
JFP 14 (3): 317–363, May 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796803004933 Printed in the United Kingdom

317

Composition of functions with
accumulating parameters

JANIS VOIGTLÄNDER∗ and ARMIN KÜHNEMANN

Department of Computer Science, Dresden University of Technology, D-01062 Dresden, Germany

(e-mail: {voigt,kuehne}@tcs.inf.tu-dresden.de)

Abstract

Many functional programs with accumulating parameters are contained in the class of macro

tree transducers. We present a program transformation technique that can be used to solve

the efficiency problems due to creation and consumption of intermediate data structures in

compositions of such functions, where classical deforestation techniques fail. To do so, given

two macro tree transducers under appropriate restrictions, we construct a single macro tree

transducer that implements the composition of the two original ones. The imposed restrictions

are more liberal than those in the literature on macro tree transducer composition, thus

generalising previous results.

1 Introduction

An important style of writing programs in a functional language is to define new

functions by composition of existing ones. Thus, the result of a function application

is passed as argument to another function. This modular programming technique of

solving an overall problem by combining solutions of partial problems simplifies the

design and verification of programs and encourages reuse. Unfortunately, modular

programs often lack efficiency compared to other – often less understandable –

programs that solve the same tasks. If the created intermediate results are structured

objects – for example, lists or trees – their creation and eventual destruction will

consume time and memory space. Furthermore, it is possible that more data structure

traversals are performed than would really be necessary for solving the overall

problem. Thus, one would like to have program transformation techniques that allow

the optimisation of functions written in the modular style by eliminating intermediate

data structures. Several such techniques have been studied in the literature, e.g. the

unfold/fold-technique by Burstall & Darlington (1977), its algorithmic instances

supercompilation (Turchin, 1986; Sørensen et al., 1996; Secher & Sørensen, 1999)

and deforestation (Wadler, 1990; Chin, 1994), program calculation (Malcolm, 1989;

Meijer et al., 1991; Sheard & Fegaras, 1993; Hu et al., 1996; Bird & de Moor, 1997)

and shortcut deforestation (Gill et al., 1993; Gill, 1996).

∗ This author was supported by the DFG under grant KU 1290/2-1.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

318 J. Voigtländer and A. Kühnemann

In this paper, we follow an approach for eliminating intermediate results that is

based on the theory of tree transducers (Fülöp & Vogler, 1998). Particularly, we

consider macro tree transducers (for short mtts; Engelfriet, 1980), which are extended

schemes of primitive recursion – allowing simultaneous definition of several functions

and nested function calls in parameter positions – that translate trees over a ranked

alphabet of input symbols into trees over a ranked alphabet of output symbols.

For this translation process an mtt uses functions that have at least rank one, and

a set of rewrite rules. Every function f is defined by pattern matching on the root

symbol σ of its first argument t. The right-hand side of the rule for f at σ may

contain the other arguments of f, output symbols, and recursive function calls the

first arguments of which must be variables that refer to subtrees of t. Since many

typical functions on algebraic data types are defined by such a structural descent,

mtts represent a large class of functional programs using accumulating parameters,

which in the scope of mtts are called context parameters.

For illustration of the problem of intermediate results, consider the following

example. Assume given a representation of arithmetic terms – built from two

variables and the binary operations addition and multiplication – as trees with

nullary constructor symbols A and B and binary constructor symbols + and ×
(this representation corresponds to an algebraic data type in a functional language,

e.g. data Term = A | B | + Term Term | × Term Term in Haskell-style). Further,

assume given a function pfx for computing the prefix-notation of such a term as

monadic tree of now unary symbols A, B, +, ×, and a nullary ε as end symbol:

(i) : pfx (+(u1, u2), y1)→ +(pfx (u1, pfx (u2, y1)))

(ii) : pfx (×(u1, u2), y1)→ ×(pfx (u1, pfx (u2, y1)))

(iii) : pfx (A, y1) → A(y1)

(iv) : pfx (B, y1) → B(y1).

To compute the prefix-notation of a term t, the rules (i)–(iv) are used to exhaustively

rewrite the initial expression pfx (t, ε).

Now, consider the problem of computing, for a given term as above, a sequence

of instructions for a stack-machine with two registers and instructions for addition

and multiplication (represented as monadic tree, labelled with instructions LOADA,

LOADB , ADD and MUL). Instead of programming a solution for this problem from

scratch, we can solve the task by simply reversing the prefix-notation of the given

term and replacing labels A, B, + and × by LOADA, LOADB , ADD and MUL,

respectively. Hence, we define the following auxiliary function:

(v) : aux(A(v1), z1) → aux(v1, LOADA(z1))

(vi) : aux(B(v1), z1) → aux(v1, LOADB(z1))

(vii) : aux(+(v1), z1)→ aux(v1, ADD(z1))

(viii) : aux(×(v1), z1)→ aux(v1,MUL(z1))

(ix) : aux(ε, z1) → z1.

The instruction sequence for a given term t can now be computed by composing the

functions pfx and aux, namely by rewriting the composite expression aux(pfx (t, ε), ε)

with rules (i)–(ix).

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 319

However, this modular solution is inefficient, because it creates and consumes an

intermediate result. Depending on the used evaluation strategy, this intermediate data

structure might never exist as a whole, but nevertheless, for all of its nodes memory

cells have to be allocated and later deallocated. Also, even with lazy evaluation, this

program performs a superfluous traversal through the intermediate result.

To avoid these inefficiencies, we could instead use the following function definition:

(x) : ins(+(u1, u2), z1)→ ins(u2, ins(u1, ADD(z1)))

(xi) : ins(×(u1, u2), z1)→ ins(u2, ins(u1,MUL(z1)))

(xii) : ins(A, z1) → LOADA(z1)

(xiii) : ins(B, z1) → LOADB(z1).

If for a given term t we use rules (x)–(xiii) on ins(t, ε), we will calculate the same

instruction sequence as before with the modular solution, but without creating and

traversing the intermediate data structure, thus requiring less rewrite steps.

Consequently, it would be worthwhile to automatically transform the modular

solution (i)–(ix) into the efficient solution (x)–(xiii). To the best of our knowledge,

techniques such as deforestation and program calculation cannot perform the

optimisation that we want to achieve here. In particular, classical deforestation

fails due to its well-known problem of not reaching accumulating parameters (Chin,

1994). An approach that is applicable to our example is based on attribute gram-

mars (Knuth, 1968), and was proposed independently by Kühnemann (1997; 1998)

and Correnson et al. (1998; 1999). The idea is to transform the two functions (in

our formalism represented by two restricted mtts) that we want to compose, into

attribute grammars (Courcelle & Franchi-Zannettacci, 1982), respectively attributed

tree transducers (Fülöp, 1981), which are abstractions of attribute grammars. If

the first attributed tree transducer fulfils the single-use restriction, which essentially

means that every attribute instance in a tree may be used at most once in calculating

the values of other attribute instances, the two transducers can be composed into

a single attributed tree transducer (based on composition results from Ganzinger

and Giegerich (Ganzinger, 1983; Ganzinger & Giegerich, 1984; Giegerich, 1988)).

Applying a construction based on Franchi-Zannettacci (1982), this attributed tree

transducer can then be transformed into an mtt, thus giving a functional program for

the composition of the two original functions, but without producing and consuming

the intermediate result. This and related techniques of combining results from the

theory of tree transducers for functional program optimisation are presented in

a uniform framework by Kühnemann & Voigtländer (2001). A restricted instance

of attribute grammar composition is also handled by Kakehi et al. (2001), using

a single local rule to eliminate intermediate lists in compositions of map-style list

transformers.

The approach of transformation by composition of attribute grammars does not

work for all mtts, because only restricted mtts can be transformed into attributed

tree transducers. One such restriction is the property of an mtt to be weakly single-

use (Kühnemann, 1998), which roughly speaking means that at every node in the

input tree recursive calls of functions on subtrees are restricted to appear at most

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

320 J. Voigtländer and A. Kühnemann

Fig. 1. Indirect composition.

once1. Moreover, to obtain a single-use attributed tree transducer – such that the

composition result for attributed tree transducers becomes applicable – the first mtt

has to be further restricted to be single-use, which in addition to the restriction of

being weakly single-use means that context parameters cannot be copied. The latter

restriction is called non-copying. Figure 1 shows the transformation steps that one

has to take, where arrows indicate transformations and the semicolon stands for

composition of tree transduction classes. Here, the class of functions computable by

mtts is denoted as MAC , the class of attributed tree transductions as ATT , and the

restrictions single-use and weakly single-use are indicated by subscripts su and wsu,

respectively.

There are several reasons to be interested in a direct construction for composing

mtts without the above indirection. Firstly, there would be benefits for an imple-

mentation, because a direct construction could be implemented more efficiently

and because the implementor (e.g. a compiler constructor) could work directly

on functional programs, instead of having to consider the formalism of attribute

grammars just for optimisation’s sake. Secondly, a direct construction could produce

better program code than the indirection by several transformations, because – for

the sake of generality – every single program transformation tends to introduce a

certain ‘ballast’ into the program, such as superfluous function parameters. Thirdly,

a direct composition construction on the level of functional programs is more

accessible to formal efficiency comparisons with other program transformation

techniques. Finally, we want to broaden the applicability of mtt composition by

generalising the result MAC su; MAC wsu ⊆ MAC .

It is well known that one cannot compose two arbitrary mtts, because the class

of macro tree transductions is not closed under composition (Engelfriet & Vogler,

1985). However, we can aim for weaker restrictions on the mtts than necessary so

far, which still allow a composition. The success of this intention is limited if we

stick to the above indirect construction via attributed tree transducers, because then

1 Other restrictions of mtts that allow the transformation into attributed tree transducers are, for
example, the well-presented restriction (Courcelle & Franchi-Zannettacci, 1982), the attributed-like
restriction (Fülöp & Vogler, 1999) and the restricted-use condition (Kühnemann & Voigtländer, 2001),
which generalises the weakly single-use property.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 321

we can only compose mtts that can be transformed into attributed tree transducers,

which is not always possible as there is a strict inclusion ATT ⊂ MAC (Engelfriet,

1980; Franchi-Zannettacci, 1982). A direct composition construction has no such

a priori limitation. In fact, we prove – with MAC nc being the class of functions

computable by non-copying mtts2 – the inclusion MAC nc; MAC wsu ⊆ MAC , which

is a generalisation of the result quoted above, because single-use mtts are, by

definition, non-copying. We will observe that the direct composition construction

allows us to further weaken the restriction on the second mtt by requiring the weakly

single-use condition only for those of its functions that have at least one context

parameter. The presented construction is also applicable if one of the two mtts has

no context parameters (i.e. is a top-down tree transducer (Rounds, 1970; Thatcher,

1970; Engelfriet, 1975)) and the other one is an unrestricted mtt, thus incorporating

into the new construction two known results (Engelfriet, 1981; Engelfriet & Vogler,

1985).

The direct composition construction together with two post-processing construc-

tions developed by Voigtländer (2001) are then able to transform the above

modular program – rules (i)–(ix) – into the more efficient program of rules

(x)–(xiii).

The rest of this paper is organised as follows. We define necessary notions

in section 2 and introduce the basic concepts of mtts in section 3. In section 4 we

discuss the underlying ideas for the direct composition construction of a non-copying

and a weakly single-use mtt, which is formally given in section 5. In section 6 we

consider practical aspects of the direct composition construction, namely a post-

processing phase and an implementation. Section 7 compares our technique with

related approaches for eliminating intermediate results. In section 8 we discuss

efficiency aspects of our transformation technique, with respect to abstract efficiency

measures and by runtime measurements. In section 9 we show that a symmetric

composition – a general construction for composing a weakly single-use mtt and

a non-copying one in this order – cannot exist, and give some theoretical results

on mtts. Finally, section 10 concludes with an outlook for future research. The

correctness proof for the composition construction can be found in the Appendix

(available online, Voigtländer & Kühnemann, 2003).

2 Preliminaries

We denote by N the set of natural numbers including 0, and for n ∈ N, by [n] the

set {1, . . . , n}. We set N+ = N\{0}. For a finite, non-empty set S of natural numbers,

we denote by max(S) the maximum of all its elements.

We use several sets of lowercase variables. We denote by U the set {u1, u2, u3, . . .}
of variables, and for p ∈ N by Up the finite set {u1, . . . , up} ⊆ U; analogous for V ,

Y , Z and Y ′ = {y′1, y′2, y′3, . . .}.

2 Note that in Theorem 9.6 of this paper MAC nc �⊆ ATT will be shown. Hence, the indirect construction
cannot be used for non-copying mtts.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

322 J. Voigtländer and A. Kühnemann

For a set S , we denote by S∗ the set of finite sequences of elements of S , where ε

denotes the empty sequence. The power set of a given set S will be denoted by P(S).

The number of elements of a finite set S will be denoted by |S |. For a set S and a

binary relation � ⊆ S × S , we denote by �+ the transitive and by �∗ the reflexive,

transitive closure of �, respectively.

We define substitution over strings (elements of S∗ for some finite set S) as

follows. For a string w ∈ S∗, pairwise different symbols x1, . . . , xn ∈ S , and strings

w1, . . . , wn ∈ S∗ (for some n ∈ N), we denote by w[xi ← wi, i ∈ [n]] the string obtained

from w by replacing all occurrences of every xi in w by wi. We will also use the

alternative notation w[x1, . . . , xn ← w1, . . . , wn] and appropriate multi-line notations

for long substitutions. We write substitutions left-associative.

A ranked alphabet is a pair (Σ, rankΣ), where Σ is a finite set of symbols and rankΣ

assigns to each of these symbols a natural number, its rank. In the following, we will

drop the rankΣ-function from the denotation and only mention Σ when referring to

a ranked alphabet. For every p ∈ N, we define Σ(p) = {σ ∈ Σ | rankΣ(σ) = p}. The

rank p of a symbol σ will also be denoted by writing σ(p). For the sake of brevity,

quantifications over a symbol in a ranked alphabet will implicitly quantify also over

the rank of the symbol. For example, we shall write “for every σ ∈ Σ(p)” instead

of “for every p ∈ N, σ ∈ Σ(p)” and “there exists f ∈ F (r+1)” instead of “there exist

r ∈ N and f ∈ F (r+1)”. For a ranked alphabet Σ, we denote the set of all its ranks

as rank(Σ) = {p ∈ N | ∃σ ∈ Σ : rankΣ(σ) = p}.
For a ranked alphabet Σ and a set S disjoint from Σ, we define the set TΣ(S) of

trees over Σ indexed by S as the smallest set T ⊆ (Σ ∪ S ∪ {(,)} ∪ {, })∗ such that (i)

S ⊆ T and (ii) for every σ ∈ Σ(p) and t1, . . . , tp ∈ T : σ(t1, . . . , tp) ∈ T . For nullary

symbols, we simply write α instead of α(). We denote the set TΣ(∅) by TΣ.

Let Σ be a ranked alphabet and X a set of variables, where Σ ∩X = ∅. A rewrite

rule over Σ and X is a rule of the form lhs → rhs with lhs, rhs ∈ TΣ(X), such that

the left-hand side lhs does not contain two occurrences of the same variable and

every variable occurring in the right-hand side rhs is also contained in lhs. A set R

of rewrite rules over Σ and X is called a rewrite system (over Σ and X)3 (Dershowitz

& Jouannaud, 1990; Baader & Nipkow, 1998). For every Σ′ ⊇ Σ, it induces a binary

reduction relation ⇒R ⊆ TΣ′ × TΣ′ , such that t⇒R t
′ iff R contains a rule lhs→ rhs,

there is a tree c ∈ TΣ′({x}) (with x /∈ X) that contains x exactly once, and there exist

n ∈ N, trees t1, . . . , tn ∈ TΣ′ and pairwise different variables x1, . . . , xn ∈ X such that:

t = c[x← lhs[x1, . . . , xn ← t1, . . . , tn]]

t′= c[x← rhs[x1, . . . , xn ← t1, . . . , tn]].

A reduction relation ⇒R ⊆ TΣ×TΣ is called confluent, if for every t, t1, t2 ∈ TΣ with

t ⇒∗R t1 and t ⇒∗R t2, there exists t′ ∈ TΣ with t1 ⇒∗R t′ and t2 ⇒∗R t′. A reduction

relation ⇒R is called terminating, if there is no infinite chain t1 ⇒R t2 ⇒R t3 ⇒R

If t ⇒∗R t′ and there is no t′′ with t′ ⇒R t
′′, then t′ is called a normal form of t with

3 When Σ and X are clear from the context, we will only mention R. Note that a rewrite system over
Σ and X is also a rewrite system over Σ′ ⊇ Σ and X ′ ⊇ X, if Σ′ ∩X ′ = ∅.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 323

respect to ⇒R . If ⇒R is confluent and terminating, then every tree t ∈ TΣ has a

unique normal form, denoted as nf(⇒R, t).

