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Analysis of DNA methylation data in epigenome-wide association studies provides many bioinformatics and statistical challenges. Not least of
these, are the non-independence of individual DNA methylation marks from each other, from genotype and from technical sources of variation.
In this review we discuss DNA methylation data from the Infinium450K array and processing methodologies to reduce technical variation.
We describe recent approaches to harness the concordance of neighbouring DNA methylation values to improve power in association studies.
We also describe how the non-independence of genotype and DNA methylation has been used to infer causality (in the case of Mendelian
randomization approaches); suggest the mediating effect of DNAmethylation in linking intergenic single nucleotide polymorphisms, identified in
genome-wide association studies, to phenotype; and to uncover the widespread influence of gene and environment interactions on methylation levels.
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Introduction

The causes of most diseases can be thought of as belonging in
two broad categories: inherited (genetic) factors, and environ-
mental exposures which can occur just before the disease or
much earlier in development.

It has long been known that disease risks can be passed down
through variation in DNA sequence within families and across
generations. However, the extent of this heritability remains
largely unresolved. The genetic basis of disease has been widely
explored. Genome-wide association studies (GWAS) have
discovered polymorphisms associated with certain diseases or
risk factors, however, these account for only a small proportion
of variance in the risk for common diseases such as major
depression, Type II diabetes and obesity.

Unlike DNA marks, epigenetic marks encode information
from both the inherited genotype1–3 and environmental
exposures,4,5 and thus present a promising approach to explain
multifactorial diseases. Epigenetic marks may be biomarkers for
risk stratification and disease diagnosis. DNA methylation is
one of the epigenetic changes, which has drawn much attention.
In humans, it occurs mainly in the context of CpG dinucleotides.
Advances in microarray technology and next-generation sequen-
cing have made it possible to measure and quantify DNA
methylation at a high resolution on a genome-wide scale and
across multiple samples. These technologies open up exciting
opportunities to perform epigenome-wide association studies
(EWAS), however, they also pose huge bioinformatics challenges

particularly in the areas of data processing,6 statistical analyses/
power7,8 and integration with other genome-wide molecular
datasets (i.e. genotype and transcriptome data). Issues of hetero-
geneous methylation across cell and tissue types and the unique
statistical properties of DNA methylation measurements pose
further challenges to the analysis.
This review focuses on computational and statistical methods in

DNA methylation analyses and interpretation, and the challenges
of gene–environment interaction analyses, and multiple genome-
wide molecular data integration.

DNA methylation measurements

Several methods have been developed to profile DNA methy-
lation on a genome-wide scale. Widely used methods are
MeDIP-seq, MBD-seq, reduced representation bisulphite
sequencing (RRBS) and the Illumina Infinium Human-
Methylation27 and HumanMethylation450 arrays.9,10 Protocols
and commercial kits for all four methods are available. MeDIP-seq
and MBD-seq employ an antibody or methyl-binding protein,
respectively, to create a genomic library enriched for methylated
genomic regions that are then sequenced. In both methods,
cytosine coverage is high but the methods have poor resolution
since they measure the relative enrichment of methylated DNA
across regions rather than at individual residues, and hybridization
to the antibody or methyl-binding protein is not necessarily
linear to per cent methylation. Both RRBS and the Infinium
arrays use bisulfite treatment, which converts cytosine residues
to uracils, while 5-methylcytosines remain unaffected. RRBS
uses methylation-sensitive restriction enzymes to create a
genomic fragment library of methylated regions that are then
bisulphite converted and sequenced. RRBS has single cytosine
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base resolution and offers much higher coverage than Infinium
arrays, but tends to bias towards regions that are moderately or
highly methylated and does not cover all the hypomethylated
regions that are thought to be important in inter-individual
variation. Interestingly, a recent analysis on genome-wide,
inter-individual variation in DNA methylation in humans
suggest that despite the greater coverage of RRBS, RRBS and
the Infinium HumanMethylation450 array capture a compar-
able percentage of variably methylated CpGs.11 The different
technologies have been applied on cells and tissues and
benchmarked against one another.9,12

