|F^{n}\left(x_{1}, y_{1}\right)-F^{n}\left(x_{2}, y_{2}\right)\right|=0<1=\limsup \left|F^{n}\left(x_{1}, y_{1}\right)-F^{n}\left(x_{2}, y_{2}\right)\right|
$$

Now, in order to produce our example, we substitute for the functions $\varphi(k, \alpha)$ the functions $\psi(k, \alpha)$ given by:

$$
\begin{gathered}
\psi(k, \alpha)(t)=\left(1-\frac{1}{2^{i}}\right)+\frac{1}{2^{i+1}} \varphi(k, \alpha)\left(2^{i+1}\left(t-\left(1-\frac{1}{2^{i}}\right)\right)\right), \quad \psi(k, \alpha)(1)=1 \\
\text { where } t \in\left[1-\frac{1}{2^{i}}, 1-\frac{1}{2^{i+1}}\right), \quad i \geqslant 0
\end{gathered}
$$

It is easy to see that this new function F has the required properties.

References

[1] L. Alsedà, S.F. Kolyada and L. Snoha, 'On topological entropy of triangular maps of the square', Bull. Austral. Math. Soc. 48 (1993), 55-68.
[2] L.S. Block and W.A. Coppel, Dynamics in one dimension, Lectures Notes in Math. 1513 (Springer-Verlag, Berlin, Heidelberg, New York, 1992).
[3] A.M. Bruckner and J. Smítal, 'A characterization of ω-limit sets of maps of the interval with zero topological entropy', Ergodic Theory Dynamical Systems 13 (1993), 7-19.
[4] V.V. Fedorenko, A.N. Sharkovsky and J. Smítal, 'Characterizations of weakly chaotic maps of the interval', Proc. Amer. Math. Soc. 110 (1990), 141-148.
[5] V.V. Fedorenko and J. Smítal, 'Maps of the interval Ljapunov stable on the set of nonwandering points', Acta Math. Univ. Comenian. 50 (1991), 11-14.
[6] N. Franzová and J. Smital, 'Positive sequence topological entropy characterizes chaotic maps', Proc. Amer. Math. Soc. 112 (1991), 1083-1086.
[7] T.N.T. Goodman, 'Topological sequence entropy', Proc. London Math. Soc. 29 (1974), 331-350.
[8] K. Janková and J. Smítal, 'A characterization of chaos', Bull. Austral. Math. Soc. 34 (1986), 283-292.
[9] P.E. Kloeden, 'On Sharkovsky's cycle coexistence ordering', Bull. Austr. Math. Soc. 20 (1979), 171-177.
[10] S.F. Kolyada, 'On dynamics of triangular maps of the square', Ergodic Theory Dynamical Systems 12 (1992), 749-768.
[11] M. Kuchta and J. Smítal, 'Two-point scrambled set implies chaos', in Proc. Europ. Conf. on Iteration Theory, Caldas de Malavella, Spain 1987 (World Scientific, 1989), pp. 427-430.
[12] T.Y. Li and J. Yorke, 'Period three implies chaos', Amer. Math. Monthly 82 (1975), 985-992.
[13] M. Misiurewicz, 'Invariant measures for continuous transformations of [0,1] with zero topological entropy', in Ergodic Theory (Oberwolfach 1978), Lecture Notes in Math. 729 (Springer-Verlag, Berlin, Heidelberg, New York, 1979), pp. 144-152.
[14] A.N. Sharkovsky, 'Coexistence of cycles of a continuous map of the line into itself, (in Russian), Ukrainian Math. J. 16 (1964), 61-71.
[15] A.N. Sharkovsky, S.F. Kolyada, V.V. Fedorenko and A.G. Sivak, Dynamics of onedimensional maps, (in Russian) (Naukova Dumka, Kiev, 1989).
[16] J. Smítal, 'Chaotic maps with zero topological entropy', Trans. Amer. Math. Soc. 297 (1986), 269-282.
Dipartimento de Matematica
Università degli Studi di Milano
via C. Saldini 50
20133 Milano
Italia
Institute of Mathematics
Comenius University
84215 Bratislava
Slovakia
and
Institute of Mathematics
Silesian University
74061 Opava
Czech Republic

Dipartimento de Matematica Università degli Studi di Milano via C. Saldini 50
20133 Milano
Italia

[^0]: Received 14th June, 1994
 Work supported by M.U.R.S.T. Research funds (40%) and C.N.R. Most of the work on this paper was done while the third author was a Visiting Professor at the University of Milan. The support of this institution is gratefully acknowledged.