Let Σ, ∆ and Ω be ranked alphabets. We call a total function τ : TΣ → T∆ a tree

transduction (from TΣ to T∆). We define the composition of two tree transductions

τ1 : TΣ → T∆ and τ2 : T∆ → TΩ, denoted by τ1; τ2, as (τ1; τ2)(t) = τ2(τ1(t)), for

every t ∈ TΣ. Further, we denote the composition of two classes T1 and T2 of tree

transductions by T1;T2 = {τ1; τ2 | τ1 ∈ T1, τ2 ∈ T2}.
Let Σ be a ranked alphabet and S a set disjoint from Σ. We will need the set of

paths in a tree, given by the function paths : TΣ(S) → P((N+)∗), which is defined

by structural recursion as follows: (i) if t ∈ Σ(0) ∪ S , then paths(t) = {ε}, and (ii) if

t = σ(t1, . . . , tp) with p ∈ N+, σ ∈ Σ(p), t1, . . . , tp ∈ TΣ(S), then paths(t) = {ε}∪{iπ | i ∈
[p], π ∈ paths(ti)}.

We will also need the label at a path in a tree, given by the mapping lab :

{(t, π) | t ∈ TΣ(S), π ∈ paths(t)} → Σ ∪ S , defined by: (i) if t ∈ Σ(0) ∪ S , then

lab(t, ε) = t, and (ii) if t = σ(t1, . . . , tp) with p ∈ N+, σ ∈ Σ(p), t1, . . . , tp ∈ TΣ(S), then

lab(t, ε) = σ and lab(t, iπ) = lab(ti, π) for i ∈ [p] and π ∈ paths(ti). The label lab(t, ε)

is called the root symbol of the tree t.

The subtree at a path in a tree is given by the function sub : {(t, π) | t ∈ TΣ(S), π ∈
paths(t)} → TΣ(S), defined by: (i) sub(t, ε) = t, and (ii) if t = σ(t1, . . . , tp) with p ∈ N+,

σ ∈ Σ(p), t1, . . . , tp ∈ TΣ(S), then sub(t, iπ) = sub(ti, π) for i ∈ [p] and π ∈ paths(ti).
We define the height of a tree by the function height : TΣ(S) → N as follows: (i)

if t ∈ Σ(0) ∪ S , then height(t) = 0, and (ii) if t = σ(t1, . . . , tp) with p ∈ N+, σ ∈ Σ(p),

t1, . . . , tp ∈ TΣ(S), then height(t) = 1 + max({height(ti) | i ∈ [p]}). Finally, we have

the notion of size of a tree, defined by the mapping size : TΣ(S) → N with: (i) if

t ∈ Σ(0) ∪ S , then size(t) = 1, and (ii) if t = σ(t1, . . . , tp) with p ∈ N+, σ ∈ Σ(p),

t1, . . . , tp ∈ TΣ(S), then size(t) = 1 +
∑
i∈[p]

size(ti).

3 Macro tree transducers

In this section we introduce macro tree transducers and syntactic restrictions for

them, both formally and using examples. Then, we present a new characterisation

relating the class of functions computable by unrestricted macro tree transducers

and the composition of two restricted classes.

3.1 Definitions and examples

Definition 3.1 (macro tree transducer, RHS)

A macro tree transducer (for short mtt) M is a tuple (F,Σ,∆, e, R) with:

• a ranked alphabet F of states, where F (0) = ∅
• a ranked alphabet Σ of input symbols, where Σ(0) �= ∅ and F ∩ Σ = ∅
• a ranked alphabet ∆ of output symbols, where ∆(0) �= ∅ and F ∩ ∆ = ∅
• an initial expression e ∈ RHS(F,∆, {x}, ∅)
• a set R containing for every f ∈ F (r+1) and σ ∈ Σ(p) exactly one rule of the

form f(σ(u1, . . . , up), y1, . . . , yr)→ rhsf,σ , with rhsf,σ ∈ RHS(F,∆, Up, Yr),

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

324 J. Voigtländer and A. Kühnemann

where for sets X and X ′, the set RHS(F,∆, X,X ′) is the smallest set RHS ⊆
TF∪∆(X ∪X ′) satisfying the following conditions:

• X ′ ⊆ RHS
• for every δ ∈ ∆(q) and φ1, . . . , φq ∈ RHS: δ(φ1, . . . , φq) ∈ RHS
• for every f ∈ F (r+1), x ∈ X, φ1, . . . , φr ∈ RHS: f(x, φ1, . . . , φr) ∈ RHS . �

Note that R in the above definition is a rewrite system over F ∪ Σ ∪ ∆ and U ∪ Y .

A rule of the form f(σ(. . .), . . .) → . . . is also called a σ-rule. A subtree of the

form f(t, . . .) is referred to as a call of f on t. The first argument of a state f is

called recursion argument, the others are called context parameters. Correspondingly,

variables from U are called recursion variables and variables from Y are called

context variables. Of course, the actual variable names used in mtt rules are not

fixed to come from Up and Yr for some p, r ∈ N; consistent renaming is allowed.

For example, we later use recursion variables from V and context variables from Z

for the second mtt in the composition construction.

Example 3.2 (the functions pfx and aux from the introduction as mtts)

Let Σterm = {+(2),×(2), A(0), B(0)}, ∆list = {+(1),×(1), A(1), B(1), ε(0)} and Ωins = {ADD(1),

MUL(1), LOAD
(1)
A , LOAD

(1)
B , ε

(0)}.
We define the mtt Mpfx = ({pfx (2)},Σterm,∆list, epfx , Rpfx), where Rpfx contains the

rules (i)–(iv) from the introduction, and epfx = pfx (x, ε). We also define the mtt

Maux = ({aux(2)},∆list,Ωins, aux(x, ε), Raux), where Raux contains the rules (v)–(ix) from

the introduction. �

The semantics of an mtt is a function from trees over the input ranked alphabet to

trees over the output ranked alphabet. It is given by substituting the input tree for

x in the initial expression e of an mtt, and then calculating the normal form of this

expression with respect to the reduction relation induced by the set R of rules. This

normal form exists and is unique, because the rules of an mtt induce a confluent

and terminating reduction relation (e.g. cf. Fülöp & Vogler, 1998).

Definition 3.3 (semantics of an mtt)

The tree transduction induced by an mtt M = (F,Σ,∆, e, R) is the total function

τ(M) : TΣ → T∆ that assigns to every tree t ∈ TΣ the value nf(⇒R, e[x← t]). We

denote the class of tree transductions induced by mtts as MAC . �

Although the mtts presented here have a more general initial expression than those

used by Fülöp & Vogler (1998) – allowing just the call of some state with fixed

context parameters – our tree transduction class MAC coincides with theirs, because

mtts in the two representations can be transformed into each other. Note that the

same needs not be true for restricted classes of tree transductions, because our

representation is more flexible.

Though this paper does not perform formal efficiency considerations, we some-

times informally argue with respect to efficiency. For this purpose we fix lazy

evaluation as our intended deterministic reduction strategy.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 325

Example 3.4 (semantics of Mpfx)

We apply the mtt Mpfx from Example 3.2 to the input term +(A,B), i.e. we calculate

the normal form of epfx [x← +(A,B)] with respect to ⇒Rpfx
:

pfx (+(A,B), ε)⇒Rpfx
+(pfx (A, pfx (B, ε)))⇒Rpfx

+(A(pfx (B, ε)))

⇒Rpfx
+(A(B(ε))). �

We introduce two important syntactic restrictions of mtts (Kühnemann, 1998) and

the corresponding classes of tree transductions induced by such restricted mtts.

Definition 3.5 (non-copying)

An mtt is non-copying, if there is at most one occurrence of every context variable in

the right-hand side of every rule. We denote the class of tree transductions induced

by non-copying mtts as MAC nc. �

The following property will later be required of the second mtt involved in a

composition, hence we already here define it according to the notational conventions

used for this second mtt, namely with states in G, input symbols in ∆, output symbols

in Ω, recursion variables in V and context variables in Z .

Definition 3.6 (weakly single-use)

An mtt M = (G,∆,Ω, e, R) is weakly single-use, if the following two conditions hold:

(i) For every δ ∈ ∆(q), j ∈ [q] and g ∈ G, a call of the form g(vj , . . .) occurs in a

right-hand side of at most one δ-rule and there only once.

(ii) For every g ∈ G, the initial expression e contains at most one occurrence of a

call g(x, . . .).

We denote the class of tree transductions induced by weakly single-use mtts as

MAC wsu. �

We also identify mtts that have both of the above properties.

Definition 3.7 (single-use)

An mtt is single-use, if it is both non-copying and weakly single-use. We denote the

class of tree transductions induced by single-use mtts as MAC su. �

We use some more examples to illustrate the introduced restrictions of mtts.

Example 3.8 (restricted mtts)

1. The mtts Mpfx and Maux from Example 3.2 are both non-copying and weakly

single-use, hence they are also single-use.

2. Let ∆bin = {δ(2), ε(0)} and Nat = {succ(1), zero(0)}. Then the mtt Mcount =

({count(2)},∆bin,Nat , count(x, zero), Rcount) with set of rules

count(δ(u1, u2), y1) → succ(count(u1, count(u2, y1)))

count(ε, y1) → succ(y1)

is single-use. Note that for every t ∈ T∆bin , we have: height(τ(Mcount)(t)) = size(t).

This statement is an instance of a more general one for arbitrary ranked

alphabets in Construction 9.3.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

326 J. Voigtländer and A. Kühnemann

3. The mtt Mexp = ({exp(2)},Nat ,Nat , exp(x, zero), Rexp) with set of rules

exp(succ(v1), z1) → exp(v1, exp(v1, z1))

exp(zero, z1) → succ(z1)

is non-copying, but it is not weakly single-use. Note that for every t ∈ TNat ,

we have: height(τ(Mexp)(t)) = 2height(t). This statement can easily be proven by

induction.

4. The mtt Mbin = ({bin(2)},∆bin,∆bin, bin(x, ε), Rbin) with set of rules

bin(δ(v1, v2), z1) → bin(v1, bin(v2, z1))

bin(ε, z1) → δ(z1, z1)

is weakly single-use, but it is not non-copying. Note that for every fully

balanced binary tree t ∈ T∆bin of height h, τ(Mbin)(t) is a fully balanced binary

tree of height 2h, and hence size(τ(Mbin)(t)) = 2(2h+1) − 1. This statement can

easily be proven by induction. �

Kühnemann & Voigtländer (2001) give further examples and show how functions

on polymorphic data types – such as the well-known Haskell reverse and (++) on

lists – are handled as mtts by using enriched constructor symbols, and how functions

such as map and foldr can be viewed as mtts by using the idea of higher-order

macros (Wadler, 1990).

Another important restriction of mtts is that of having no context parameters

at all, which gives us top-down tree transducers (Rounds, 1970; Thatcher, 1970;

Engelfriet, 1975).

Definition 3.9 (top-down tree transducer)

An mtt is a top-down tree transducer (for short tdtt), if all its states have rank one.

We denote the class of tree transductions induced by tdtts as TOP . �

Note that no context parameters appear in the rules of a tdtt, hence every tdtt is,

by definition, non-copying.

3.2 A characterisation

The aim of this paper is to construct for two given mtts – of which the first

one is non-copying and the second one is weakly single-use – a single new mtt that

implements the composition of the two original ones. We give an a priori justification

of the feasibility of this aim by reasoning with the help of other tree transduction

classes (Fülöp, 1981; Kühnemann, 1997), which are not covered in this paper

(ATT , Y IELD and ATTsu denote the classes of attributed tree transductions, yield-

functions and tree transductions induced by single-use attributed tree transducers,

respectively).

Theorem 3.10

MAC nc; MAC wsu = MAC

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 327

Proof sketch

MAC nc; MAC wsu

⊆ TOP ;ATTsu; MAC wsu (an analogue of Lemma 5.3 in Kühnemann (1998))

⊆ TOP ;ATTsu;ATT (Theorem 7.1 in Kühnemann (1998))

⊆ TOP ;ATT (Lemma 6.4 in Kühnemann (1997))

⊆ TOP ; MAC (cf. Franchi-Zannettacci (1982),

also Lemma 6.1 in Fülöp & Vogler (1998))

⊆ MAC (Corollary 4.10 in Engelfriet & Vogler (1985))

⊆ TOP ;Y IELD (Theorem 3 in Engelfriet (1980))

⊆ MAC nc; MAC wsu (TOP ⊆ MAC nc;

Example 4.5 in Engelfriet & Vogler (1985),

Lemma 6.10 in Kühnemann (1997)) �

The same kind of reasoning can be applied to obtain new results on well-presented

mtts (Courcelle & Franchi-Zannettacci, 1982) and attributed-like mtts (Fülöp &

Vogler, 1999) – namely, MAC nc; MAC wp = MAC = MAC nc; MAC al
4 – as well as

on classes of macro attributed tree transducers (Kühnemann & Vogler, 1994).

The precise proof for the inclusion MAC nc; MAC wsu ⊆ MAC will be given by

presenting an effective composition construction in section 5.1 and proving its

correctness in the Appendix (Voigtländer & Kühnemann, 2003). Before giving this

formal construction, we provide an intuitive explanation of the underlying ideas in

the next section.

4 Ideas of the direct composition construction

Given two mtts M1 (from TΣ to T∆, with rules R1) and M2 (from T∆ to TΩ, with

rules R2) with respective sets of states F and G = {g1, . . . , gµ}, we want to create an

mtt M1;2 (from TΣ to TΩ, with rules R1;2) such that τ(M1;2) = τ(M1); τ(M2).

This aim cannot be achieved in general, but in the following subsections we will

step by step study increasingly weaker restrictions under which it is feasible.

4.1 Translating right-hand sides of M1 with rules of M2

We first consider the very simple case that both M1 and M2 are tdtts with only

one state (so called homomorphism tree transducers), i.e. F = {f(1)
1 } and G = {g(1)

1 }.
Then, the define/instantiate/unfold/fold-strategy (Burstall & Darlington, 1977) can

be used to construct the required M1;2 as a tdtt with exactly one state h, the basic

idea being that of folding nested calls of the form g1(f1(t)) to h(t). Therefor, M1;2

must define appropriately instantiated rules for the new state h, namely for every

input symbol σ ∈ Σ(p) a rule with left-hand side h(σ(u1, . . . , up)) has to be constructed.

4 MAC nc; MACwp⊆MAC nc; MAC al ⊆MAC nc;ATT ⊆TOP ;ATTsu;ATT ⊆MAC ⊆TOP ;Y IELD⊆
MAC nc; MACwp, cf. the trivial inclusion MACwp⊆MAC al , Lemma 3.18 in Fülöp & Vogler (1999)
and the construction from Example 4.5 in Engelfriet & Vogler (1985).

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

328 J. Voigtländer and A. Kühnemann

Using the facts that the previous should correspond to g1(f1(σ(u1, . . . , up))) and that

a rule f1(σ(u1, . . . , up))→ rhsf1 ,σ is given in R1, an unfold-step yields

h(σ(u1, . . . , up))→ g1(rhsf1 ,σ)

as a good candidate. To obtain a legal tdtt rule from this candidate, rhsf1 ,σ can be

translated with g1 by applying further unfold-steps using rules for g1 at symbols from

the intermediate ranked alphabet ∆, and fold-steps as introduced above. Hence, the

actual right-hand side for the rule of h at σ is obtained by reducing g1(rhsf1 ,σ) with

the following rewrite systems:

R2 : g1(δ(. . .))→ rhsg1 ,δ , ∀δ ∈ ∆

Fold : g1(f1(u)) → h(u)

Note that it will be exactly the applications of the rules from R2 during the translation

of rhsf1 ,σ with g1 that lead to the elimination of intermediate data structures.

4.2 Pairing of states

If M1 and M2 are tdtts with possibly non-singleton state sets, the strategy from the

previous subsection has to be adjusted, because for each pair of states f ∈ F and

g ∈ G a different new state must be used for folding nested calls of the form g(f(t)),

hence h alone is not enough. The solution is fairly simple by using as states for the

tdtt M1;2 the set of pairs H = {(f, g) | f ∈ F, g ∈ G} and folding calls of the form

g(f(t)) to (f, g)(t). The right-hand side of the rule for such a paired state (f′, g′) at

an input symbol σ is then obtained by reducing g′(rhsf′ ,σ) with R2 and a new rewrite

system Pair that replaces Fold :

R2 : g(δ(. . .))→ rhsg,δ , ∀g ∈ G, δ ∈ ∆

Pair : g(f(u)) → (f, g)(u) , ∀g ∈ G, f ∈ F

The transformation we have described thus is exactly the product construction for

tdtts from the proof of Theorem 2 in Rounds (1970). Note that for every rule of R1,

exactly µ = |G| new rules are constructed, i.e. |R1;2| = µ · |R1|.

4.3 Adding accumulating parameters to the producer – reaching

accumulating parameters with unary states

Since we are interested in composing mtts and not only tdtts, we consider the case

that f ∈ F has a rank greater than one and a call of the form g(f(t, φ1, . . . , φr)) arises

from running M1 and M2 independently (M2 is still assumed to be a tdtt, hence

g ∈ G(1)). Following the idea of pairing states, such a nested call should correspond

to a call of (f, g) on t during the computation of M1;2. It is far from trivial how this

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 329

corresponding call of (f, g) must look like, in particular how the φ1, . . . , φr should

be treated. Simply to pass these context parameters of f to the state (f, g) is not

enough, as the following example shows.