In this review, we focus mainly on the Infinium Human-
Methylation450 array platform (Infinium450K), which is
capable of measuring the methylation status of more than
450,000 cytosines in humans. Previous reports have shown the
accuracy of Infinium450K data when compared with data
generated using the HumanMethylation27 array, GoldenGate
and whole genome bisulphite sequencing.13 We have also
applied RRBS and Infinium450K to clinical samples and
showed a high concordance between the two.14 Although
Infinium450K arrays offer far lesser coverage as compared with
sequencing-based methods, their cost effectiveness, throughput
and resolution have made them an increasingly popular choice
for EWAS. To date, there have been more than 6000 Infi-
nium450K data sets deposited in public repositories (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534),
and the number is growing.

A crucial aspect of an EWAS is the study design which is
driven by the scientific question of interest and we refer the
reader to reviews by Rakyan et al.,15 Michels et al.16 and Mill
et al.17 on various aspects of study design such as cohort and
sample size considerations and tissue type selection. We note
that given the large number of statistical tests to be conducted,
it is important for an EWAS to be well powered. Similar to a
well-designed GWAS, significant EWAS findings should be
validated in an independent cohort. Another way to add con-
fidence to associative observations is functional validation.18

For example, functional evaluation of candidate epigenetic
marks can be conducted in animal models, where their epige-
netic states can be perturbed and the changes relevant to the
disease can be observed. These functional studies can also
provide evidence for the causative link between the phenotype
and the phenotype-associated epigenetic change. Measurement
of the epigenetic mark in animal species could be conducted
using de novo sequencing techniques such as methylation-
sensitive pyrosequencing or MeDIP-seq (easier where a reference
genome exists). However even the Infinium450K array
designed for human has been validated for use with modifica-
tion and filtering on some great ape species,19 Cynomolgus
macaques20 and mice.21

Infinium450K data processing and quality control

The Infinium450K array employs two different assay designs
that is Type I and Type II. The Type I assay uses two probes

per CpG locus, corresponding to the methylated and unme-
thylated alleles, and both signals are measured in the same
colour channel. On the other hand, the Type II assay uses only
one probe, which detects both alleles and the methylated
and unmethylated signals are generated in the green and red
channels, respectively. In both cases, the methylation value
(β value) for a CpG is computed as the ratio between the
methylated signal and the sum of the methylated and unme-
thylated signals.13 The logit transformed β values are referred
to as M values.22 Several groups have reported technical dif-
ferences between Type I and Type II probes that is the β values
from Type II probes exhibit a narrower range as compared with
the Type I probes.10

Besides sample and probe quality control procedures,23 the
processing of methylation data involves additional steps to
correct for (1) intensity differences between the red and green
channels using measurements from control probes on the array,
(2) inter-sample variability and technical differences between
Type I and Type II probes and, (3) batch effects.
Various methods have been proposed to correct for (2) inter-

sample variability and technical differences between Type I and
Type II probes.14,23–25 Wu et al.26 compared the relative per-
formance of using raw un-normalized methylation values and
normalized methylation values from four different normalization
methods, (i) β mixture quintile normalization (BMIQ),24

(ii) subset-quantile within array normalization (SWAN),25

(iii) complete pipeline23 and (iv) Illumina’s method as imple-
mented in GenomeStudio software. In terms of reproducibility
of methylation values across technical replicates, they found
that BMIQ and SWAN had better overall performance, but
the improvement was only modest compared with using raw
un-normalized data. Benchmarking the performance of
Infinium450K data against RRBS on the same samples, Pan
et al.14 showed that the greatest improvement in agreement
is achieved through Type I and II correction, followed by
quantile-normalization and colour adjustment. They also showed
that their improved version of GenomeStudio’s normalization
algorithm generally performed better than the original and to
SWAN24 on these samples.
The normalization procedures for correcting for inter-

sample variability and technical differences between Type I
and Type II probes can also correct for minor batch effects.14,27

For major batch effects, batch effect correction can be applied
after normalization.28,29 We note also that the careful study
design can minimize batch effects.26 Careful processing on
Infinium450K data is necessary because the methylation effect
sizes discovered in the DOHaD field so far have been rather
small (1–2% difference) so sensitivity in the measure of
methylation and removal of technical bias is essential.