Example 4.1 (passing the context parameters of f unchanged to (f, g) fails)
Assume that R1 contains the rule f(α, y1)→ γ(y1) and R2 contains the rule g(γ(v1))→
g′(v1), giving for t = α the reduction:

g(f(t, φ1))⇒R1
g(γ(φ1))⇒R2

g′(φ1).

Note that the context parameter φ1 of f appears in the intermediate result obtained

by reducing the inner call, and that during the further computation on this

intermediate result a call on φ1 occurs. Such behaviour cannot be modelled by

an mtt M1;2 if we simply want to replace the call g(f(t, φ1)) by (f, g)(t, φ1), because

for doing so, the rule of (f, g) at α would have to be constructed as

(f, g)(α, y1)→ g′(y1) ,

which contains a call of a state on a context variable, and thus is inadmissible. �

In the construction for MAC ;TOP ⊆ MAC from Theorem 4.12 in Engelfriet &

Vogler (1985) this problem is solved by holding available for every context parameter

of f its µ translations for all the states g1, . . . , gµ of M2. Accordingly,

g(f(t, φ1, . . . , φr))

is replaced by the call

(f, g)(t, g1(φ1), . . . , gµ(φr)) ,

which will be modelled by a generalised rewrite system Pair below.

During the construction of the rule for a state (f′, g′) of M1;2 (with f′ ∈ F (r′+1)) at

an input symbol σ ∈ Σ(p), i.e. during the reduction of the right-hand side of

(f′, g′)(σ(u1, . . . , up), y1,g1
, . . . , yr′ ,gµ)→ g′(rhsf′ ,σ) ,

a new case can occur, because rhsf′ ,σ can additionally to symbols from ∆ and calls of

states from F also contain the context variables y1, . . . , yr′ . Recalling that every call

of (f′, g′) is provided – in the y1,g1
, . . . , yr′ ,gµ-positions – with precomputed translations

of the context parameters of f′ with all possible states of G, we just have to select

the correct one, modelled by a rewrite system Pre as given in the following:

R2 : g(δ(. . .)) → rhsg,δ , ∀g ∈ G, δ ∈ ∆

Pre : g(yk) → yk,g , ∀g ∈ G, yk ∈ Y

Pair : g(f(u, y′1, . . . , y
′
r))→ (f, g)(u, g1(y

′
1), . . . , gµ(y

′
r)) , ∀g ∈ G, f ∈ F (r+1)

Here yk and yk,g are treated as nullary symbols, whereas the u, y′1, . . . , y
′
r are variables.

Note that in the rules of Pair the construction “reaches” intermediate data

structures in accumulating (context) parameters of the state f, as opposed to classical

deforestation.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

330 J. Voigtländer and A. Kühnemann

4.4 Adding accumulating parameters also to the consumer – reaching

accumulating parameters with non-unary states

Our aim is to compose two mtts, none of which is a tdtt. Hence, we have to consider

nested calls of the form g(f(t, φ1, . . . , φr), η1, . . . , ηs). Following the discussion from

the previous subsections, such a call will be replaced by a call of the paired state

(f, g) on t, provided with translations of the context parameters φ1, . . . , φr of f with

the µ states of M2. Additionally, (f, g) must clearly keep the context parameters of

the outer call of g ∈ G(s+1), i.e. (f, g) will altogether have r ·µ+ s context parameters.

The rule for a state (f′, g′) (with f′ ∈ F (r′+1) and g′ ∈ G(s′+1)) at some input symbol

σ ∈ Σ(p) will again be constructed by translating rhsf′ ,σ with g′, i.e. by reducing the

right-hand side of:

(f′, g′)(σ(u1, . . . , up), y1,g1
, . . . , yr′ ,gµ , z1, . . . , zs′)→ g′(rhsf′ ,σ , z1, . . . , zs′).

During this reduction, we again apply rules of R2 in order to eliminate intermediate

data structures, rules of an adapted rewrite system Pre to select the appropriate

translations of f′’s context parameters with states of M2, and rules of Pair to

perform a pairing of states as suggested above:

R2 : g(δ(. . .), z1, . . . , zs) → rhsg,δ , ∀g ∈ G(s+1), δ ∈ ∆

Pre : g(yk, z1, . . . , zs) → yk,g , ∀g ∈ G(s+1), yk ∈ Y

Pair : g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→

(f, g)(u, g1(y
′
1, . . .), . . . , gµ(y

′
r, . . .), z1, . . . , zs) , ∀g ∈ G(s+1), f ∈ F (r+1)

Note that Pair is only partially specified here, as the context parameters of the

g1, . . . , gµ-calls on y′1, . . . , y
′
r are not yet determined.

Also, note that the variables z1, . . . , zs are discarded in the rules of Pre. The reason

is our assumption that the yk,g-parameter of (f′, g′) already contains the correct

g-translation of the yk-parameter of f′. For two unrestricted mtts, this assumption

is not feasible, because it might happen that not all calls of g on the kth context

parameter of f′ have the same parameters. In the next two subsections we discuss

this problem and restrict the mtts M1 and M2 in such a way that the above idea of

precomputing the translations of context parameters will work.

To specify the exact shape of the rules in Pair , we step by step give approximations

(in the following marked with (*), (**) and (***)) of the effect of Pair on a concrete

situation

g(f(ui, φ1, . . . , φr), η1, . . . , ηs)

with subtrees φ1, . . . , φr of rhsf′ ,σ and η1, . . . , ηs being parts of right-hand side

expressions for M1;2 that have been built up during the translation of rhsf′ ,σ with g′.

We already know that we should replace such a nested call with a call of (f, g) on ui,

taking as additional arguments the correct translations of the context parameters of

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 331

Fig. 2. Can we uniquely determine the values in question mark positions?

f with all possible states of M2, and the context parameters of g:

(*) (f, g)(ui, g1(φ1, ?, . . . , ?), . . . , gµ(φr, ?, . . . , ?), η1, . . . , ηs).

4.5 Towards sufficient conditions for the composition construction

What are we supposed to provide in the places of the question marks in (*) ?

Clearly, it should be the context parameters with which the states g1, . . . , gµ are

expected to ‘arrive’ at occurrences of φ1, . . . , φr during computation of the nested

call g(f(ui, φ1, . . . , φr), η1, . . . , ηs) considered above (and thus will clearly depend on

the tree substituted for ui).

However, it is far from obvious, whether we can always provide this information.

So, we better first answer the following question in general (see figure 2).

Q : “Given two states f ∈ F (r+1) and g ∈ G(s+1) and some input tree t for M1,

can we for every state g′ of M2 and every context variable yk from y1, . . . , yr
uniquely determine, what will be the context parameters in every occurrence

of a call of g′ on yk during the reduction of g(f(t, y1, . . . , yr), η1, . . . , ηs)?”

To further illustrate the problem, we consider some – rather artificial – examples.

Example 4.2 (positive answer to question Q)

Let Σmon = {A(1), B(1), E(0)}, ∆mon = {α(1), β(1), ε(0)} and consider the mtt M1 = ({f(2)
1 },

Σmon,∆mon, f1(x, ε), R1) with set of rules R1:

(i) : f1(A(u1), y1) → α(f1(u1, y1))

(ii) : f1(B(u1), y1)→ f1(u1, β(y1))

(iii) : f1(E, y1) → y1.

Let Ωtree = {ω(2), γ(1), κ(0)} and M2 = ({g(2)
1 , g

(2)
2 },∆mon,Ωtree, g2(x, κ), R2) with set of

rules R2:

(iv) : g1(α(v1), z1) → g1(v1, g2(v1, z1))

(v) : g1(β(v1), z1)→ γ(z1)

(vi) : g1(ε, z1) → z1
(vii) : g2(α(v1), z1) → z1
(viii) : g2(β(v1), z1)→ g2(v1, ω(g1(v1, z1), z1))

(ix) : g2(ε, z1) → z1.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

332 J. Voigtländer and A. Kühnemann

Now, we might ask what will be the context parameters in every occurrence of a

call of g2 on y1 during the reduction of g1(f1(A(B(E)), y1), z1):

g1(f1(A(B(E)), y1), z1)⇒∗R1
g1(α(β(y1))︸ ︷︷ ︸

φ of figure 2

, z1)⇒∗R2
g1(β(y1), g2(y1, ω(g1(y1, z1), z1)))

Here the answer is unique, because no other calls of g2 on y1 will occur during the

further possible reduction. �

Example 4.3 (negative answer to question Q)

(a). Consider rules f(ε, y1) → δ(y1, y1) and g(δ(v1, v2)) → ω(g′(v1, ε), g
′(v2, κ)) of

M1 and M2, respectively, giving for t = ε the reduction:

g(f(ε, y1))⇒R1
g(δ(y1, y1))⇒R2

ω(g′(y1, ε), g
′(y1, κ)).

(b). Consider rules f(ε, y1)→ γ(y1) and g(γ(v1))→ g′(v1, g
′(v1, ε)) of M1 and M2,

respectively, giving for t = ε the reduction:

g(f(ε, y1))⇒R1
g(γ(y1))⇒R2

g′(y1, g
′(y1, ε)).

In both cases, the reduction leads to occurrences of calls of g′ on y1 with different

context parameters. �

Although Example 4.3 shows that in general the answer to question Q is no, we

claim that it can be answered positively if M1 is non-copying and M2 is weakly

single-use (which excludes the above ‘counterexamples’ (a) and (b)) – or, trivially, if

one of them is a tdtt – by reasoning as in the following subsection.

4.6 Walking upwards in intermediate results containing

parameters – the par-functions

If M1 is non-copying, then for every tree t ∈ TΣ the normal form φ of f(t, y1, . . . , yr)

contains at most one occurrence of every y1, . . . , yr . Assume that yk occurs at path

πyk in φ. If, moreover, M2 is weakly single-use, then we can find out the lth context

parameter in every occurrence of a call of state g′ on yk during the reduction of

g(φ, η1, . . . , ηs) by “walking upwards from πyk in φ” as described by a function parφ
that takes as arguments a path in φ, a state of M2 and a context parameter position

of this state (the initial call hence being parφ(πyk , g
′, l)):

(1) If the given path is ε, then either g′ = g and parφ(ε, g
′, l) should deliver the lth

context parameter of g′ = g at the root of φ, i.e. ηl , or g′ �= g and we can take

some arbitrary dummy context parameter, because no call of g′ will reach the

root of φ during reduction of g(φ, η1, . . . , ηs).

(2) If the given path is πj ∈ paths(φ) and lab(φ, π) = δ ∈ ∆(q), then there is at most

one possible way, how the path πj can be reached by a call of state g′, namely

by the unique (since M2 is weakly single-use) occurrence of a g′(vj , . . .)-call in

some right-hand side of a δ-rule of M2.

If there is no such call, then we can safely take some dummy symbol for

parφ(πj, g
′, l), because then the path πj cannot be reached by a call of state g′.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 333

If however, there is such a call in the right-hand side of a rule

g′′(δ(v1, . . . , vq), z1, . . . , zs′′)→ . . . g′(vj , ψ1, . . . , ψs′) . . . ,

then our sought lth context parameter of calls of g′ reaching the path πj is

essentially ψl , except that it might contain references to the children of the

occurrence of δ (variables v1, . . . , vq) and to context parameters of calls of g′′

on reaching the occurrence of δ (variables z1, . . . , zs′′). The former are obtained

as the direct subtrees of the occurrence of δ in φ, while the latter can be

computed by using the parφ-function on the path π as in the following:

parφ(πj, g
′, l) = ψl[v1, . . . , vq ← sub(φ, π1), . . . , sub(φ, πq),

z1, . . . , zs′′ ← parφ(π, g
′′, 1), . . . , parφ(π, g

′′, s′′)].

The occurrence of δ can now again be either at the root of φ, i.e. π = ε, or in

the argument of some output symbol of M1 in φ, so we either are in case (1)

or again ‘walk upwards’ in φ using this second case, until finally we reach the

root.

Example 4.4 (walking upwards)

Recall the mtts M1 and M2 from Example 4.2 (which are non-copying and weakly

single-use, respectively), and assume that we are interested in the first context

parameter in a call of g2 on the occurrence of y1 in φ = β(y1), that is, we want to

compute parβ(y1)(1, g2, 1). We know that the only way to have a call of g2 on the

occurrence of y1 at path πj = 1 (i.e. π = ε and j = 1) is via a call of g2 on v1 in the

right-hand side of some β-rule of M2. The only such call occurs in the rule (viii):

g2(β(v1), z1)→ g2(v1, ω(g1(v1, z1), z1)).

Hence, the first context parameter of g2 on y1 can be calculated by:

parβ(y1)(1, g2, 1) = ω(g1(v1, z1), z1)[v1 ← sub(β(y1), 1),

z1 ← parβ(y1)(ε, g2, 1)]

= ω(g1(y1, parβ(y1)(ε, g2, 1)), parβ(y1)(ε, g2, 1)). �

The informal explanation above Example 4.4 suggests that question Q can be

answered with yes. However, this does not immediately help our (static) construction

of M1;2, because an mtt has to work locally and cannot follow our proposed

(dynamic) procedure of “reduce f(t, y1, . . . , yr) to its normal form φ, check where the

context variables y1, . . . , yr are in φ, and walk your way up from there”.

However, we claim that the above idea can in fact be implemented by introducing

new states for the mtt M1;2 as explained in the next subsection.

4.7 Introducing new states for computing context parameters

For every two states f and g′ of M1 and M2, and every pair of context parameter

positions k and l of f and g′, respectively, we introduce a new state (kf, lg′)
5 of M1;2.

5 This shall not denote indexed integers, rather it is used as a compacter notation for the pair of pairs
((k, f), (l, g′)).

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

334 J. Voigtländer and A. Kühnemann

For every tree t, such a state (kf, lg′) shall compute the lth context parameter in a

call g′(yk, . . .) resulting from a reduction of g(f(t, . . . , yk, . . .), . . .) for some g, where g

is unique (due to our reasoning of “walking upwards in the intermediate tree, using

the weakly single-use property”).

Coming back to (*) in section 4.4, we can then fill the question marks by using

these new states:

(**) (f, g)(ui, g1(φ1, (1f , 1g1
)(ui, ?, . . . , ?), . . . , (1f , s1g1

)(ui, ?, . . . , ?)),

. . . ,

gµ(φr, (rf, 1gµ)(ui, ?, . . . , ?), . . . , (rf, sµgµ)(ui, ?, . . . , ?)),

η1, . . . , ηs) ,

assuming that the states g1, . . . , gµ of M2 have s1, . . . , sµ context parameters.

However, this produced new question marks, and before we can fill them we have

to consider what context parameters such a new state (kf, lg′) requires, respectively,

how its rules can be constructed6. For every input symbol σ ∈ Σ(p) of M1, we have

to construct a rule

(kf, lg′)(σ(u1, . . . , up), . . .)→ ? ,

aimed at computing the lth context parameter in a call of g′ on yk , resulting from a

reduction of

g(f(σ(u1, . . . , up), . . . , yk, . . .), . . .)

for some (unique) g. Clearly, we should use our knowledge of M1’s rule

f(σ(u1, . . . , up), . . . , yk, . . .)→ rhsf,σ.

If rhsf,σ does not contain yk , then there cannot result a call of g′ on yk from the

reduction, so we are safe to choose some dummy right-hand side for (kf, lg′) at σ.

In the case that rhsf,σ does contain yk , we will reuse the idea of “walking upwards

from the unique occurrence of yk”, namely with a parrhsf,σ -function. However, since

besides context variables and output symbols, rhsf,σ can also contain recursive

function calls – which were not present in the discussion in the previous subsection –

an appropriate extension to the parrhsf,σ -function will be necessary. We will discuss

this extension in the next subsection. In the absence of function calls from rhsf,σ , we

can use the par-functions as introduced so far.

Example 4.5 (walking upwards in a right-hand side without recursive calls)

Consider the mtts M1 and M2 from Example 4.2, but assume the simpler right-hand

side rhsf1 ,B = β(y1) for rule (ii). If we want to construct the right-hand side for

(1f1
, 1g2

) at B (that is, we are interested in the first context parameter in a call of g2

on the occurrence of y1 in rhsf1 ,B), we obtain according to Example 4.4:

parrhsf1 ,B
(1, g2, 1) = ω(g1(y1, parrhsf1 ,B

(ε, g2, 1)), parrhsf1 ,B
(ε, g2, 1)) ,

which depends both on the g1-translation of y1 and on the first context parameter

of g2 at the root of rhsf1 ,B . �

6 In addition to the µ · |R1| rules for (f, g)-states, R1;2 will contain � µ · |R1| · rmax · smax rules for
(kf , lg′)-states, where rmax = max(rank(F))− 1 and smax = max(rank(G))− 1.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 335

Since in general we do not know, which states – in the previous example g1 and g2

in ω(g1(y1, parrhsf1 ,B
(ε, g2, 1)), parrhsf1 ,B

(ε, g2, 1))-will be concerned, we might need the

information

1. all g-translations of all context parameters of f for every state g of M2

2. all context parameters for every state g of M2 at the root of rhsf,σ (respectively,

at the occurrence of f(σ(u1, . . . , up), . . . , yk, . . .))

to compute (kf, lg′) at σ.