Confounding effects of cell heterogeneity

When an EWAS is conducted using heterogeneous tissue types
such as blood or umbilical cord, accounting for cellular het-
erogeneity in the analysis is important.30 Different cell lineages

Measuring epigenetics as the mediator of gene/environment interactions 11

https://doi.org/10.1017/S2040174414000506 Published online by Cambridge University Press

http://www.ncbi.nlm.nih.gov/geo/query/acc.�cgi?acc=GPL13534
http://www.ncbi.nlm.nih.gov/geo/query/acc.�cgi?acc=GPL13534
https://doi.org/10.1017/S2040174414000506


have different methylation profiles,31,32 and without account-
ing for cellular heterogeneity, an observed association between
a phenotype and methylation could be due to differences in
the cell type distributions across samples. Statistical algorithms
for inferring cell mixture proportions belong to two main
categories that is a reference-based32 and reference-free33,34

approach. The critical step of the reference-based approach is
identifying the set of methylation signatures of the major cell
types in the tissue. These cell-type-specific CpGs can then serve
as a high dimensional multivariate surrogate for the distribu-
tion of cell type proportions in the heterogeneous tissue. This
method has been used to estimate blood cell type proportions
in a study investigating the differential methylation of rheu-
matoid arthritis v. controls in whole blood.35 The authors
included this inferred blood cell type proportions as a covariate
in a linear regression model to correct for the effects of cell
type heterogeneity. More recently, two different reference-free
methods have been proposed for complex tissues where the
reference methylation signatures of constituent cell types are
not easily obtainable, or the relevant cell types are yet
unknown. The FaST-LMM-EWASher approach34 uses a
combination of linear mixed model and principle components
to correct for cell-type heterogeneity, where the pairwise simi-
larity between individuals is used as a proxy for cell-type com-
position. The Houseman method33 uses a latent surrogate
variable approach to adjust for cell type effects. These statistical
methods facilitate the discovery of genuine associations of
interest by removing potential spurious associations due to cell-
type heterogeneity. This is especially important in investigating
the origins of diseases which may be associated with cell type
differences for instance inflammatory changes in obesity.

Association analysis

Differentially methylated CpGs (DMCs)

To identify individual CpGs that are associated with a pheno-
type, a simple approach is to test each CpG individually for
association with the phenotype. Published studies have con-
ducted the analysis either using the methylation levels as the
predictor variable and the phenotype as the outcome vari-
able36,37 or using the methylation levels as the outcome variable
and the phenotype as the predictor variable.38 For the former,
when the phenotype is continuous or binary, linear regression
or logistic regression can be used for the analysis, respectively.
For longitudinal phenotypes, for example, when a cohort is
followed over time or correlated phenotypes and when related
individuals are recruited, mixed models or generalized esti-
mating equations can be used for estimating the respective
linear or logistic regression models. We note that when the
longitudinal outcome is binary, the regression coefficients
estimated from mixed models and generalized estimating
equations have different interpretation and the choice of ana-
lysis method depends on the scientific question of interest. In
the latter when the methylation levels are used as the outcome,
since methylation is continuous, linear regression can be employed.