Thus, the rule discussed above Example 4.5 will indeed have the form:

(kf, lg′)(σ(u1, . . . , up), y1,g1
, . . . , yr,gµ , zg1 ,1, . . . , zgµ,sµ)→ ? ,

and the definition of par-functions on the empty path ε can be made more precise

by stating for every g′ ∈ G(s′+1) and l ∈ [s′]:

parrhsf,σ (ε, g
′, l) = zg′ ,l .

Example 4.6 (completing the rule for (1f1
, 1g2

) at B, assuming rhsf1 ,B = β(y1))

Continuing the discussion from Example 4.5 we obtain:

parrhsf1 ,B
(1, g2, 1) = ω(g1(y1, parrhsf1 ,B

(ε, g2, 1)), parrhsf1 ,B
(ε, g2, 1))

= ω(g1(y1, zg2 ,1), zg2 ,1).

Since (1f1
, 1g2

) has the translations of y1 with all states of M2 as context parameters,

we can use the rewrite system Pre to replace g1(y1, zg2 ,1) with y1,g1
, and obtain the

following rule:

(1f1
, 1g2

)(B(u1), y1,g1
, y1,g2

, zg1 ,1, zg2 ,1)→ ω(y1,g1
, zg2 ,1). �

Note that – as follows from the reasoning in section 4.6 – for every input tree t,

state g′ and context variable yk , there will be at most one state g ∈ G(s+1) such

that reducing g(f(t, . . . , yk, . . .), . . .) leads to a g′(yk, . . .)-call. The result of reducing

(kf, lg′)(t, y1,g1
, . . . , yr,gµ , zg1 ,1, . . . , zgµ,sµ), which shall compute the lth context parameter

of this call of g′ on yk , will then contain only those variables of the zg1 ,1, . . . , zgµ,sµ that

are associated with this unique g. However, since for different input trees t also this

g might differ, it is unavoidable for the state (kf, lg′) to have all the context variables

zg1 ,1, . . . , zgµ,sµ . Intuitively, to get the lth context parameter of a call g′(yk, . . .) resulting

from reduction of g(f(t, . . . , yk, . . .), η1, . . . , ηs), we have to compute

(kf, lg′)(t, y1,g1
, . . . , yr,gµ , zg1 ,1, . . . , zgµ,sµ)

and replace the zg,1, . . . , zg,s (no other variables will occur from zg1 ,1, . . . , zgµ,sµ in the

result) by the η1, . . . , ηs.

4.8 Walking upwards in right-hand sides of M1 – extending the par-functions

The following example demonstrates the necessity to extend our parφ-functions, and

prepares the ground for this extension in general.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

336 J. Voigtländer and A. Kühnemann

Example 4.7 (walking upwards from a parameter position of a recursive call)

In Examples 4.5 and 4.6 we considered the construction of the right-hand side for

(1f1
, 1g2

) at B for the mtts M1 and M2 from Example 4.2, but used a simplified

right-hand side rhsf1 ,B , where no function call occurred. We will now resume this

discussion for the original rhsf1 ,B = f1(u1, β(y1)).

Recall that to build the rule

(1f1
, 1g2

)(B(u1), y1,g1
, y1,g2

, zg1 ,1, zg2 ,1)→ ? ,

i.e. to find the first context parameter in a call of g2 reaching y1 in rhsf1 ,B , we have

to start from the unique occurrence of y1 in this right-hand side, which gives us in

analogy to Example 4.5:

parf1(u1 ,β(y1))(21, g2, 1) = ω(g1(y1, parf1(u1 ,β(y1))(2, g2, 1)), parf1(u1 ,β(y1))(2, g2, 1)).

In analogy to Example 4.6, we can later use the rewrite system Pre to replace

g1(y1, . . .) with y1,g1
. For calculating parf1(u1 ,β(y1))(2, g2, 1), however, we need further

discussion, because it stands for the context parameter of g2 on reaching the root

of a context parameter of f1, a situation we did not consider so far. However, we

have designed the state (1f1
, 1g2

) to compute for instantiated u1 the first context

parameter of g2 on reaching the first context parameter of f1 during a reduction

on f1(u1, . . .) with some state of M2. Hence, we can obtain our needed value for

parf1(u1 ,β(y1))(2, g2, 1) by calling this state (1f1
, 1g2

) on u1, yielding:

(1f1
, 1g2

)(B(u1), y1,g1
, y1,g2

, zg1 ,1, zg2 ,1)→ ω(y1,g1
, (1f1

, 1g2
)(u1, ?, . . . , ?)).

How to fill the context parameter positions of this call will now be discussed in

general. �

We abstract from the previous example and explain the working of the parφ-function

for a path πj that corresponds to the (j − 1)st context parameter position of a call

of some f ∈ F on some ui ∈ U in φ, i.e. lab(φ, π) = f and lab(φ, π1) = ui. Recall

that parφ(πj, g
′, l) shall – modulo reductions with R2∪Pre∪Pair – give a right-hand

side expression for M1;2 that computes the lth context parameter in a call of state

g′ reaching the path πj in M1’s right-hand side φ. Since the path πj is the (j − 1)st

context parameter position of a call of f, this can be realised by a call of ((j − 1)f , lg′)

on ui, because this state was designed to compute the lth context parameter in a call

of state g′ reaching the (j − 1)st context parameter position of a call of state f on a

given input. To do so, the state ((j − 1)f , lg′) has to be provided with translations of

f’s context parameters – at the particular occurrence of the call of f at path π in

φ-with states of M2, and furthermore, with the context parameters of M2’s states at

this occurrence. The latter ones can be computed by parφ-function calls on the path

of the occurrence of f in φ. Hence,

parφ(πj, g
′, l) = ((j − 1)f, lg′)(ui, . . .︸︷︷︸

nestf

, parφ(π, g1, 1), . . . , parφ(π, gµ, sµ)) ,

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 337

still missing the translations of f’s context parameters (the subtrees of φ in context

parameter positions of the call of f) with states of M2. Actually a (finite!) nesting

of such translations will be necessary, to be discussed at the end of section 4.10.

4.9 Towards the Pair-rules

Let us now further consider the effect that the rewrite system Pair should have on

g(f(ui, φ1, . . . , φr), η1, . . . , ηs). In particular, we need to fill the question mark slots

of (**) in section 4.7.

Recall that we introduced the calls of (1f , 1g1
), . . . , (rf, sµgµ) on ui in order to com-

pute the context parameters with which the states g1, . . . , gµ are expected to ‘arrive’

at φ1, . . . , φr during the reduction of g(f(ui, φ1, . . . , φr), η1, . . . , ηs) for instantiated

ui. Further, recall that-by the discussion below Example 4.5-every state (kf, lg′) ∈
{(1f , 1g1

), . . . , (rf, sµgµ)} expects in the zg1 ,1, . . . , zgµ,sµ-positions of its call on ui the

context parameters of all possible states of M2 at the occurrence of f(ui, φ1, . . . , φr).

However, only those of the translations g1(φ1, . . .), . . . , gµ(φr, . . .) will be needed

during the computation of (**) that actually occur during the reduction of

g(f(ui, φ1, . . . , φr), η1, . . . , ηs)

for instantiated ui. For such a g′ and φk we know by the discussion at the end of

section 4.7, that a call of state (kf, lg′) on the concrete tree substituted for ui will

depend only on those of its zg1 ,1, . . . , zgµ,sµ-positions that are associated with the g

fixed above. We also gave the intuition that for these zg,1, . . . , zg,s-positions, we have

to provide the η1, . . . , ηs. The other zg1 ,1, . . . , zgµ,sµ-positions – those not associated

with g – are filled with a dummy nullary output symbol nil7. This leaves us with the

following expression:

(***) (f, g)(ui, g1(φ1, (1f , 1g1
)(ui, ?, . . . , ?, nil , . . . , nil , η1, . . . , ηs, nil , . . . , nil),

. . . ,

(1f , s1g1
)(ui, ?, . . . , ?, nil , . . . , nil , η1, . . . , ηs, nil , . . . , nil)),

. . . ,

gµ(φr, (rf, 1gµ)(ui, ?, . . . , ?, nil , . . . , nil , η1, . . . , ηs, nil , . . . , nil),

. . . ,

(rf, sµgµ)(ui, ?, . . . , ?, nil , . . . , nil , η1, . . . , ηs, nil , . . . , nil)),

η1, . . . , ηs) ,

still having to fill the y1,g1
, . . . , yr,gµ-positions of calls of (1f , 1g1

), . . . , (rf, sµgµ). Again,

this will lead to nested translations, as discussed in the next subsection.

4.10 Nesting translations and cutting cycles

For the question mark positions in (***) we have to provide the g1, . . . , gµ-trans-

lations of the φ1, . . . , φr , which might be needed during the computations of the

7 In section 5.3 we will demonstrate that a seemingly simpler approach – constructing states with reduced
ranks instead – is not feasible.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

338 J. Voigtländer and A. Kühnemann

states (1f , 1g1
), . . . , (rf, sµgµ) on instantiated ui. This looks suspiciously like a circular

construction, because we would use g1(φ1, . . .) within g1(φ1, . . .) and the like. However,

we can “cut” these cycles by keeping track of the nesting (similar to the unfolding

in the construction for ATT ⊆ MAC – cf. Franchi-Zannettacci (1982) and Fülöp

& Vogler (1999)), because the positions where such cyclic dependencies would

occur, can for no possible input tree influence the computation. The intuitive

reason for this is that otherwise we would meet a situation corresponding to

the ‘counterexample’ (b) in Example 4.3, like g′(y1, g
′(y1, ε)), which cannot occur,

because we argued that all occurrences of g′(y1, . . .) will have identical context

parameters, provided thatM1 is non-copying andM2 is weakly single-use. The formal

reason is established in Lemma A.8 of the Appendix (Voigtländer & Kühnemann,

2003).

The nested translations of the context parameters φ1, . . . , φr of f with the

states g1, . . . , gµ of M2 will be built up with the help of a nestf-function that

takes as arguments the position k ∈ [r] of the context parameter to be trans-

lated, a state g′ ∈ G(s′+1) with which to translate, and a set C ⊆ [r] × G that

keeps track of nested parameter-state-combinations, to perform the ‘cutting’ of

cycles during the nesting process as mentioned above. Hence, if (k, g′) ∈ C,

then nestf(k, g
′,C) will return the dummy symbol nil, otherwise a call of the

form

g′(y′k, (kf, 1g′)(u, . . .︸︷︷︸
nestf

, zg1 ,1, . . . , zgµ,sµ), . . . , (kf, s
′
g′)(u, . . .︸︷︷︸

nestf

, zg1 ,1, . . . , zgµ,sµ)) ,

where the y1,g1
, . . . , yr,gµ-positions of the (kf, 1g′), . . . , (kf, s

′
g′)-calls contain recursive

applications of nestf with the enlarged set of ‘cut-positions’ C ∪ {(k, g′)}.
Abstracting from the concrete ui, φ1, . . . , φr and η1, . . . , ηs in (***), such nestf-

functions will be used in Construction 5.1 to determine the rules for the rewrite

system Pair from section 4.4.

Concluding the discussion of the ‘walking upwards’ in a right-hand side φ of M1

for the case that a call of state f is encountered (cf. section 4.8), the nestf-function

will also take care of preparing the g1, . . . , gµ-translations of the context parameters

of such a call, necessary to obtain parφ(πj, g
′, l). Since the lth context parameter

in a call of state g′ on reaching the (j − 1)st context parameter position of a call

of state f cannot depend on the g′-translation of this (j − 1)st context parameter

(cf. the ‘cutting’ discussion), this nesting will not be started with the empty set of

‘cut-positions’, but with {(j − 1, g′)}.

5 Composition of restricted macro tree transducers

In this section we present the construction for composing a non-copying and a

weakly single-use mtt by formally defining the rewrite systems Pre and Pair , and the

nestf- and parφ-functions discussed in the previous section. For illustration, we apply

it to the mtts from Example 4.2, and discuss why a seemingly simpler construction

cannot work.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 339

5.1 The complete construction

The following construction is essentially Construction 3.2 of Voigtländer (2001),

but described in a simplified way. It is straightforward – though tiresome and thus

omitted here – to establish that it produces a well-defined mtt.

Construction 5.1 (direct composition of restricted mtts)

Let M1 = (F,Σ,∆, e1, R1) and M2 = (G,∆,Ω, e2, R2) be mtts, such that M1 is non-

copying and M2 is weakly single-use. Assume that M1 uses recursion variables from

U and context variables from Y , whereas M2 uses V and Z , respectively.

Let µ = |G| and fix some ordering of the states in G, such that G = {g1, . . . , gµ}.
For n ∈ [µ], let sn ∈ N be such that gn ∈ G(sn+1). Additionally, let rmax =

max(rank(F)) − 1 and let nil ∈ Ω(0) be some arbitrary output symbol and ZG =

{zg1 ,1, . . . , zg1 ,s1 , . . . , zgµ,1, . . . , zgµ,sµ}.
Then, the components of the mtt M1;2 = (H,Σ,Ω, e1;2, R1;2) are obtained as follows:

• H = {(f, g)(r·µ+s+1) | f ∈ F (r+1), g ∈ G(s+1)}
∪ {(kf, lg)(r·µ+|ZG|+1) | f ∈ F (r+1), g ∈ G(s+1), k ∈ [r], l ∈ [s]}

• e1;2 = nf(⇒R2∪Pair , e2[x← e1])

• R1;2 contains:

— for every f ∈ F (r+1), g ∈ G(s+1) and σ ∈ Σ(p), the rule:

(f, g)(σ(u1, . . . , up), y1,g1
, . . . , yr,gµ , z1, . . . , zs)

→ nf(⇒R2∪Pre∪Pair , g(rhsf,σ, z1, . . . , zs)) ,

— for every f ∈ F (r+1), g ∈ G(s+1), k ∈ [r], l ∈ [s] and σ ∈ Σ(p), the rule:

(kf, lg)(σ(u1, . . . , up), y1,g1
, . . . , yr,gµ , zg1 ,1, . . . , zgµ,sµ)

→ nf(⇒R2∪Pre∪Pair , �) ,

where � = nil, if rhsf,σ does not contain the context variable yk; otherwise

� = parrhsf,σ (πyk , g, l), where πyk ∈ paths(rhsf,σ) is the path of the unique

occurrence of yk in rhsf,σ (notice that M1 is non-copying).

The rewrite systems Pre (over G ∪ Yrmax ∪ {y
(0)
k,g | k ∈ [rmax], g ∈ G} and Z) and Pair

(over F ∪ G ∪H ∪ {nil} and {u} ∪ Y ′ ∪ Z) used above are defined as follows:

Pre : g(yk, z1, . . . , zs) → yk,g , ∀g ∈ G(s+1), k ∈ [rmax]

Pair : g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→

(f, g)(u, nestf(1, g1, ∅), . . . , nestf(r, gµ, ∅), z1, . . . , zs)
[zg,1, . . . , zg,s ← z1, . . . , zs]

[zg1 ,1, . . . , zgµ,sµ ← nil , . . . , nil] , ∀g ∈ G(s+1), f ∈ F (r+1)

There are no critical pairs (Dershowitz & Jouannaud, 1990) in R2 ∪ Pre ∪ Pair ,

hence the reduction relation ⇒R2∪Pre∪Pair is confluent. Since the rewrite rules in

R2 ∪ Pre ∪ Pair can be interpreted as rules of an auxiliary mtt (which uses state

set G to translate right-hand sides of M1 into right-hand sides of M1;2), it is also

terminating. Hence, unique normal forms with respect to ⇒R2∪Pre∪Pair exist.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

340 J. Voigtländer and A. Kühnemann

For every f ∈ F (r+1), the function

nestf : [r]× G×P([r]× G)→ TG∪H∪{nil}({u} ∪ Y ′r ∪ ZG)

is defined as follows. For every k ∈ [r], g′ ∈ G(s′+1) and C ⊆ [r]× G:

• nestf(k, g′,C) = nil ,

if (k, g′) ∈ C.

• nestf(k, g′,C) =

g′(y′k,(kf, 1g′)(u, nestf(1, g1,C ∪ {(k, g′)}), . . . , nestf(r, gµ,C ∪ {(k, g′)}),
zg1 ,1, . . . , zgµ,sµ),

. . . ,

(kf, s
′
g′)(u, nestf(1, g1,C ∪ {(k, g′)}), . . . , nestf(r, gµ,C ∪ {(k, g′)}),

zg1 ,1, . . . , zgµ,sµ)) ,

if (k, g′) /∈ C.