As before, if methylation levels are measured longitudinally or
among related individuals, mixed models or generalized estimating
equations can be used.
After all CpGs on the Infinium450K array have been tested

individually for association with the phenotype, the
epigenome-wide P-values can be displayed graphically using
either a quantile-quantile plot or manhatten plot. To assess
statistical significance of the epigenome-wide P-values, the
individual P-values are typically corrected for multiple testing,
usually using a Bonferroni or Benjamini-Hochberg39 correc-
tion. However, this approach is very conservative as it dis-
regards the correlation between the test variables. Examples of
EWAS associations which have passed multiple testing correc-
tions include the association of HIF3A methylation in blood
with obesity37 and AHRR and F2RL3methylation in blood as a
consequence of smoking or exposure to smoke in utero.40–44

Differentially methylated regions (DMRs)

DNA methylation at individual CpGs have been shown to be
highly correlated over short chromosomal distances using high-
density measures of the methylome. This characteristic of co-
methylation allows neighbouring CpGs to be grouped into
regions, thereby increasing statistical power due to the smaller
number of tests and reducing false positives due to singular
noisy signals. A method leveraging on this property has been
developed for high coverage array CHARM and sequencing-
based platforms, and termed ‘bump hunting’.45 Briefly, the
method involves first regressing the methylation measures
arranged by chromosomal position over the outcome of inter-
est, then smoothing the regression slopes to reduce noise, and
finally selecting the candidate DMRs whose spatially con-
tiguous CpG signals lie consistently above the pre-set signal
threshold. A ‘bump hunting’method for Infinium450K, which
takes into account the sparsity and spatial irregularity of the
probes on the array, has also been developed.46 Using Infi-
nium450K data from blood of individuals of different ages,
Ong and Holbrook showed that their region analysis achieved
greater specificity compared with a DMC approach, as their
method increased the extent of common findings between
independent aging studies. And they showed the power
increase from 39% from a DMC approach to 61% with region
detection, as the method reduces the number of tests from
450 to 55K. Alternative DMR approaches such as sliding
window analysis coerce the data into arbitrary fixed sizes, and
carries out differential analyses on these pre-fixed regions. The
‘bump hunting’ method of Jaffe et al.45 and the ‘region dis-
covery’ approach of Ong and Holbrook,46 eliminates having to
impose an arbitrary constant size for each region.

VMRs

The ‘bump hunting’ and ‘region discovery’ approaches have
also been adapted to search for variably methylated regions
(VMRs) across individuals.46,47 In region discovery,47 the sig-
nal is determined solely by the median absolute deviation in the
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methylation values across samples, regardless of the outcome of
interest. This statistic gives us a measure of the degree of inter-
individual variation in methylation. Prioritizing the analysis to
VMRs allows one to significantly reduce the number of tests,
which reduces the multiple testing problems inherent in
genome-wide studies. Interestingly, the number of VMRs
detected in blood increase dramatically as a function of human
age.46 The VMR genes of the older age population tend to
cluster into neuorosignalling pathways. Some of the neuro-
signalling genes containing VMRs (e.g. POMC and OXTR)
have previously been shown to be methylated in response to
environment.

Integration of multiple genome-wide molecular data sets

The overarching goal of most developmental ‘omics’ studies is to
uncover the biological mechanisms that underlie developmental
outcomes. To that end, when different types of molecular datasets,
for example genomic, epigenomic, gene expression, and metabo-
lomics data are available, an integrated analysis can be conducted.
For example, gene expression quantitative trait loci (eQTL)
studies seek to identify single nucleotide polymorphisms
(SNPs) that are associated with gene expression,48 while
methylation quantitative trait loci (methQTL) studies seek to
identify SNPs that are associated with DNA methylation.49

eQTL/methQTL SNPs, gene expression and methylation can
then be modelled jointly for their effects on phenotype.50,51