Using the nestf-functions we additionally define for every φ ∈ RHS(F,∆, U, Y) the

function

parφ : {(π, g′, l) | π ∈ paths(φ), lab(φ, π) /∈ U, g′ ∈ G(s′+1), l ∈ [s′]}
→ TF∪G∪H∪∆∪Ω(U ∪ Y ∪ ZG)

by induction on the prefix-order of paths in φ as follows. For every g′ ∈ G(s′+1) and

l ∈ [s′]:

• parφ(ε, g
′, l) = zg′ ,l

• For every j ∈ N+, πj ∈ paths(φ) with lab(φ, πj) /∈ U, we define parφ(πj, g
′, l)

by case distinction on lab(φ, π) as follows:

lab(φ, π) = δ for some δ ∈ ∆(q) and j ∈ [q]:

If, with g′′ ∈ G(s′′+1) and ψ1, . . . , ψs′ ∈ RHS(G,Ω, Vq, Zs′′), the only occurrence

of a g′(vj , . . .)-call in the δ-rules of the weakly single-use mtt M2 looks as

follows:

g′′(δ(v1, . . . , vq), z1, . . . , zs′′)→ . . . g′(vj , ψ1, . . . , ψs′) . . . ,

then:

parφ(πj, g
′, l) = ψl[v1, . . . , vq ← sub(φ, π1), . . . , sub(φ, πq),

z1, . . . , zs′′ ← parφ(π, g
′′, 1), . . . , parφ(π, g

′′, s′′)].

If no such call exists in the δ-rules of M2, then parφ(πj, g
′, l) = nil.

lab(φ, π) = f for some f ∈ F (r+1), 1 � j − 1 � r and lab(φ, π1) = ui ∈ U:

parφ(πj, g
′, l)

= ((j − 1)f , lg′)(u, nestf(1, g1, {(j − 1, g′)}), . . . , nestf(r, gµ, {(j − 1, g′)}),
zg1 ,1, . . . , zgµ,sµ)

[u ← ui,

y′1, . . . , y
′
r ← sub(φ, π2), . . . , sub(φ, π(r + 1)),

zg1 ,1, . . . , zgµ,sµ ← parφ(π, g1, 1), . . . , parφ(π, gµ, sµ)]. �

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 341

The following main theorem – stating the correctness of the previous construction

– is proven as Theorem A.16 in the Appendix (Voigtländer & Kühnemann, 2003).

Theorem 5.2 (correctness of Construction 5.1)

τ(M1); τ(M2) = τ(M1;2) �

Note that in Construction 5.1 we used only condition (i) of the weakly single-

use restriction for M2 from Definition 3.6 and this only for states of M2 with

rank greater than one (consider that parφ is only defined for triples (π, g′, l) where

g′ is non-unary). In fact, we could generalise the weakly single-use property in

Definition 3.6 by dropping condition (ii) and requiring condition (i) only for states g

that do have context parameters. This would require no change to Construction 5.1

or to the proofs in the Appendix (Voigtländer & Kühnemann, 2003)! The informal

explanations from section 4, however, would be more involved and less intuitive

for such a generalised class. That is why we kept to the stronger restriction weakly

single-use of Kühnemann (1998), and only mention the possible generalisation here.

Further, note that we used the non-copying restriction of M1 and the weakly

single-use restriction of M2 only in the construction of rules for the (kf, lg)-states.

Since no such states are created if one of the two original mtts is a tdtt, the

composition construction is also applicable if M1 or M2 is a tdtt (and the other

one is an unrestricted mtt). In these two special cases, Construction 5.1 corresponds

to Transformation 11 in Kühnemann (1999) (if M1 is a tdtt), respectively, to the

construction in the proof of Theorem 4.12 in Engelfriet & Vogler (1985) (if M2 is a

tdtt).

5.2 Calculating an example

As an example we now present the application of Construction 5.1 to the two mtts

from Example 4.2. In order to make explicit the positions where the dummy symbol

nil is used – indicating that these positions will not influence the computation – we

add nil to the output ranked alphabet, instead of using some existing nullary symbol

as we usually would do.

Example 5.3 (applying the direct composition construction)

Consider M1 and M2 from Example 4.2. Since M1 is non-copying and M2 is weakly

single-use, we can apply Construction 5.1 to obtain the mtt M1;2 = (H,Σmon,Ωtree ∪
{nil(0)}, e1;2, R1;2) with components as follows (where µ = 2, s1 = s2 = 1, rmax = 1

and ZG = {zg1 ,1, zg2 ,1}):

• H = {(f1, g1)
(4), (f1, g2)

(4)} ∪ {(1f1
, 1g1

)(5), (1f1
, 1g2

)(5)}
• Pre contains the rules: g1(y1, z1)→ y1,g1

g2(y1, z1)→ y1,g2
.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

342 J. Voigtländer and A. Kühnemann

• Pair contains the rules:

g1(f1(u, y
′
1), z1)→ (f1, g1)(u, nestf1

(1, g1, ∅), nestf1
(1, g2, ∅), z1)

[zg1 ,1, zg2 ,1 ← z1, nil]

= (f1, g1)(u, g1(y
′
1, (1f1

, 1g1
)(u, nil, g2(y

′
1, (1f1

, 1g2
)(u, nil, nil, z1, nil)),

z1, nil)),

g2(y
′
1, (1f1

, 1g2
)(u, g1(y

′
1, (1f1

, 1g1
)(u, nil, nil, z1, nil)), nil,

z1, nil)),

z1)

g2(f1(u, y
′
1), z1)→ (f1, g2)(u, nestf1

(1, g1, ∅), nestf1
(1, g2, ∅), z1)

[zg1 ,1, zg2 ,1 ← nil, z1]

= (f1, g2)(u, g1(y
′
1, (1f1

, 1g1
)(u, nil, g2(y

′
1, (1f1

, 1g2
)(u, nil, nil, nil, z1)),

nil, z1)),

g2(y
′
1, (1f1

, 1g2
)(u, g1(y

′
1, (1f1

, 1g1
)(u, nil, nil, nil, z1)), nil,

nil, z1)),

z1).

• e1;2 = nf(⇒R2∪Pair , g2(x, κ)[x← f1(x, ε)]), with

g2(x, κ)[x← f1(x, ε)] = g2(f1(x, ε), κ)

⇒Pair (f1, g2)(x, g1(ε, (1f1
, 1g1

)(x, nil, g2(ε, (1f1
, 1g2

)(x, nil, nil, nil, κ)),

nil, κ)),

g2(ε, (1f1
, 1g2

)(x, g1(ε, (1f1
, 1g1

)(x, nil, nil, nil, κ)), nil,

nil, κ)),

κ)

⇒∗R2
(f1, g2)(x, (1f1

, 1g1
)(x, nil, (1f1

, 1g2
)(x, nil, nil, nil, κ), nil, κ),

(1f1
, 1g2

)(x, (1f1
, 1g1

)(x, nil, nil, nil, κ), nil, nil, κ),

κ).

• For the rules in R1;2, we compute only two examples here:

1. We compute the rule for (f1, g1) at A:

(f1, g1)(A(u1), y1,g1
, y1,g2

, z1)→ nf(⇒R2∪Pre∪Pair , g1(rhsf1 ,A, z1)), with

g1(rhsf1 ,A, z1) = g1(α(f1(u1, y1)), z1)

⇒R2
g1(f1(u1, y1), g2(f1(u1, y1), z1))

⇒Pair (f1, g1)(u1, g1(y1, (1f1
, 1g1

)(u1, nil , g2(y1, (1f1
, 1g2

)(u1, nil, nil,

g2(f1(u1, y1), z1), nil)),

g2(f1(u1, y1), z1), nil)),

g2(y1, (1f1
, 1g2

)(u1, g1(y1, (1f1
, 1g1

)(u1, nil, nil,

g2(f1(u1, y1), z1), nil)), nil,

g2(f1(u1, y1), z1), nil)),

g2(f1(u1, y1), z1))

⇒∗Pre (f1, g1)(u1, y1,g1
, y1,g2

, g2(f1(u1, y1), z1))

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 343

⇒Pair (f1, g1)(u1, y1,g1
, y1,g2

,

(f1, g2)(u1, g1(y1, (1f1
, 1g1

)(u1, nil , g2(y1, (1f1
, 1g2

)(u1,

nil, nil, nil, z1)),

nil , z1)),

g2(y1, (1f1
, 1g2

)(u1, g1(y1, (1f1
, 1g1

)(u1,

nil, nil, nil, z1)), nil,

nil , z1)),

z1))

⇒∗Pre (f1, g1)(u1, y1,g1
, y1,g2

, (f1, g2)(u1, y1,g1
, y1,g2

, z1)).

2. We compute the rule for (1f1
, 1g2

) at B:

(1f1
, 1g2

)(B(u1), y1,g1
, y1,g2

, zg1 ,1, zg2 ,1)

→ nf(⇒R2∪Pre∪Pair , parrhsf1 ,B
(21, g2, 1)) , with

parrhsf1 ,B
(21, g2, 1) = parf1(u1 ,β(y1))(21, g2, 1)

= ω(g1(v1, z1), z1)[v1, z1 ← y1, parf1(u1 ,β(y1))(2, g2, 1)]

= ω(g1(v1, z1), z1)[v1 ← y1,

z1 ← (1f1
, 1g2

)(u, nestf1
(1, g1, {(1, g2)}),

nestf1
(1, g2, {(1, g2)}), zg1 ,1, zg2 ,1)

[u, y′1 ← u1, β(y1),

zg1 ,1 ← parf1(u1 ,β(y1))(ε, g1, 1),

zg2 ,1 ← parf1(u1 ,β(y1))(ε, g2, 1)]]

= ω(g1(v1, z1), z1)[v1 ← y1,

z1 ← (1f1
, 1g2

)(u, g1(y
′
1, (1f1

, 1g1
)(u, nil, nil,

zg1 ,1, zg2 ,1)),

nil, zg1 ,1, zg2 ,1)

[u, y′1, zg1 ,1, zg2 ,1 ← u1, β(y1), zg1 ,1, zg2 ,1]]

= ω(g1(v1, z1), z1)[v1 ← y1,

z1 ← (1f1
, 1g2

)(u1, g1(β(y1), (1f1
, 1g1

)(u1, nil, nil,

zg1 ,1, zg2 ,1)),

nil, zg1 ,1, zg2 ,1)]

= ω(g1(y1, (1f1
, 1g2

)(u1, g1(β(y1), (1f1
, 1g1

)(u1, nil, nil, zg1 ,1, zg2 ,1)),

nil, zg1 ,1, zg2 ,1)),

(1f1
, 1g2

)(u1, g1(β(y1), (1f1
, 1g1

)(u1, nil, nil, zg1 ,1, zg2 ,1)),

nil, zg1 ,1, zg2 ,1))

⇒Pre ω(y1,g1
, (1f1

, 1g2
)(u1, g1(β(y1), (1f1

, 1g1
)(u1, nil, nil, zg1 ,1, zg2 ,1)),

nil, zg1 ,1, zg2 ,1))

⇒R2
ω(y1,g1

, (1f1
, 1g2

)(u1, γ((1f1
, 1g1

)(u1, nil, nil, zg1 ,1, zg2 ,1)),

nil, zg1 ,1, zg2 ,1)).
Note the correspondences between this calculation and the informal ex-

planations in Example 4.7.

Altogether, we get the following set of rules:

(f1, g1)(A(u1), y1,g1
, y1,g2

, z1) → (f1, g1)(u1, y1,g1
, y1,g2

, (f1, g2)(u1, y1,g1
, y1,g2

, z1))

(f1, g1)(B(u1), y1,g1
, y1,g2

, z1) → (f1, g1)(u1, γ((1f1
, 1g1

)(u1, nil, y1,g2
, z1, nil)),

y1,g2
, z1)

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

344 J. Voigtländer and A. Kühnemann

(f1, g1)(E, y1,g1
, y1,g2

, z1) → y1,g1

(f1, g2)(A(u1), y1,g1
, y1,g2

, z1) → z1
(f1, g2)(B(u1), y1,g1

, y1,g2
, z1) → (f1, g2)(u1, γ((1f1

, 1g1
)(u1, nil, y1,g2

, nil, z1)),

y1,g2
, z1)

(f1, g2)(E, y1,g1
, y1,g2

, z1) → y1,g2

(1f1
, 1g1

)(A(u1), y1,g1
, y1,g2

, zg1 ,1, zg2 ,1) → (1f1
, 1g1

)(u1, nil, y1,g2
,

(f1, g2)(u1, y1,g1
, y1,g2

, zg1 ,1), zg1 ,1)

(1f1
, 1g1

)(B(u1), y1,g1
, y1,g2

, zg1 ,1, zg2 ,1) → (1f1
, 1g2

)(u1,

γ((1f1
, 1g1

)(u1, nil, nil, zg1 ,1, zg2 ,1)),

nil, zg1 ,1, zg2 ,1)

(1f1
, 1g1

)(E, y1,g1
, y1,g2

, zg1 ,1, zg2 ,1) → zg1 ,1

(1f1
, 1g2

)(A(u1), y1,g1
, y1,g2

, zg1 ,1, zg2 ,1) → (1f1
, 1g2

)(u1, y1,g1
, nil,

(f1, g2)(u1, y1,g1
, y1,g2

, zg1 ,1), zg1 ,1)

(1f1
, 1g2

)(B(u1), y1,g1
, y1,g2

, zg1 ,1, zg2 ,1) → ω(y1,g1
, (1f1

, 1g2
)(u1,

γ((1f1
, 1g1

)(u1, nil, nil, zg1 ,1, zg2 ,1)),

nil, zg1 ,1, zg2 ,1))

(1f1
, 1g2

)(E, y1,g1
, y1,g2

, zg1 ,1, zg2 ,1) → zg2 ,1.

The fact that the positions where nil was introduced above do not influence the

computation (i.e. that for every possible input, the output tree computed by M1;2 will

contain no nil-symbols) is discussed in Voigtländer & Kühnemann (2001: 22–24) by

analysing the different types of occurrences of nil. �

5.3 Exploring alternatives

Regarding the nil-symbols that are introduced by the Pair-rules, e.g. into expression

(***) in section 4.9, the reader may wonder why we do not instead introduce refined

states (g, kf, lg′) with reduced ranks, and use Pair-rules of the form:

g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→

(f, g)(u, g1(y
′
1, (g, 1f , 1g1

)(u, nil, . . . , gµ(y
′
r, . . .), z1, . . . , zs),

. . . ,

(g, 1f , s1g1
)(u, nil, . . . , gµ(y

′
r, . . .), z1, . . . , zs)),

. . . ,

gµ(y
′
r, (g, rf, 1gµ)(u, g1(y

′
1, . . .), . . . , nil, z1, . . . , zs),

. . . ,

(g, rf, sµgµ)(u, g1(y
′
1, . . .), . . . , nil, z1, . . . , zs)),

z1, . . . , zs).

The intuition might be that such a state (g, kf, lg′) would – in contrast to the state

(kf, lg′) introduced at the beginning of section 4.7 – not need all the zg1 ,1, . . . , zgµ,sµ-

positions as context parameters, because the relevant g at the end of section 4.7

would be fixed. However, we now use an example to show that such a construction

is not feasible, because determining the rules for such (g, kf, lg′)-states would lead to

new problems.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 345

Assume that for the composition of the mtt Mcount from Example 3.8 with a

weakly single-use mtt containing (in R2) the rules

g1(succ(v1), z1) → g2(v1, γ2(z1))

g2(succ(v1), z1) → g3(v1, γ3(z1))

g3(succ(v1), z1) → g1(v1, γ1(z1)) ,

we want to construct the rule for state (g1, 1count, 1g3
) at δ. Since the unique occurrence

of y1 in rhscount,δ = succ(count(u1, count(u2, y1))) is in the first context parameter

position of a call of count on u2, we would have to construct – according to the

idea in section 4.8-some (g, 1count, 1g3
)-call on u2, i.e. the sought rule should have the

form:

(g1, 1count, 1g3
)(δ(u1, u2), y1,g1

, y1,g2
, y1,g3

, z1)→ (?, 1count, 1g3
)(u2, . . .).

But how can we decide which g to use in the question mark position? It should

be the state with which the inner count-call (on u2) in rhscount,δ is reached. Clearly,

since we are trying to construct a rule for (g1, 1count, 1g3
), we can use the knowledge

that the reduction on rhscount,δ is started with g1. But still, the necessary information

depends upon the input, and hence cannot be determined statically. For example,

for the input u1 = ε the count(u2, y1)-call is reached with g3:

g1(rhscount,δ[u1 ← ε], z1)

⇒Rcount g1(succ(succ(count(u2, y1))), z1)

⇒∗R2
g3(count(u2, y1), γ3(γ2(z1))) ,

whereas for the instantiation u1 = δ(ε, ε) it is reached with g2:

g1(rhscount,δ[u1 ← δ(ε, ε)], z1)

⇒∗Rcount g1(succ(succ(succ(succ(count(u2, y1))))), z1)

⇒∗R2
g2(count(u2, y1), γ2(γ1(γ3(γ2(z1))))).

As pointed out by one referee, this problem can be solved by equipping the mtt M1;2

with the feature of regular look-ahead (Engelfriet & Vogler, 1985) to determine the

relevant g for every instantiation of the recursion variables.

To achieve this in a functional programming setting, one would either have to

compute the regular look-ahead information for every subtree of the input tree once

and for all and annotate the tree accordingly, or to simulate the regular look-ahead

feature by recomputing the necessary information whenever needed (e.g. with test

trees (cf. Engelfriet & Vogler, 1985, Theorem 4.21)). The former strategy would

run contrary to our aim of eliminating intermediate results, while the latter strategy

can necessitate a significant amount of recomputations by considering subtrees

repeatedly, and thus can even worsen the runtime complexity in some cases.

In contrast, lazy evaluation ensures that no superfluous computations are per-

formed by the mtt resulting from Construction 5.1. Even though the rules for

(kf, lg′)-states might contain recursive calls of which not only those zg1 ,1, . . . , zgµ,sµ-

parameter positions associated with one particular g are non-nil, for every concrete

input only a subset of the context parameters is relevant and hence required under

call-by-need (cf. the end of section 4.7).

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

346 J. Voigtländer and A. Kühnemann

6 Practical aspects

After the rather artificial example in section 5.2, let us begin this section with a

more practical example, namely the one coming from the introduction.

Example 6.1 (composition of the mtts for pfx and aux from the introduction)

Composition of the mtts Mpfx and Maux from Example 3.2 yields the mtt Mpfx ;aux =

(H,Σterm,Ωins, epfx ;aux, Rpfx ;aux) with H = {(pfx , aux)(3), (1pfx , 1aux)
(3)}, set of rules

Rpfx ;aux:

(i) : (pfx , aux)(+ (u1, u2), y, z) → (pfx , aux)(u1, (pfx , aux)(u2, y,

(1pfx , 1aux)(u1, ε, ADD(z))), ADD(z))

(ii) : (pfx , aux)(×(u1, u2), y, z) → (pfx , aux)(u1, (pfx , aux)(u2, y,

(1pfx , 1aux)(u1, ε,MUL(z))),MUL(z))

(iii) : (pfx , aux)(A, y, z) → y

(iv) : (pfx , aux)(B, y, z) → y

(v) : (1pfx , 1aux)(+ (u1, u2), y, z) → (1pfx , 1aux)(u2, ε, (1pfx , 1aux)(u1, ε, ADD(z)))

(vi) : (1pfx , 1aux)(×(u1, u2), y, z) → (1pfx , 1aux)(u2, ε, (1pfx , 1aux)(u1, ε,MUL(z)))

(vii) : (1pfx , 1aux)(A, y, z) → LOADA(z)

(viii) : (1pfx , 1aux)(B, y, z) → LOADB(z) ,

and epfx ;aux = (pfx , aux)(x, (1pfx , 1aux)(x, ε, ε), ε).

Note that above only the last two ε-symbols – in epfx ;aux – are ‘real’ εs, while all

the others are dummy nil-symbols that were replaced by ε. �

6.1 Post-processing

The mtt Mpfx ;aux constructed in Example 6.1 looks rather complicated. In particular,

it is not quite the optimised program that we promised in the introduction. The

reason is twofold. Firstly, we observe that the construction introduces context

parameters that are superfluous, in the sense that they will never (for no possible

input tree) influence the output generated by a state. This is the case for parameter

z of state (pfx , aux) and for parameter y of state (1pfx , 1aux). Secondly, the state

(pfx , aux) never really performs any actual computation. No matter on which input

tree it is called, it will always just project on its first context parameter. We call

a state that always projects on one and the same context parameter a copy-state,

because this phenomenon is similar to superfluous data traversals due to copy rules

of attribute grammars (Correnson et al., 1999).

The first problem is caused by the need for the composition construction to be as

general as possible. There exist more complicated mtts where the additionally created

context parameters are really needed. However, the presence of these superfluous

context parameters does not influence the efficiency of our constructed mtts if lazy

evaluation is used and we take the number of reduction steps as efficiency measure.

Nevertheless, we still want to get rid of them, because they obscure the programs

and, moreover, do influence the efficiency if more detailed measures are used, such

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 347

as taking into account the cost of allocating memory for representing function

closures.

The second problem is more serious, as it leads to superfluous traversals through

the input data structure and so contradicts our aim of optimising functional programs

by eliminating intermediate data structures.

In our example Mpfx ;aux it is pretty obvious how to solve the two problems, but

in general both, superfluous context parameters and copy-states, are more difficult

to detect. Voigtländer (2001) developed two mechanisable constructions (based on

computing finite fixpoints) for post-processing and optimising mtts obtained from

the composition construction, which allow to detect and remove all superfluous

context parameters and copy-states, respectively.

Example 6.2 (post-processing)

Consider the mtt Mpfx ;aux from Example 6.1.

Construction 4.8 from Voigtländer (2001) detects that the second context para-

meter of (pfx , aux) and the first context parameter of (1pfx , 1aux) will never influence

the output computed by these states, hence their ranks can be reduced (this is a

kind of useless variable elimination).

Then, Construction 4.17 from Voigtländer (2001) detects that the state (pfx , aux)

always projects on its remaining context parameter, hence it can be discarded,

simplifying the initial expression.

As result, we obtain the mtt M ′pfx ;aux = (H ′,Σterm,Ωins, e
′
pfx ;aux, R

′
pfx ;aux) with H ′ =

{(1pfx , 1aux)
′(2)}, set of rules R′pfx ;aux:

(v)’ : (1pfx , 1aux)
′(+ (u1, u2), z)→ (1pfx , 1aux)

′(u2, (1pfx , 1aux)
′(u1, ADD(z)))

(vi)’ : (1pfx , 1aux)
′(×(u1, u2), z) → (1pfx , 1aux)

′(u2, (1pfx , 1aux)
′(u1,MUL(z)))

(vii)’ : (1pfx , 1aux)
′(A, z) → LOADA(z)

(viii)’ : (1pfx , 1aux)
′(B, z) → LOADB(z) ,

and e′pfx ;aux = (1pfx , 1aux)
′(x, ε). �

Note that the final program obtained in the previous example indeed corresponds to

the optimised program of rules (x)–(xiii) in the introduction. Strictly speaking, the

elimination of copy-states is sound only for computations on finite trees, because

when used with infinite data structures – as they are possible in lazy functional

languages – it can transform non-terminating programs into terminating ones (which

we do not consider an obstacle for automation, for further discussion see Voigtländer

(2001)).

6.2 Implementation in the Haskell+ system

Construction 5.1 has been implemented in the Haskell+ program transformation

system (Lescher, 1999; Höff et al., 2001). As an example for applying the system we

consider the following program.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

348 J. Voigtländer and A. Kühnemann

Example 6.3 (Haskell+)

begindata Data

data List = A List | B List | E

enddata

beginmag App [Mac,Mat,Su,Swp,Tl,Wp,Wsu,Xlin,Xnd,Ylin,Ynd]

input Data

syn app :: List -> List -> List

app (A u) y = A (app u y)

app (B u) y = B (app u y)

app E y = y

endmag

The above program defines a Haskell data type List and a function app that com-

putes concatenation on the List type. It contains special keywords like begindata,

endmag, input and syn that are used in the Haskell+ language to specify ranked

alphabets (in begindata–enddata blocks) and tree transducers (in beginmag–

endmag blocks). The list behind the “beginmag App” statement is an enumeration of

properties that were recognised by the analysing phase of our system. In particular,

the list items Mac, Ylin and Wsu tell us that we have an mtt (without initial

expression; see below) that is non-copying and weakly single-use.

Thus, the construction presented in section 5.1 is applicable to produce the

rules for the states (app, app) and (1app, 1app), which are denoted by app_app and

par_1app_1app in our system. If instructed to perform this composition of App with

itself, the Haskell+ system introduces a new mtt App_App into the output program:

{-# RULES "COMPOSITION" forall u y1’ z1.

app (app u y1’) z1 = app_app u (app y1’ (par_1app_1app u E z1)) z1

#-}

beginmag App_App [Mac,Mat,Su,Wp,Wsu,Xlin,Xnd,Ylin]

input Data

syn app_app :: List -> List -> List -> List

syn par_1app_1app :: List -> List -> List -> List

app_app (A u1) y1 z1 = A (app_app u1 y1 z1)

app_app (B u1) y1 z1 = B (app_app u1 y1 z1)

app_app E y1 z1 = y1

par_1app_1app (A u1) y1 z1 = par_1app_1app u1 E z1

par_1app_1app (B u1) y1 z1 = par_1app_1app u1 E z1

par_1app_1app E y1 z1 = z1

endmag

Also, the system outputs – in a special comment above the resulting mtt – an

equation that can be used as rewrite rule to take advantage of the composition

transformation. Note that the equation’s right-hand side contains an occurrence of

the state app (originating from the second of the two composed mtts), because its

left-hand side is more general than just a composite of two mtts’ initial expressions,

in that it is not only variable over the input tree u, but also over the context

parameters y1’ and z1. This equation corresponds to the rewrite system Pair from

Construction 5.1. Its correctness can be justified by appealing to statement II(a)i in

Lemma A.15 in the Appendix (Voigtländer & Kühnemann, 2003).

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 349

An optimising compiler would have to detect appropriate places in the program

where such an equation produced by the composition construction can be applied.

By using the form of a rule pragma for the Glasgow Haskell Compiler (Peyton Jones

et al., 2001), this task is left to the built-in simplifier.

The Haskell+ system also implements post-processing steps as mentioned in the

previous subsection. Applying these to the mtt App_App yields a simplified mtt

App_App’ and further rule pragmas:

{-# RULES "REMOVE SUPERFLUOUS CONTEXT PARAMETERS" forall u y1 z1.

app_app u y1 z1 = app_app’ u y1

#-}

{-# RULES "REMOVE SUPERFLUOUS CONTEXT PARAMETERS" forall u y1 z1.

par_1app_1app u y1 z1 = par_1app_1app’ u z1

#-}

beginmag App_App’ [Mac,Mat,Su,Swp,Tl,Wp,Wsu,Xlin,Xnd,Ylin,Ynd]

input Data

syn app_app’ :: List -> List -> List

syn par_1app_1app’ :: List -> List -> List

app_app’ (A u1) y1 = A (app_app’ u1 y1)

app_app’ (B u1) y1 = B (app_app’ u1 y1)

app_app’ E y1 = y1

par_1app_1app’ (A u1) z1 = par_1app_1app’ u1 z1

par_1app_1app’ (B u1) z1 = par_1app_1app’ u1 z1

par_1app_1app’ E z1 = z1

endmag

{-# RULES "ELIMINATE COPY-STATES" forall u z1.

par_1app_1app’ u z1 = z1

#-}

Applying the equations introduced in the rule pragmas from left to right, we get the

following calculation:

app (app u y1’) z1

= (by rule "COMPOSITION")

app_app u (app y1’ (par_1app_1app u E z1)) z1

= (by rules "REMOVE SUPERFLUOUS CONTEXT PARAMETERS")

app_app’ u (app y1’ (par_1app_1app’ u z1))

= (by rule "ELIMINATE COPY-STATES")

app_app’ u (app y1’ z1)

Since the defining equations that were constructed for app_app’ are the same as

those for app, this corresponds to a well-known optimising transformation, namely

making use of the associativity of the concatenation function. �

We would also like to integrate the presented composition construction and

related techniques into an optimising functional compiler, without the need for user

interaction. First results of implementing an analysis phase to detect mtts in Haskell

source programs (without annotations as in Haskell+) and a simple transformation

to compose tdtts only are promising (Reuther, 2002), but much remains to be done.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

350 J. Voigtländer and A. Kühnemann

7 Related work on eliminating intermediate results

In this section we give qualitative comparisons of our mtt composition technique

with classical deforestation and shortcut deforestation.

7.1 Classical deforestation

To facilitate the comparison, we give a description of classical deforestation (Wadler,

1990; Chin, 1994) tailored to mtts, which has also been implemented in the Haskell+

system. Note that mtts may be defined using nesting of terms in context parameter

positions and hence are not treeless programs as required for proving termination of

Wadler’s original deforestation algorithm. This problem can be solved by abstracting

context parameters using let-expressions explicitly (Hamilton & Jones, 1992) or

implicitly (Kühnemann, 1999). We instead give a direct presentation along the lines

of the define/instantiate/unfold/fold-strategy (Burstall & Darlington, 1977) for mtts

as described in sections 4.1 and 4.2.

Construction 7.1 (classical deforestation for mtts)

Let M1 = (F,Σ,∆, e1, R1) and M2 = (G,∆,Ω, e2, R2) be (unrestricted) mtts. Deforest-

ation does not create an mtt, but a program consisting of the set of functions

HDef = {(f, g)(r+s+1) | f ∈ F (r+1), g ∈ G(s+1)} ,

the expression

eDef = nf(⇒R2∪Fold , e2[x← e1]) ,

and the set RDef , containing for every f ∈ F (r+1), g ∈ G(s+1) and σ ∈ Σ(p) the rule:

(f, g)(σ(u1, . . . , up), y1, . . . , yr, z1, . . . , zs)→ nf(⇒R2∪Fold , g(rhsf,σ, z1, . . . , zs)).

The rewrite system Fold (over F ∪G∪HDef and {u} ∪Y ′ ∪Z) used above is defined

as follows:

Fold : g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→

(f, g)(u, y′1, . . . , y
′
r, z1, . . . , zs) , ∀g ∈ G(s+1), f ∈ F (r+1)

The reduction relation ⇒R2∪Fold is confluent and terminating, hence unique normal

forms exist. Now, we claim that for every t ∈ TΣ:

nf(⇒R2
, e2[x← nf(⇒R1

, e1[x← t])]) = nf(⇒RDef ∪R1∪R2
, eDef [x← t]). �

We do not prove the claim here, but we note that eDef and RDef correspond exactly

to the result of classical deforestation for the expression e2[x← e1] and the program

R1∪R2, except that the deforestation algorithm would construct only those functions

in HDef that are really needed for evaluating eDef and hence sometimes delivers a

smaller program.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 351

Example 7.2 (classical deforestation for the introductory example)

Consider the mtts Mpfx and Maux from Example 3.2. According to Construction 7.1,

we obtain HDef = {(pfx , aux)(3)} and Fold contains the rule:

aux(pfx (u, y′1), z1)→ (pfx , aux)(u, y′1, z1).

Then, eDef = (pfx , aux)(x, ε, ε) and RDef contains the rules:

(pfx , aux)(+ (u1, u2), y1, z1) → (pfx , aux)(u1, pfx (u2, y1), ADD(z1))

(pfx , aux)(×(u1, u2), y1, z1) → (pfx , aux)(u1, pfx (u2, y1),MUL(z1))

(pfx , aux)(A, y1, z1) → aux(y1, LOADA(z1))

(pfx , aux)(B, y1, z1) → aux(y1, LOADB(z1)).

Note that here deforestation removed only parts of the intermediate result, namely

those that occurred ‘outside’ topmost recursive calls in the original rules Rpfx . This

can be seen in the following derivation of the deforested program for input +(A,B):

(pfx , aux)(+ (A,B), ε, ε)

⇒RDef
(pfx , aux)(A, pfx (B, ε), ADD(ε))

⇒RDef
aux(pfx (B, ε), LOADA(ADD(ε)))

⇒Rpfx
aux(B(ε), LOADA(ADD(ε)))

⇒Raux aux(ε, LOADB(LOADA(ADD(ε))))

⇒Raux LOADB(LOADA(ADD(ε))) ,

where the underlined parts have not been eliminated. �

The reason why classical deforestation does not reach intermediate results ‘inside’

context parameters, whereas mtt composition does, lies in the different treatment of

the y′1, . . . , y
′
r by the Fold - and Pair-rules, respectively. While deforestation simply

copies them without manipulation, our composition construction sends the states of

M2 into these context parameters of M1, by Pair-rules of the following form:

g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→ (f, g)(u, g1(y

′
1, . . .), . . . , gµ(y

′
r, . . .), z1, . . . , zs).

On the other hand, classical deforestation (using explicit or implicit let-abstractions)

is applicable to a wider class of programs than just to mtts like our construction.

A more formal comparison between the compositions TOP ; MAC ⊆ MAC and

MAC ;TOP ⊆ MAC and classical deforestation is drawn by Kühnemann (1999)

and Höff (1999).

7.2 Shortcut deforestation

Shortcut deforestation achieves elimination of intermediate results by expressing

producers and consumers with certain higher-order, polymorphic combinators, the

composition of which can be transformed by foldr/build- (Gill et al., 1993),

foldr/augment- (Gill, 1996) or cata/augment-rules (Johann, 2001).