A similar approach can be undertaken with metabolites.52,53

With multiple data sets, one can also explore the causal
relationships between the different layers of biological control.
For example, Gutierrez-Arcelus et al.54 explored the causal
relationship between genotype, DNA methylation and gene
expression by combining data from RNA-seq, SNP genotyping
and the Infinium450K array performed on umbilical cords
of newborn infants. Using a Bayesian network and relative
likelihood method, they found that a SNP is most likely to
independently affect expression and DNA methylation, with
SNP driving expression, which in turn affects methylation
being the least likely model. The Bayesian network models have
also been applied to reconstruct causal pathways.55 Other
causal inference methods such as the likelihood-based causality
model selection test, which computes conditional correlation
measures have also been used successfully to infer causal asso-
ciations between gene expression and disease.56

Gene-DNA methylation–environment interplay

The effects of genotype on DNA methylation have been
studied extensively and a large number of methQTLs have been
found in human tissues.1–3 Recently Liu et al.57 found that
methQTLs can incorporate contiguous and non-contiguous
CpG clusters (which they term GeMes).

Some genotype associations with phenotype may be mediated
by the influence of a genotype on the epigenome and its sub-
sequent impact on phenotype. This is a promising paradigm for
investigating intergenic SNPs associated with phenotype in a

GWAS, but with no obvious direct route to perturb the tran-
scriptome.57 Liu et al.35 identified a mediating role of HLA DNA
methylation in the aetiology of rheumatoid arthritis. Using a
causal inference test (CIT),58 the group found CpG loci, which
mediate the effect of previously reported associative genotype on
rheumatoid arthritis risk. Briefly, the CIT requires four conditions
to be satisfied (1) SNP is associated with disease (2) SNP is asso-
ciated with methylation after adjusting for disease (3) Methylation
is associated with disease after adjusting for SNP (4) SNP is
independent of disease after adjusting for methylation.
The association of genotype with methylation allows for

causal inference approach, Mendelian randomisation to be
applied to EWAS hits.59 Dick et al.,37 reported a significant
association between blood DNA methylation within the HIF3A
gene and body mass index (BMI), they also showed HIF3A
methylation was in a methQTL with SNPs in the HIF3A gene.
As the HIF3A SNPs were not associated with adult BMI, they
proposed that DNA methylation changes are driven by BMI
under the assumption of Mendelian randomization. However,
an alternative model is that both BMI and DNA methylation
share a yet undiscovered causal factor (excluding genetic variant).
Possible modifiers of both BMI and DNA methylation could
include environmental factors such as diet and exercise. These
type of confounding factors are often present and violate the
assumptions of Mendelian randomization. Other factors that
represent violations are the presence of linkage disequilibrium,
genetic heterogeneity, pleiotrophy, population stratification and
canalization.60 Again, these factors are nearly always present in
biological data sets. Additional strong assumptions are linearity
of all relationships and no interactions. However, interactions
of gene and environment are very common indeed in biology
and in DoHAD.
Gene–environment interplay in complex diseases that is

gene environment interaction (G×E model) can be con-
ceptualized as the genotypic predisposition to one’s degree of
sensitivity to environmental influences. A striking example is
the interaction of FKBP5 genotype and early childhood trauma
to affect methylation of FKBP5 intron 7, FKBP5 expression
and subsequent deregulation of glucocorticoid receptor signal-
ling.61 Yousefi et al.62 found that interactions between maternal
smoking and leptin receptor (LEPR) SNPs affected LEPR
methylation levels, and these LEPR SNPs, in interaction with
LEPR methylation, associated with leptin levels at 18 years.
Teh et al.,63 used a genome-wide survey of DNA methylation
with DNA obtained from umbilical cords in relation to a wide
range of measures of antenatal maternal health and well-being,
including maternal mood. They identified 1423 VMRs46 and
used statistical modelling to examine whether the variability in
DNA methylation at individual VMRs was best explained by
sequence-based genetic variation, antenatal maternal environ-
mental influences or the interaction between the two factors.
The results revealed that variation in DNA methylation was
best explained by genetic factors in ~25% of the VMRs.
Commonly, these effects involved genetic variants in close
proximity to VMR. In contrast, ~75% of the VMRs were best
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explained by a G×E interaction model. Interestingly, in no
cases were VMRs best explained by environmental conditions
alone, acting independent of the genome.