In the framework of mtt composition, this means that the computation performed

by the states of the consuming mtt M2 needs to be expressed as a catamorphism

that is tupled (to capture mutual recursion) and higher-order (to capture context

parameters). Such a representation can be synthesized from the rules of M2 in a

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

352 J. Voigtländer and A. Kühnemann

systematic way. On the other hand, all output symbols would need to be abstracted

uniformly from the rules of the producing mtt M1 in a polymorphic way. But this

is problematic, because parts of the produced output can be ‘hidden’ in the context

parameters. One solution would be to prepare those parts for abstraction via an

additional traversal, which is dismissed already by Gill (1996), because subsequent

removal of the traversal introduced thus cannot be guaranteed. The alternative

would be to use the generalisation augment of build, substituting specific values

in place of nullary symbols. However, also this strategy fails, e.g. for a non-copying

mtt with rules

app′(A(u1), y1, y2) → A(app′(u1, y2, y1))

app′(B(u1), y1, y2) → B(app′(u1, y2, y1))

app′(ε, y1, y2) → y1 ,

where the swapping of context parameters in every step prevents us from knowing

beforehand which of the two is to be substituted at the end of the output list.

Hence, the effect to eliminate intermediate results in accumulating parameters as

accomplished by mtt composition cannot be achieved by shortcut deforestation in

general. If no context parameters at all are present (i.e. we are dealing with tdtts

only) shortcut deforestation and tree transducer composition correspond to each

other (Jürgensen & Vogler, 2001).

Note that Svenningsson (2002) disputes the above use of higher-order catamorph-

isms for shortcut deforestation, because it introduces suspended function calls. He

proposes a destroy/unfoldr-rule, which however handles accumulating parameters

only for consumers of intermediate lists, and hence also does not achieve deforestation

inside accumulating parameters as mtt composition does.

On the other hand, there are also functions that form no mtts, but can be expressed

using the above mentioned polymorphic combinators for the different approaches

to shortcut deforestation.

8 Efficiency considerations

We discuss efficiency aspects of our transformation technique, by motivating work

on formally proving improvements with respect to abstract efficiency measures, and

by comparing actual runtimes of programs transformed with mtt composition and

with the methods covered in the previous section.

8.1 Motivation for formal efficiency analysis

We have seen two practical examples (in the introduction and in Example 6.3)

for which our approach of eliminating intermediate results yields a program that

performs fewer call-by-need reduction steps to produce the final output than the

original program. However, this needs not to be the case in general.

Example 8.1 (possible loss of efficiency)

Continuing the example from the introduction, consider the mtt M ′pfx ;aux from

Example 6.2, but name the state (1pfx , 1aux)
′ as ins. Assume that we want to count

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 353

how many ADD-, how many MUL- and how many LOAD-instructions occur in

an instruction sequence produced by ins for some term t. This can be done by

computing

e = ic(ins(t, ε), zero, zero, zero) ,

with a state ic that uses three context parameters to accumulate the numbers, as

defined in the mtt Mic = ({ic(4)},Ωins,Nat ∪ {ω(3)}, ic(x, zero, zero, zero), Ric) with the

following set of rules Ric:

ic(ADD(v1), z1, z2, z3) → ic(v1, succ(z1), z2, z3)

ic(MUL(v1), z1, z2, z3) → ic(v1, z1, succ(z2), z3)

ic(LOADA(v1), z1, z2, z3) → ic(v1, z1, z2, succ(z3))

ic(LOADB(v1), z1, z2, z3) → ic(v1, z1, z2, succ(z3))

ic(ε, z1, z2, z3) → ω(z1, z2, z3).

Composition of M ′pfx ;aux with Mic, and post-processing as in section 6.1, yields that

e can be replaced by

e′ = ω(icA(t, zero), icM(t, zero), icL(t, zero)) ,

with set of rules Rins,ic:

icA(+ (u1, u2), z1) → succ(icA(u1, icA(u2, z1)))

icA(×(u1, u2), z1) → icA(u1, icA(u2, z1))

icA(A, z1) → z1
icA(B, z1) → z1
icM(+ (u1, u2), z2) → icM(u1, icM(u2, z2))

icM(×(u1, u2), z2) → succ(icM(u1, icM(u2, z2)))

icM(A, z2) → z2
icM(B, z2) → z2
icL(+ (u1, u2), z3) → icL(u1, icL(u2, z3))

icL(×(u1, u2), z3) → icL(u1, icL(u2, z3))

icL(A, z3) → succ(z3)

icL(B, z3) → succ(z3) ,

where icA, icM and icL abbreviate (1ins, 1ic)
′, (1ins, 2ic)

′ and (1ins, 3ic)
′, respectively (the

quote signs stem from the post-processing).

Notice that, on the one hand, the transformed expression e′ indeed avoids the

creation of the intermediate result produced in the original expression e. However,

on the other hand, evaluation of e performed only one traversal over t (with ins) and

one traversal over the intermediate result of same size (with ic), whereas evaluation

of e′ performs three traversals over t (with icA, icM and icL). �

In the light of the previous example it is important to develop decision procedures

that determine when mtt composition should be applied, i.e. when Construction 5.1

is guaranteed to improve the efficiency of a program. For the cases that one of the

involved mtts is a tdtt, such a systematic study was begun by Kühnemann (1999) and

Höff (1999), and continued using a more general approach by Voigtländer (2002a).

The analysis technique from the latter paper also scales for the case that both

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

354 J. Voigtländer and A. Kühnemann

involved mtts use context parameters. Hence, it can be used to prove sufficient

conditions under which Construction 5.1 produces a program that performs fewer

call-by-need reduction steps to reach normal form than the original program. The

development of such criteria is work in progress. The post-processing phase never

leads to an efficiency deterioration, but it would be useful to characterize cases where

it enables an actual improvement.

Voigtländer (2002b) proposes an alternative composition construction that pro-

duces circular programs instead of mtts and avoids the problem of multiple traversals

(as in Example 8.1) through tupling. However, this lazy composition algorithm does

not handle mutually recursive functions, and the costs incurred by tupling make

formal efficiency considerations more difficult.

8.2 Measurements

To demonstrate the efficiency gains realised by our technique in practice, we perform

measurements for several examples. For each example, we compare execution times

for multiple runs of different program versions with varying input sizes. The program

versions considered are: (i) the original program, (ii) the program obtained by

applying mtt composition, i.e. Construction 5.1, (iii) the program obtained from (ii)

by additionally applying post-processing as discussed in section 6.1, (iv) the program

obtained from the original one by applying classical deforestation as presented in

Construction 7.1, and (v) the program obtained by applying shortcut deforestation,

where the first alternative discussed in section 7.2 is used to abstract parts of the

intermediate result inside context parameters via an additional traversal. To use the

augment-alternative for (v) would make no difference for the examples considered

here.

The different program versions are coded as ordinary Haskell source, compiled

with the Glasgow Haskell Compiler (version 5.04.1, optimisation level -O) and

run on a Sun Ultra 10 workstation (300MHz, 256MB). The runtimes (in seconds)

shown in the measurement tables below are split into the time spent for actual

expression evaluation (the first summand) and the time spent on garbage collection

(the second summand) as obtained from the statistics produced using the runtime

system option -s. The given execution times include the test frame with generation

of input data and consumption of final output. This is unavoidable, because a

more detailed cost centre profiling – to separate the execution times for the tested

algorithms from their test frame – would corrupt the precision of the measured

garbage collection times considerably.

Of the six examples that we consider, three have already occurred in the paper:

Tables 1–3 contain measurements for the example from the introduction, Example 6.3

and Example 8.1. Table 4 covers an interesting variation of Example 8.1, in which

the final output is only partially demanded. Tables 5 and 6 cover examples on

standard Haskell lists as opposed to tree structures.

The measurements for the introductory example aux(pfx (t, ε), ε) on fully balanced

binary trees of different heights h in Table 1 show a considerable runtime im-

provement by mtt composition, in particular after post-processing has been applied

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 355

Table 1. aux (pfx (t, ε), ε), n runs with size(t) = 2h+1 − 1

n× h: 60000× 5 2000× 10 500× 12 60× 15 2× 20

original 2.6+0.1=2.7 2.8+ 0.3=3.1 2.7+1.1=3.8 2.6+6.0=8.6 3.0+10.1=13.1

compos. 2.4+0.1=2.5 2.5+ 0.1=2.6 2.5+0.1=2.6 2.5+2.2=4.7 2.6+ 1.9= 4.5

+post-p. 1.8+0.0=1.8 1.8+ 0.1=1.9 1.8+0.1=1.9 1.8+1.9=3.7 1.9+ 1.9= 3.8

deforest. 2.5+0.1=2.6 2.8+ 0.3=3.1 2.8+0.9=3.7 2.8+5.7=8.5 3.0+10.1=13.1

shortcut 1.6+0.1=1.7 1.6+ 0.2=1.8 1.7+0.4=2.1 1.7+3.3=5.0 1.8+ 6.2= 8.0

Table 2. app (app l l) l, n runs with size(l) = s

n× s: 40000× 100 4000× 1000 2000× 2000 1000× 4000 800× 5000

original 6.5+0.1=6.6 6.5+ 0.2=6.7 6.6+0.3=6.9 6.7+0.2= 6.9 6.9+3.8=10.7

compos. 5.6+0.1=5.7 5.7+ 0.1=5.8 5.7+0.1=5.8 5.8+0.1= 5.9 5.9+0.1= 6.0

+post-p. 5.2+0.1=5.3 5.4+ 0.1=5.5 5.3+0.2=5.5 5.4+0.1= 5.5 5.4+0.1= 5.5

deforest. 5.3+0.1=5.4 5.4+ 0.1=5.5 5.4+0.1=5.5 5.5+0.1= 5.6 5.7+0.1= 5.8

shortcut 8.1+0.2=8.3 8.3+ 0.2=8.5 8.5+0.2=8.7 8.2+5.7=13.9 8.0+5.7=13.7

Table 3. ic(ins(t, ε), zero, zero, zero), n runs with size(t) = 2h+1 − 1

n× h: 60000× 5 2000× 10 500× 12 60× 15 2× 20

original 2.3+0.1=2.4 2.4+ 0.3=2.7 2.5+0.6=3.1 2.3+4.6=6.9 2.7+9.2=11.9

compos. 5.3+0.2=5.5 5.7+ 0.2=5.9 5.7+2.9=8.6 5.7+2.9=8.6 6.3+3.1= 9.4

+post-p. 4.0+0.1=4.1 4.2+ 0.1=4.3 4.4+1.5=5.9 4.4+2.2=6.6 4.9+2.4= 7.3

deforest. 2.3+0.1=2.4 2.4+ 0.2=2.6 2.6+0.5=3.1 2.5+4.4=6.9 2.6+9.3=11.9

shortcut 2.3+0.1=2.4 2.5+ 0.2=2.7 2.6+0.6=3.2 2.5+4.5=7.0 2.7+9.3=12.0

(yielding the function ins from the introduction). As indicated in Example 7.2, only

minimal parts of the intermediate tree can be eliminated by classical deforestation,

resulting in the observation of almost no runtime improvement. The performance

of the program produced by shortcut deforestation is on a par with that of the

program produced by our techniques for relatively small input trees, but for larger

input trees the shortcut deforested program has a considerably higher garbage

collection overhead.

The measurements in Table 2, where the original expression is a left-associative

concatenation of three identical lists using the function app from Example 6.3, show

about the same runtime improvement by our approach and by classical deforestation,

whereas the shortcut deforestation technique decreases the performance in this

example.

Table 3 gives the runtimes measured for the differently transformed versions of

ic(ins(t, ε), zero, zero, zero) from the previous subsection on fully balanced binary

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

356 J. Voigtländer and A. Kühnemann

Table 4. pr2(ic(ins(t, ε), zero, zero, zero)), n runs with size(t) = 2h+1 − 1

n× h: 60000× 5 2000× 10 500× 12 60× 15 2× 20

original 1.6+0.0=1.6 1.6+ 0.2=1.8 1.6+0.7=2.3 1.5+4.2=5.7 1.6+9.3=10.9

compos. 1.8+0.0=1.8 1.9+ 0.1=2.0 2.0+0.1=2.1 2.3+0.1=2.4 2.4+0.1= 2.5

+post-p. 0.9+0.0=0.9 0.9+ 0.0=0.9 1.1+0.0=1.1 1.3+0.0=1.3 1.6+0.0= 1.6

deforest. 1.5+0.1=1.6 1.6+ 0.2=1.8 1.6+0.7=2.3 1.5+4.1=5.6 1.6+9.2=10.8

shortcut 1.7+0.0=1.7 1.7+ 0.2=1.9 1.7+0.6=2.3 1.6+4.1=5.7 1.7+9.4=11.1

trees of varying heights h. While no significant change in the runtime behaviour is

observed for classical and shortcut deforestation, our technique increases the time

spent in expression evaluation for the reasons indicated in Example 8.1. Interestingly

though, for large input trees the garbage collection times become dominant, such

that then the elimination of the intermediate result pays off, even at the price of

introducing an additional traversal.

An interesting variation of Example 8.1 can be obtained by considering the case

that the final output needs not to be computed to its full normal form, but instead

only a part of this output is demanded by the program context in which it occurs.

This can be simulated by consuming the output with a projection function pr2 that

has the following defining rule:

pr2(ω(x1, x2, x3))→ x2.

Table 4 contains the runtime measurements for the thus adapted example and

shows that then the program obtained by mtt composition plus post-processing

outperforms all the other program versions, because it needs only one traversal over

the input to compute the demanded part of the final output.

As an example for applying our technique on standard Haskell lists – as opposed

to trees over ranked alphabets – consider the following function definitions:

enum :: Int -> [Int] -> [Int]

enum 0 ys = ys

enum (x+1) ys = enum x (x:ys)

even :: [Int] -> [Int] odd :: [Int] -> [Int]

even [] = [] odd [] = []

even (x:xs) = x:(odd xs) odd (x:xs) = even xs

The initial expression enum m [] can be used to enumerate in ascending order all

the non-negative integers that are smaller than a given one, by accumulating them in

the second parameter. By treating “x:” as a special constructor symbol, the function

enum together with this initial expression can be regared as an mtt (cf. Kühnemann &

Voigtländer, 2001). Likewise, the mutually recursive unary functions even and odd –

selecting every other element of a list – form a tdtt. The modular program even

(enum m []) – enumerating all the non-negative even integers smaller than m –

thus represents the composition of an mtt with a tdtt, using an intermediate list

as ‘glue’. The Haskell+ system currently does not implement the transformation of

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 357

Table 5. even (enum m []), n runs

n× m: 50000× 100 10000× 500 5000× 1000 2000× 2500 1000× 5000

original 2.7+0.1=2.8 2.7+ 0.2=2.9 2.5+0.4=2.9 2.6+0.8=3.4 2.7+1.5=4.2

compos. 1.4+0.1=1.5 1.4+ 0.1=1.5 1.4+0.2=1.6 1.4+0.5=1.9 1.6+0.8=2.4

+post-p. 1.4+0.1=1.5 1.4+ 0.1=1.5 1.4+0.2=1.6 1.4+0.5=1.9 1.6+0.8=2.4

deforest. 2.7+0.1=2.8 2.7+ 0.2=2.9 2.6+0.4=3.0 2.7+0.7=3.4 2.6+1.5=4.1

shortcut 1.4+0.1=1.5 1.4+ 0.1=1.5 1.3+0.3=1.6 1.3+0.6=1.9 1.3+1.0=2.3

Table 6. even’ (enum m []) [], n runs

n× m: 50000× 100 10000× 500 5000× 1000 2000× 2500 1000× 5000

original 3.8+0.2=4.0 3.8+ 0.3=4.1 3.9+0.5=4.4 4.0+1.2=5.2 3.9+2.3=6.2

compos. 4.3+0.2=4.5 4.3+ 0.2=4.5 4.2+0.4=4.6 4.2+0.9=5.1 4.2+1.7=5.9

+post-p. 3.4+0.1=3.5 3.2+ 0.2=3.4 3.3+0.3=3.6 3.3+0.5=3.8 3.3+1.0=4.3

deforest. 3.9+0.1=4.0 3.8+ 0.3=4.1 3.9+0.4=4.3 4.1+1.0=5.1 4.1+2.1=6.2

shortcut 3.9+0.2=4.1 3.9+ 0.5=4.4 3.9+0.8=4.7 4.0+2.0=6.0 4.3+3.7=8.0

programs on standard lists, hence the measurements in Table 5 were obtained from

hand-transformed program versions. They show that our technique and shortcut

deforestation achieve a comparable efficiency improvement over the original program

and the result of classical deforestation. Note that the second and the third line of

the table contain identical measurements, because post-processing as described in

section 6.1 is usually only necessary in cases where none of the two mtts involved in

the composition is a tdtt.

Such a case emerges by a variation of the previous example, the aim being to

again enumerate the non-negative even integers smaller than a given m, but to

additionally assemble the integers previously discarded by odd towards the end of

the output list. This is achieved by enriching each of the functions even and odd

with an accumulating parameter, yielding an mtt consisting of the following two

functions:

even’ :: [Int] -> [Int] -> [Int] odd’ :: [Int] -> [Int] -> [Int]

even’ [] zs = zs odd’ [] zs = zs

even’ (x:xs) zs = x:(odd’ xs zs) odd’ (x:xs) zs = even’ xs (x:zs)

The measurements for the differently transformed versions of the new program

even’ (enum m []) [] in Table 6 show a solid improvement by our technique

after post-processing, whereas classical deforestation has almost no effect and

shortcut deforestation even leads to an efficiency deterioration. This failure of

shortcut deforestation is mainly due to garbage collection overheads, probably

caused by the introduction of a sequence of suspended function calls as discussed

by Svenningsson (2002).

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

358 J. Voigtländer and A. Kühnemann

9 Tree transducer theory results

In section 5.1 we have presented a construction that composes a non-copying

mtt and a weakly single-use one into a single mtt. It is natural to ask whether

these two restrictions also work the other way round, i.e. whether we also have

MAC wsu; MAC nc ⊆ MAC . We show that this is not the case by giving a counter-

example. In fact, we even show the stronger result MAC su; MAC nc �⊆ MAC .

First, we quote a classical result on mtts (Engelfriet & Vogler, 1985, Theorem

3.24), namely that the heights of their output trees are exponentially bounded by

the heights of their input trees.

Lemma 9.1 (exponential height-height bound for mtts)

Let M = (F,Σ,∆, e, R) be an mtt. There exists a constant c ∈ N such that

height(τ(M)(t)) � cheight(t) for every t ∈ TΣ. �

The negative result can now be shown by counter-example.

Theorem 9.2 (a symmetric composition construction cannot exist)

MAC su; MAC nc �⊆ MAC

Proof

Consider the mtts Mcount and Mexp from Example 3.8, which are single-use and

non-copying, respectively, and assume the existence of an mtt M such that τ(M) =

τ(Mcount); τ(Mexp). Then, for every t ∈ T∆bin , height(τ(M)(t)) = 2size(t) holds by the

statements in items 2 and 3 of Example 3.8. Taking for every h ∈ N, for t the fully

balanced binary tree of height h over the ranked alphabet ∆bin, we get size(t) =

2h+1 − 1 and thus height(τ(M)(t)) = 2(2h+1−1). Hence, the height of the output tree is

double exponential in the height of the input tree, contradicting Lemma 9.1. �

Results of the same style as Lemma 9.1 – relating input- and output height or size –

are also available for restricted mtts (and will be summarised in a table below),

but not yet for the class of tree transductions induced by non-copying mtts. It

would be useful to know such a bound, because – as demonstrated in the proof of

Theorem 9.2 – these kinds of results can help in reasoning about the expressiveness

of various classes of tree transducers.

By using the composition result MAC nc; MAC wsu ⊆ MAC , we are going to show

that for non-copying mtts the output-size is exponentially bounded by the input-

height. In order to do so, we construct for every ranked alphabet ∆ a weakly

single-use mtt M∆ that computes the sizes of trees over ∆ as natural numbers in

monadic representation over the ranked alphabet Nat .

Construction 9.3 (counting symbols in a tree using a weakly single-use mtt)

Let ∆ be a ranked alphabet. We construct the weakly single-use mtt M∆ =

({count(2)},∆,Nat , count(x, zero), R∆), where for every δ ∈ ∆(p) the set R∆ contains the

following rule:

count(δ(u1, . . . , up), y1)→ succ(count(u1, count(u2, . . . count(up, y1) . . .))).

By a straightforward induction – to be found in Voigtländer (2001) – we can show

that for every t ∈ T∆: height(τ(M∆)(t)) = size(t). �

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 359

Table 7. Input-output boundedness for classes of tree transductions

MAC : output-height exponentially bounded by input-height

MAC nc : output-size exponentially bounded by input-height

MAC wsu : output-height linearly bounded by input-size

MAC su : output-size linearly bounded by input-size

TOP : output-height linearly bounded by input-height

Example 9.4

For the ranked alphabet ∆bin, we obtain the mtt Mcount in Example 3.8. �

Theorem 9.5 (exponential size-height bound for non-copying mtts)

Let Mnc = (F,Σ,∆, e, R) be a non-copying mtt. There exists a constant c ∈ N such

that size(τ(Mnc)(t)) � cheight(t) for every t ∈ TΣ.

Proof

Since Mnc is non-copying and M∆ is weakly single-use, there exists – by Construc-

tion 5.1 and Theorem 5.2 – an mtt M such that τ(M) = τ(Mnc); τ(M∆). By Lemma 9.1

there exists a constant c ∈ N such that height(τ(M)(t)) � cheight(t) for every t ∈ TΣ.

Furthermore, height(τ(M)(t)) = height(τ(M∆)(τ(Mnc)(t))) = size(τ(Mnc)(t)) by the

statement in Construction 9.3. This proves the claim. �

Thus, we obtain the summary of input-output boundedness for classes of tree

transductions shown in Table 7. The results for TOP and MAC have been proven

by Engelfriet & Vogler (1985). The bound for MAC wsu follows from Theorem 7.1 of

Kühnemann (1998), and the corresponding boundedness property for attributed tree

transducers (Fülöp, 1981). The result for MAC su is a consequence of Theorem 7.2

of Kühnemann (1998) and a boundedness property for single-use attributed tree

transducers (Giegerich, 1988; Kühnemann, 1997).

As pointed out by one referee, these results can be used to prove that MAC nc

and MAC wsu are incomparable with respect to inclusion, and that MAC nc is not

included in ATT .

Theorem 9.6

MAC nc �⊆ MAC wsu, MAC wsu �⊆ MAC nc and MAC nc �⊆ ATT

Proof

Consider the mtts Mexp and Mbin from Example 3.8 and the statements in items 3

and 4 of that example.

• τ(Mexp) ∈ MAC nc \ (MAC wsu ∪ ATT), because for every t ∈ TNat we have

height(τ(Mexp)(t)) = 2height(t) = 2size(t)−1, which is inconsistent with the linear

height-size bound for weakly single-use mtts and for attributed tree trans-

ducers (Fülöp, 1981).

• τ(Mbin) ∈ MAC wsu \ MAC nc, because for every fully balanced binary tree

t ∈ T∆bin we have size(τ(Mbin)(t)) = 2(2height(t)+1) − 1, which is inconsistent with

the exponential size-height bound for non-copying mtts. �

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

360 J. Voigtländer and A. Kühnemann

10 Conclusion

We have presented a direct construction that composes a non-copying mtt and

a weakly single-use mtt, which are special functional programs. Thus, we have

broadened the applicability of a technique – first proposed by Kühnemann (1997;

1998) – for eliminating intermediate data structures in functional programs, including

those built up in accumulating parameters.

Central to understanding under what conditions mtts can be composed, was the

question Q raised in section 4.5. We think that this question is also the key to relax

further the restrictions needed to compose two mtts or to find other restrictions

that enable such a construction. In particular, we believe that a direct composition

construction for the setting of attributed-like mtts (Fülöp & Vogler, 1999) can be

given based on a similar idea as the one exploited in the main construction of the

present paper.

Also, we consider it fruitful to further investigate composition constructions for

macro attributed tree transducers (Kühnemann & Vogler, 1994). These could deliver

interesting transformation techniques for higher-order functional programs. The

basic idea is that – under appropriate restrictions – functions that use context

parameters of higher-order type can be transformed into macro attributed tree

transducers, similarly to direct translations of functions with context parameters of

first-order type into attributed tree transducers (Courcelle & Franchi-Zannettacci,

1982; Höff, 1998; Engelfriet & Maneth, 1999). Then, decomposition results of

Kühnemann (1998) can be applied, thus introducing new intermediate results, but

creating new opportunities for compositions, which altogether can still lead to an

optimisation.

Acknowledgements

We have benefited from many useful suggestions and comments by the anonymous

referees that helped to improve the paper a lot. In particular, we would like to thank

one referee who made insightful proposals for adding more formal details to the

proof appendix (Voigtländer & Kühnemann, 2003). We also thank Andreas Maletti

for providing an implementation of the composition construction in the Haskell+

system.

References

Baader, F. and Nipkow, T. (1998) Term Rewriting and All That. Cambridge University Press.

Bird, R. S. and de Moor, O. (1997) Algebra of Programming. International Series in Computer

Science. Prentice Hall.

Burstall, R. M. and Darlington, J. (1977) A transformation system for developing recursive

programs. J. ACM, 24, 44–67.

Chin, W. N. (1994) Safe fusion of functional expressions II: Further improvements. J. Funct.

Prog., 4, 515–555.

Correnson, L., Duris, E., Parigot, D. and Roussel, G. (1998) Symbolic composition. Technical

report 3348, Unité de recherche INRIA Rocquencourt.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 361

Correnson, L., Duris, E., Parigot, D. and Roussel, G. (1999) Declarative program transform-

ation: A deforestation case-study. Principles and Practice of Declarative Programming, Paris,

France, Proceedings: LNCS 1702, pp. 360–377. Springer-Verlag.

Courcelle, B. and Franchi-Zannettacci, P. (1982) Attribute grammars and recursive program

schemes. Theor. Comput. Sci., 17, 163–191, 235–257.

Dershowitz, N. and Jouannaud, J. P. (1990) Rewrite systems. In: van Leeuwen, J. (ed.),

Handbook of Theoretical Computer Science, vol. B, pp. 243–320. Elsevier.

Engelfriet, J. (1975) Bottom-up and top-down tree transformations – a comparison. Math.

Syst. Theory, 9, 198–231.

Engelfriet, J. (1980) Some open questions and recent results on tree transducers and tree

languages. In: Book, R. V. (ed.), Formal Language Theory; Perspectives and open problems,

pp. 241–286. Academic Press.

Engelfriet, J. (1981) Tree transducers and syntax directed semantics. Technical report 363,

Technische Hogeschool Twente.

Engelfriet, J. and Maneth, S. (1999) Macro tree transducers, attribute grammars, and MSO

definable tree translations. Infor. & Comput., 154, 34–91.

Engelfriet, J. and Vogler, H. (1985) Macro tree transducers. J. Comput. Syst. Sci., 31, 71–145.

Franchi-Zannettacci, P. (1982) Attributs sémantiques et schémas de programmes. PhD thesis,

Université de Bordeaux I.

Fülöp, Z. (1981) On attributed tree transducers. Acta Cybernetica, 5, 261–279.

Fülöp, Z. and Vogler, H. (1998) Syntax-Directed Semantics – Formal Models Based on Tree

Transducers. Monographs in Theoretical Computer Science, An EATCS Series. Springer-

Verlag.

Fülöp, Z. and Vogler, H. (1999) A characterization of attributed tree transformations by a

subclass of macro tree transducers. Theory of Comput. Syst., 32, 649–676.

Ganzinger, H. (1983) Increasing modularity and language-independency in automatically

generated compilers. Sci. Comput. Prog., 3, 223–278.

Ganzinger, H. and Giegerich, R. (1984) Attribute coupled grammars. Symposium on Compiler

Construction, pp. 157–170. Montreal, Canada. (SIGPLAN Notices, 19.) ACM Press.

Giegerich, R. (1988) Composition and evaluation of attribute coupled grammars. Acta

Informatica, 25, 355–423.

Gill, A. (1996) Cheap deforestation for non-strict functional languages. PhD thesis, University

of Glasgow.

Gill, A., Launchbury, J. and Peyton Jones, S. L. (1993) A short cut to deforestation. Functional

Programming Languages and Computer Architecture, pp. 223–232. Copenhagen, Denmark.

ACM Press.

Hamilton, G. W. and Jones, S. B. (1992) Extending deforestation for first order functional

programs. 1991 Glasgow Workshop on Functional Programming, pp. 134–145. Portree,

Scotland. Series of Workshops in Computing. Springer-Verlag.

Höff, M. (1998) Vergleich der Berechnungsstärken von Klassen eingeschränkter Tree Transducer.

Students project, Dresden University of Technology.

Höff, M. (1999) Vergleich von Verfahren zur Elimination von Zwischenergebnissen bei

funktionalen Programmen. MSc thesis, Dresden University of Technology.

Höff, M., Vater, R., Maletti, A., Kühnemann, A. and Voigtländer, J. (2001) Tree transducer

based program transformations for Haskell+. Progress report, Dresden University of

Technology.

Hu, Z., Iwasaki, H. and Takeichi, M. (1996) Deriving structural hylomorphisms from recursive

definitions. International Conference on Functional Programming, pp. 73–82. Philadelphia,

Pennsylvania. (SIGPLAN Notices, 31.) ACM Press.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

362 J. Voigtländer and A. Kühnemann

Johann, P. (2001) Short cut fusion: Proved and improved. Semantics, Applications, and

Implementation of Program Generation: LNCS 2196, pp. 47–71. Florence, Italy. Springer-

Verlag.

Jürgensen, C. and Vogler, H. (2001) Syntactic composition of top-down tree transducers is short

cut fusion. Technical report TUD-FI01-10, Dresden University of Technology.

Kakehi, K., Glück, R. and Futamura, Y. (2001) On deforesting parameters of accumulating

maps. Logic Based Program Synthesis and Transformation: LNCS 2372, pp. 46–56. Paphos,

Cyprus. Springer-Verlag.

Knuth, D. E. (1968) Semantics of context-free languages. Math. Syst. Theory, 2, 127–145.

(Corrections Ibid., 5, 95–96 (1971).)

Kühnemann, A. (1997) Berechnungsstärken von Teilklassen primitiv-rekursiver Programm-

schemata. PhD thesis, Dresden University of Technology.

Kühnemann, A. (1998) Benefits of tree transducers for optimizing functional programs.

Foundations of Software Technology & Theoretical Computer Science: LNCS 1530, pp. 146–

157. Chennai, India. Springer-Verlag.

Kühnemann, A. (1999) Comparison of deforestation techniques for functional programs and

for tree transducers. Functional and Logic Programming: LNCS 1722, pp. 114–130. Tsukuba,

Japan. Springer-Verlag.

Kühnemann, A. and Vogler, H. (1994) Synthesized and inherited functions – a new

computational model for syntax-directed semantics. Acta Informatica, 31, 431–477.

Kühnemann, A. and Voigtländer, J. (2001) Tree transducer composition as deforestation method

for functional programs. Technical report TUD-FI01-07, Dresden University of Technology.

Lescher, C. (1999) Entwurf und Implementierung einer Eingabesprache für ein System zur

Erzeugung syntaxgesteuerter Editoren. Students project, Dresden University of Technology.

Malcolm, G. (1989) Homomorphisms and promotability. Mathematics of Program

Construction: LNCS 375, pp. 335–347. Groningen, The Netherlands. Springer-Verlag.

Meijer, E., Fokkinga, M. and Paterson, R. (1991) Functional programming with bananas,

lenses, envelopes and barbed wire. Functional Programming Languages and Computer

Architecture: LNCS 523, pp. 124–144. Cambridge, MA. Springer-Verlag.

Peyton Jones, S. L., Tolmach, A. and Hoare, T. (2001). Playing by the rules: Rewriting as a

practical optimisation technique in GHC. Haskell Workshop, pp. 203–233. Florence, Italy.

Reuther, S. (2002) Adding a tree transducer recognition/transformation pass to the Glasgow

Haskell Compiler. Students project, Dresden University of Technology.

Rounds, W. C. (1970) Mappings and grammars on trees. Math. Syst. Theory, 4, 257–287.

Secher, J. P. and Sørensen, M. H. (1999) On perfect supercompilation. Perspectives of System

Informatics: LNCS 1755, pp. 113–127. Novosibirsk, Russia. Springer-Verlag.

Sheard, T. and Fegaras, L. (1993) A fold for all seasons. Functional Programming Languages

and Computer Architecture, pp. 233–242. Copenhagen, Denmark. ACM Press.

Sørensen, M. H., Glück, R. and Jones, N. D. (1996) A positive supercompiler. J. Funct. Prog.,

6, 811–838.

Svenningsson, J. (2002) Shortcut fusion for accumulating parameters & zip-like functions.

International Conference on Functional Programming, pp. 124–132. Pittsburgh, Pennsylvania.

(SIGPLAN Notices, 37.) ACM Press.

Thatcher, J. W. (1970) Generalized2 sequential machine maps. J. Comput. Syst. Sci., 4, 339–367.

Turchin, V. F. (1986) The concept of a supercompiler. ACM Trans. Prog. Lang. Syst., 8,

292–325.

Voigtländer, J. (2001) Composition of restricted macro tree transducers. MSc thesis, Dresden

University of Technology.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

Composition of functions with accumulating parameters 363

Voigtländer, J. (2002a) Conditions for efficiency improvement by tree transducer composition.

Rewriting Techniques and Applications: LNCS 2378, pp. 222–236. Copenhagen, Denmark.

Springer-Verlag.

Voigtländer, J. (2002b) Using circular programs to deforest in accumulating parameters. Asian

Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pp. 126–137.

Aizu, Japan. ACM Press.

Voigtländer, J. and Kühnemann, A. (2001) Composition of functions with accumulating

parameters. Technical report TUD-FI01-08, Dresden University of Technology.

Voigtländer, J. and Kühnemann, A. (2003) Proof appendix: Composition of functions with

accumulating parameters. Available at: Available from JFP online http://cambridge.org/

journals/jfp

Wadler, P. (1990) Deforestation: Transforming programs to eliminate trees. Theor. Comput.

Sci., 73, 231–248.

https://doi.org/10.1017/S0956796803004933 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004933