Other than interaction analyses, a less stringent segregated
analysis may also allow one to determine CpG loci where the
association between DNA methylation and environment is
dependent on genotype. For instance, genotype at a poly-
morphism in the brain-derived neurotrophic factor (BDNF)
gene strongly affects whether multiple CpGs in the neonate
methylome co-vary with pre-natal maternal anxiety. The
methylomes of neonates with differential BDNF genotypes
reflect inter-individual variation in the neonatal volumes of
different brain regions.64 These results underscore the impor-
tance of integrating genotype data in EWAS. In addition to
G×E models, one can also test for E×E interactions effects.
In the study of maternal tobacco use on the infant’s DNA
methylation, Suter et al.65 found DMCs which showed sig-
nificant association with smoking status in interaction with
infant birth weight. It is also biologically plausible that DNA
methylation interacts with genotype to influence disease out-
comes. For example, Soto-Ramírez et al.66 found that the
interaction of IL4R genetic variants and IL4R DNA methylation
increases the risk of asthma at age 18 years.

Future directions

As sequencing-based methods become more cost-effective, the
shift from array-based platforms to next generation sequencing
(NGS) methods will likely accelerate. NGS methods offer a
much more comprehensive picture of the human methylome
(the Infinium450K array covers only 2% of all human CpGs),
but it will increase the computational load of analysis. Another
advantage of NGS over array methods is that batch effect
problems are much reduced assuming proper experimental
design, and this is especially pertinent for large-scale EWAS
studies. However, the tremendous increase in the amount of
methylation data generated per sample would greatly exacer-
bate the multiple testing problem. It will therefore be crucial to
employ data reduction methods such as region analysis46 to
boost statistical power. Analogous to linkage disequilibrium
(LD) in genetics, high-density methylation measurements can
allow correlated CpGs to be reliably clustered into methylation
blocks.45,46,57 These methylation structures can then be com-
prehensively interrogated for their associations with LD blocks
and co-expression modules, without compromising power
significantly.

There is a massive increase in the number of methylomes
being generated by individual laboratories and public consortia
such as the International Human Epigenome Consortium and
the Encyclopedia of DNA Elements initiative. With the huge
forthcoming methylome data publicly available, reference maps
of human variably methylated CpG blocks (VMRs) across
different cell types and conditions can be established. This
would be a valuable resource for prioritizing the discovery
efforts to these specific regions. Identification of methQTLs

would add important information about the genetic influence
on these methylation maps. However, the growing evidence of
the prevalence of the combined effects of genetics and the
environment on methylation61–63 suggests that the binary
classification of genetically driven CpGs (methQTLs) and non-
genetically driven CpGs (non-methQTLs) is too simplistic. It
is thus likely that consideration of methQTLs will evolve from
a qualitative discrete analysis to a quantitative continuum
analysis. Development of new statistical methodologies to test
combined and interacting effects of genotype and environment
on DNA methylation, and environment, methylation and
genotype on phenotype, will be necessary.
As genome-wide molecular datasets consisting of genome

sequence, DNA methylome, metabolome, proteome, micro-
biome, transcriptome, etc. become more readily available, the
next challenge would be to develop methods that efficiently
integrate these data as a whole and perform a joint analysis,
which maximizes the use of data and allows one to explore the
interplay of these layers of regulation. Furthermore, the cross
talk between layers of regulation can change under different
conditions and over time, and can pose major challenges to
understanding the causes and consequences of these molecular
changes. The development of powerful approaches for inte-
grative data analysis, taking into account the specific noise,
biases and statistical properties of individual data sets, across
cell types, time and conditions is likely to be a primary focus of
the field of computational biology going forward.
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